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Abstract

This paper investigates video game identification through single screenshots, utilizing five convolu-
tional neural network (CNN) architectures (MobileNet, DenseNet, EfficientNetB0, EfficientNetB2, and
EfficientNetB3) across 22 home console systems, spanning from Atari 2600 to PlayStation 5, totalling
8,796 games and 170,881 screenshots. Confirming the hypothesis, CNNs autonomously extract image
features, enabling the identification of game titles from screenshots without additional features. Using
ImageNet pre-trained weights as initial weights, EfficientNetB3 achieves the highest average accuracy
(74.51%), while DenseNet169 excels in 14 of the 22 systems. Employing alternative initial weights
trained in an arcade screenshots dataset boosts accuracy for EfficientNetB2 and EfficientNetB3, with
the latter reaching a peak accuracy of 76.36% and demonstrating reduced convergence epochs from
23.7 to 20.5 on average. Overall, the combination of optimal architecture and weights attains 77.67%
accuracy, primarily led by EfficientNetB3 in 19 systems. These findings underscore the efficacy of
CNNs in video game identification through screenshots.

Keywords: video game identification, convolutional neural networks, transfer learning, single screenshot
analysis, automated game recognition

1 Introduction

Humans possess the remarkable ability to easily
recognize their favorite video games or titles they
have played frequently from a single screenshot.
This proficiency is rooted in the presence of con-
sistent visual elements, including sprites, heads-up
displays (HUDs), and distinctive game scenarios.
However, extending this capability to the auto-
mated identification of random video games from
an extensive console library presents a formidable
challenge, even for the most dedicated gamers.
Therefore, the concept of automatically identi-
fying video games from single screenshots holds

immense appeal, not only for its technical com-
plexity but also for its vast practical applications.

Automated game identification could offer sub-
stantial benefits to various sectors within the
gaming industry. Video game databases, search
engines, and online platforms stand to gain sig-
nificantly from this technology. By analyzing
user-uploaded screenshots, these platforms can
automatically generate metadata, including game
titles, release dates, and developer information.
Such automation would not only improve the
accuracy of their game libraries but also enhance
cataloging efficiency. Moreover, online streaming
platforms could harness screenshot recognition to
provide real-time information to viewers about the

1

ar
X

iv
:2

31
1.

15
96

3v
2 

 [
cs

.C
V

] 
 6

 M
ay

 2
02

4



games being played during live streams, enhanc-
ing the overall viewer experience. This technol-
ogy opens doors to further innovation within the
gaming ecosystem, potentially influencing game
recommendation systems and aiding game-related
research.

Most of the video games classification attempts
so far aimed at genre classification. Augusto
De Souza et al. [1] pioneering work classified game
genre of gameplay videos. Their dataset comprises
700 gameplay videos spanning seven distinct game
genres. In their research, they introduced novel
descriptors known as Bossa Nova and BinBoost.
The experimental outcomes demonstrated the
effectiveness of their proposed approach, achieving
an accuracy rate of 89.84%.

Göring et al. [2] also introduced a novel
method for classifying video games genres based
on content. They used a dataset comprising 351
gameplay videos spanning six different genres.
They employed random forest and gradient boost-
ing trees as underlying machine-learning tech-
niques, combined with feature selection of image-
based features and motion-based features. The
most promising results were achieved using the
random forest classifier, which yielded an accuracy
rate of 60.6%.

Zadtootaghaj et al. [3] introduced a game
classification method based on graphical and
video complexity. Their approach categorizes
games into three distinct classes: low-complexity,
medium-complexity, and high-complexity games.
To achieve this classification, they developed a
decision tree capable of accurately assigning a
game to its appropriate complexity class with an
accuracy rate of 96%. The classification process
relies on the analysis of specific attributes within
the gameplay video, including the observation of
a static area, assessment of the degree of freedom
(DoF), and quantification of camera movement.

While the majority of classification endeavors
have typically focused on broader categories, there
was a unique attempt to classify video games by
their titles more than a decade ago. In this pio-
neering effort, Madani et al. [4] explored several
fusion methods using a dataset containing 120,000
gameplay videos, with the objective of identify-
ing game titles. Their approach integrated both
audio and visual features to accurately pinpoint
these specific game titles, ultimately achieving a

F1-score of 0.82. Although their dataset is consid-
erably large, they explored only a small number
of games, identifying 30 distinct game titles. To
the best of my knowledge, there has not been any
other attempt to identify video games by their
titles, especially in larger datasets with hundreds
or thousands of titles, neither using video nor
screenshots.

In the past decade, there has been a notable
surge in the adoption of deep learning meth-
ods, as exemplified by the works of LeCun et al.
[5], Goodfellow et al. [6], and Schmidhuber [7].
Among these methods, convolutional neural net-
works (CNNs) have played a pivotal role in driving
advancements in automatic image classification,
as initially demonstrated by Krizhevsky et al. [8].
CNNs represent a specific category of deep neural
networks that find widespread use in the field of
visual image analysis.

However, one of the inherent challenges associ-
ated with CNNs lies in their substantial appetite
for annotated image samples, which are essen-
tial for estimating the millions of parameters
required for network training. The process of
annotating images can be both expensive and
time-consuming, often presenting a significant
bottleneck, particularly when dealing with prob-
lems characterized by limited available training
data [9]. This limitation has, at times, hindered
the widespread application of CNNs in scenar-
ios where access to abundant training data is
restricted.

Remarkably, Oquab et al. [9] addressed
this predicament by unveiling a breakthrough
approach. Their research demonstrated that
image representations acquired through CNNs
trained on extensive, annotated datasets could
be judiciously leveraged for other visual recog-
nition tasks, even in cases where only a limited
amount of training data is available. This inno-
vative method involved repurposing layers from a
CNN model previously trained on a large dataset
to compute mid-level image representations for
a different dataset, yielding remarkable improve-
ments in classification performance. This powerful
technique, commonly referred to as transfer learn-
ing, has found successful application across vari-
ous domains and scenarios, as exemplified by the
works of Shin et al. [10] Huynh et al. [11] and
Gopalakrishnan et al. [12].
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CNNs have significantly influenced the land-
scape of automatic image classification, includ-
ing game classification. Suatap and Patanukhom
[13] used games screenshots and icons provided
in game stores to classify them by genre using
convolutional neural networks and ensemble tech-
niques. They achieved 40.3% and 46.7% classifi-
cation accuracies for single icon and screenshot
classification tasks, respectively. They increased
these results to 40.5% and 47.6%, respectively,
in a later work [14], in which they also used
features extracted from their trained models to
perform other two tasks: similar game searching
and quality assessment of game images based on
the correctness of viewers’ understanding of game
content.

Recently, Jiang and Zheng [15] devised deep
neural networks for the purpose of classifying
game genres using either cover images or descrip-
tion text. Their dataset encompassed cover images
and description texts sourced from a pool of
50,000 games, which they categorized into 15 dis-
tinct genres. In their approach, several pre-trained
CNNs were fine-tuned for the cover image classi-
fication task. For the classification of description
text, they employed Long Short-Term Memory
(LSTM) networks and the Universal Sentence
Encoder (USE). The image-based model yielded
a highest accuracy rate of 31.4% when utiliz-
ing ResNet-50. They also achieved significant
improvement in accuracy, up to 49.9%, by combin-
ing image and text features within a multi-modal
model.

Both of these previous studies were limited
to identifying game genres, and their accuracy
was only moderate (below 50%). Until now, there
has been no attempt to identify game titles using
CNNs, which is a more challenging task than iden-
tifying only the game genres. In this paper, the
primary focus revolves around the task of video
game title classification based on single screen-
shots, utilizing CNN models. The hypothesis is
that the inherent CNN capacity of automati-
cally extracting relevant features from images is
sufficient to identify video game titles from sin-
gle screenshots in most scenarios, without relying
on other features. To embark on this journey, a
dataset encompassing 170,881 screenshots from
8,796 games of 22 popular home console systems
was curated. The screenshots were sourced from

the reputable Moby Games Database [16]. The
proposed dataset spans a wide spectrum of gaming
history, ranging from iconic consoles like the ‘Atari
2600’ of the second generation to the cutting-edge
‘PlayStation 5’ and ‘Xbox Series’ of the cur-
rent generation, carefully selecting the most sold
consoles from each generation between them. Its
richness and diversity make it an ideal playground
for our research.

To tackle this ambitious task, well-established
CNN architectures were selected: MobileNet [17],
DenseNet [18], and EfficientNet [19]. These archi-
tectures have consistently demonstrated outstand-
ing performance in previous works with different
kinds of images [20, 21], making them prime can-
didates for this game title classification task. The
initial weights of these CNNs were first initial-
ized with pre-trained weights from the ImageNet
dataset [22], a widely adopted approach in trans-
fer learning [9]. Subsequently, the pre-trained
weights from another dataset of screenshots were
employed to enhance both classification accuracy
and reduce training times.

What sets this research apart is its pioneering
spirit. To the best of my knowledge, this marks the
first attempt to tackle the intriguing challenge of
game title classification using CNNs. By pushing
the boundaries of automated video game identifi-
cation, the aim is to contribute valuable insights to
game-related research and practical applications
to the ever-evolving gaming industry.

The remainder of this paper is organized
as follows. Section 2 presents the Moby Games
Database and how the dataset was sourced from it.
Section 3 shows the CNN architectures employed
in this paper. Section 4 displays the computer sim-
ulations comparing the CNN architectures in the
task of identifying the games from their screen-
shots, initialized with pre-trained weights from
the ImageNet dataset. Section 5 demonstrates
computer simulations using weights pre-trained in
another screenshots dataset, comparing the accu-
racy and training epochs with those obtained with
the ImageNet weights. Finally, the conclusions are
drawn in Section 6.

2 The Dataset

The Moby Games Database [16], as stated on their
website, is an ambitious project with the primary
goal of meticulously cataloging comprehensive
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information about electronic games, encompassing
computer, console, and arcade titles, on a game-
by-game basis. This extensive catalog includes
release details, credits, cover art, player-uploaded
screenshots with captions, neutral descriptions,
and much more. Impressively, the database boasts
a collection of over one million screenshots, metic-
ulously organized by game titles and systems.
Additionally, they offer an API that simplifies
the process of requesting and retrieving dataset
entries and screenshot files. Given these advan-
tages, the Moby Games Database was selected as
the primary source for the screenshots used in this
research.

To maintain a focused scope for this initial
endeavor in video game identification using CNNs,
the study exclusively considered home video game
consoles. Handheld devices, arcade games, and
computer-based titles will be addressed in future
research. The selection process involved choosing
the top 22 best-selling home video game consoles
of all time [23]. These consoles originate from six
different manufacturers and exhibit varying quan-
tities of screenshots per game in the database,
ranging from none to a few dozen. To ensure
that each game has a minimum of five screen-
shots available for cross-validation purposes, only
games meeting this criterion were selected. Table
1 provides an overview of the 22 chosen sys-
tems, detailing their total game and screenshot
counts, as well as the specific number of games
and screenshots selected to satisfy the “at least
5 screenshots” criterion. Figure 1 shows some
screenshots from the built dataset.

3 CNN Architectures

In this section, the CNN architectures explored in
this study are introduced, along with a description
of the additional layers integrated to achieve suc-
cessful screenshot classification. Table 2 offers an
overview of the four architectures under examina-
tion, highlighting their input image resolution, the
size of their output in the final convolutional layer,
the quantity of parameters involved, and citations
to their respective references in the literature.

The output from the final convolutional layer
of the original CNN is directed into a global aver-
age pooling layer. Subsequently, a dropout layer
is implemented with a rate of 20% to mitigate

overfitting, followed by a large softmax classifica-
tion layer with up to 1, 236 outputs, which is the
amount of game titles in the dataset for the NES
console. This proposed architecture is visualized
in Figure 2, with x representing the dimensions of
the input size (image size), w, y, and z indicating
the dimensions of the CNN output in its ultimate
convolutional layer (as detailed in Table 2), and
g denoting the output layer’s dimensions, which
depend on the number of games from the system
being evaluated that are present in the dataset (as
indicated in Table 1).

4 CNN Comparison

This section presents computer simulations that
compare CNN models applied to the classification
of screenshots from the 22 systems shown in Table
1. All simulations utilized Python and Tensor-
Flow running on three distinct desktop computers
equipped with NVIDIA GeForce GPU boards:
GTX 970, GTX 1080, and RTX 2060 SUPER,
respectively1.

For each CNN architecture, image preparation
involved resizing to fit the CNN input size and
normalizing the range, with no additional pre-
processing. Networks commenced with pre-trained
weights sourced from the Imagenet dataset [22],
which boasts millions of images and hundreds of
classes, widely used in transfer learning. These
pre-trained weights are available in Tensorflow.

K-Fold Cross Validation, employing k = 5, was
applied universally across all datasets. Training
utilized the Adam optimizer [24], initiating with
a learning rate of 10−3 and halving whenever the
validation accuracy stagnated for 2 epochs, down
to a minimum of 10−5. Within the training subset,
a random 20% of images were allocated to the val-
idation subset, ensuring consistent class propor-
tions through stratification. All models underwent
training for up to 50 epochs, with an early stop-
ping criterion to cease training if the validation set
loss failed to decrease during the last 10 epochs.

The results, detailed in Table 3, denote aver-
ages derived from five different instances of each
model, following the Cross Validation approach.
They show that DenseNet169 achieved the best
accuracy in 14 of the 22 systems. On the other

1Access the source code at https://github.com/fbreve/
videogame
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System Manufacturer
Selected
Games

Total
Games

Selected
Screenshots

Total
Screenshots

Atari 2600 Atari 302 598 2148 2981
NES Nintendo 1236 1426 18277 18579

Master System Sega 322 357 4795 4850
PC Engine NEC/Hudson Soft 213 276 3024 3099
Mega Drive Sega 926 1016 15838 15943

Super Nintendo Nintendo 1113 1216 20926 21079
Sega Saturn Sega 249 809 4413 4536
PlayStation Sony 1197 2815 26831 27095
Nintendo 64 Nintendo 172 378 2958 3125
Dreamcast Sega 155 553 2147 2217

PlayStation 2 Sony 677 3430 14157 14590
GameCube Nintendo 149 621 3061 3094

Xbox Microsoft 161 1015 3351 3379
Xbox 360 Microsoft 651 9357 9087 9426

PlayStation 3 Sony 255 15146 8358 8493
Wii Nintendo 118 2680 2519 2655

Wii U Nintendo 31 1590 775 798
PlayStation 4 Sony 625 22733 22695 22912

Xbox One Microsoft 119 16545 2397 2661
Nintendo Switch Nintendo 77 12374 1736 1787

Xbox Series Microsoft 5 3256 37 44
PlayStation 5 Sony 43 2432 1351 1356

Total 8796 100623 170881 174699

Table 1 Home Console Video Game Systems, Their Manufacturers, and the Total/Selected Number of Games and
Screenshots for the Study. Games with a minimum of five available screenshots in the database were chosen for analysis.

Model
Input Image
Resolution

Output of Last
Conv. Layer

Parameters Reference

MobileNet 224× 224 7× 7× 1024 4.3M Howard et al. [17]
DenseNet169 224× 224 7× 7× 1664 14.3M Huang et al. [18]

EfficientNetB0 224× 224 7× 7× 1280 5.3M Tan and Le [19]
EfficientNetB2 260× 260 9× 9× 1408 9.2M Tan and Le [19]
EfficientNetB3 300× 300 10× 10× 1536 12.3M Tan and Le [19]

Table 2 CNN architectures, some of their characteristics, and their references.

hand, the best average accuracy is attained by
EfficientNetB3 (0.7451) which is only slightly
higher than that achieved by the runner-up
DenseNet169 (0.7446).

Regarding the systems, the best accuracy is
achieved with the Xbox Series using Efficient-
NetB3 (0.9714). However, it is worth noticing that
this system only had 37 screenshots from a total
of five games. Its results were markedly worse with
DenseNet169 (0.6071), for example. The Atari

2600 is the system with the best average accu-
racy (0.8942). This is likely related to the simpler
graphics of this second-generation console com-
pared to newer systems. Most games for the Atari
2600 do not exhibit significant screen variation.

In simpler tasks, smaller architectures often
perform as well as larger ones. It’s valuable to
consider these smaller networks when selecting
the optimal architecture for a task because if a
smaller network can yield comparable results in
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Enduro - Atari 2600 Super Mario Bros. - NES The Legend of Zelda -
NES

Alex Kidd in Miracle
World - Master System

Bonk’s Adventure - PC
Engine

Sonic the Hedgehog -
Genesis

Super Mario World -
Super Nintendo

Virtua Fighter 2 - Sega
Saturn

Gran Turismo -
PlayStation

Final Fantasy VII -
PlayStation

Super Mario 64 -
Nintendo 64

Sonic Adventure -
Dreamcast

Grand Theft Auto: San
Andreas - PlayStation 2

Super Smash Bros.:
Melee - GameCube

Halo: Combat Evolved -
Xbox

Halo 3 - Xbox 360 The Last of Us -
PlayStation 3

Wii Sports - Wii Mario Kart 8 - Wii U The Witcher 3: Wild
Hunt - PlayStation 4

Horizon: Zero Dawn -
PlayStation 4

Gears of War 4 - Xbox
One

The Legend of Zelda:
Breath of the Wild -
Nintendo Switch

Forza Horizon 5 - Xbox
Series

Ratchet & Clank: Rift
Apart - PlayStation 5

Fig. 1 Some examples of screenshots from the proposed dataset.

less computational time, there’s no justification
for employing a larger one. This rationale led to
the inclusion of MobileNet and EfficientNetB0 in
this comparison. However, in the context of video
game detection by screenshot, it became evident
that larger networks outperformed the smaller
ones.

5 Alternative Initial Weights

The ImageNet weights are commonly used in
many transfer learning scenarios with success.
Through fine-tuning, these weights can be adapted
to perform many different tasks. However, it is
expected that transferring weights from a similar
task might enhance accuracy and reduce training
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System
Mobile-
Net

Dense-
Net169

Efficient-
NetB0

Efficient-
NetB2

Efficient-
NetB3

Average

Atari 2600 0.8925 0.8939 0.8892 0.8920 0.9036 0.8942
NES 0.6550 0.6719 0.6845 0.6876 0.6780 0.6754

Master System 0.7070 0.7452 0.7124 0.7418 0.7429 0.7299
PC Engine 0.7543 0.7989 0.7771 0.7834 0.7890 0.7806
Mega Drive 0.6751 0.7307 0.7326 0.7246 0.7307 0.7188

Super Nintendo 0.6724 0.7247 0.7015 0.7142 0.7081 0.7042
Sega Saturn 0.6973 0.7494 0.6728 0.6841 0.7050 0.7017
PlayStation 0.6908 0.7079 0.6768 0.7227 0.7402 0.7077
Nintendo 64 0.7654 0.8327 0.7383 0.7681 0.7776 0.7764
Dreamcast 0.6521 0.7513 0.6349 0.6735 0.6758 0.6775

PlayStation 2 0.6939 0.7273 0.6836 0.7126 0.7345 0.7104
GameCube 0.7416 0.8233 0.7207 0.7540 0.7498 0.7579

Xbox 0.7804 0.8439 0.7386 0.7929 0.7860 0.7883
Xbox 360 0.7413 0.7859 0.7339 0.7623 0.7768 0.7600

PlayStation 3 0.6218 0.7073 0.6658 0.6890 0.7182 0.6804
Wii 0.7638 0.8337 0.7555 0.7674 0.7840 0.7809

Wii U 0.6594 0.7264 0.6942 0.7006 0.7187 0.6999
PlayStation 4 0.5601 0.6151 0.5975 0.6273 0.6477 0.6096

Xbox One 0.5582 0.6458 0.5791 0.5858 0.6350 0.6008
Nintendo Switch 0.7362 0.8001 0.7511 0.7811 0.7886 0.7714

Xbox Series 0.7643 0.6071 0.9178 0.9714 0.9714 0.8464
PlayStation 5 0.5714 0.6580 0.5863 0.6188 0.6299 0.6129

Average 0.6979 0.7446 0.7111 0.7343 0.7451 0.7266
Table 3 Accuracy achieved by the five different CNN models in each of the 22 screenshots datasets. Each model is
executed five times following the Cross Validation approach. The highest accuracy for each dataset is highlighted in bold.

CNN
Input: (x, x, 3)

Output: (w, y, z)
CNN

Input: (x, x, 3)

Output: (w, y, z)

Average Global 
Pooling 2D

Input: (w, y, z)

Output: (z)

Average Global 
Pooling 2D

Input: (w, y, z)

Output: (z)

Dropout
rate=0.2

Input: (z)

Output: (z)

Dropout
rate=0.2

Input: (z)

Output: (z)

Dense
softmax

Input: (z)

Output: (g)

Dense
softmax

Input: (z)

Output: (g)

Fig. 2 The proposed CNN Transfer Learning architecture.

times compared to using the ImageNet weights.
Hence, investigating whether this holds true for

the game identification by screenshots task is
worthwhile.

To conduct these simulations, Arcade screen-
shots were obtained from the Moby Games
Database using the same criteria applied in sourc-
ing screenshots from home console systems. Out of
3,125 games and 24,714 screenshots, 1,633 games
and 24,235 screenshots were selected based on the
criterion of ‘at least five screenshots per game.’
This Arcade dataset holds particular significance
due to the inclusion of games contemporary to
multiple home console generations, thereby pre-
senting screenshots with highly diverse graphics.

From the architectures that exhibited the
best performance in the previous section —
DenseNet169, EfficientNetB2, and EfficientNetB3
— each was trained using the entire Arcade
dataset, utilizing identical parameters as outlined
earlier. The weights obtained from training on
the Arcade dataset were subsequently employed
as initial weights for training these architectures
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with screenshots from each of the 22 home console
systems.

Tables 4, 5, and 6 display the accuracy
achieved and the epochs required to train each
network, using both the ImageNet and Arcade
weights. For DenseNet169, employing the Arcade
weights resulted in improved accuracy for only 6
out of the 22 systems. However, training times
decreased for 21 of the 22 systems. Overall,
while the average accuracy slightly decreased from
0.7446 to 0.7432, the average number of epochs
needed to train the network decreased from 24.2
to 19.6.

For EfficientNetB2 (Table 5), employing the
Arcade weights resulted in improved accuracy for
19 of the 22 systems. Additionally, training times
decreased for 20 of the 22 systems. Overall, the
average accuracy increased from 0.7343 to 0.7552,
while the average number of epochs needed to
train the network decreased from 24.4 to 19.9

Finally, with EfficientNetB3 (Table 6),
employing the Arcade weights similarly led to
improved accuracy for 19 of the 22 systems. More-
over, training times decreased for 20 of the 22
systems. Overall, the average accuracy increased
from 0.7451 to 0.7636, while the average number
of epochs required to train the network decreased
from 23.7 to 20.5. It’s worth noting that the
systems showing improved accuracy or training
times are consistent between EfficientNetB2 and
EfficientNetB3.

Table 7 displays the highest accuracy achieved
for each system, showcasing the best combination
of architecture and initial weights. EfficientNetB3
notably outperforms other architectures, yielding
the best results in 19 out of 22 systems, with
one tie alongside EfficientNetB2. EfficientNetB2
and DenseNet169 excel in two systems each. Con-
cerning the initial weights, the “Arcade weights”
account for the best results in 17 out of 22 sys-
tems, while the remaining five systems attained
their highest accuracy with the ImageNet initial
weights.

6 Conclusions

This paper explores the application of five distinct
CNN architectures (MobileNet, DenseNet, Effi-
cientNetB0, EfficientNetB2, and EfficientNetB3)
for identifying video games through screenshots
across 22 diverse home console systems, from Atari

2600 (first released in 1977) to PlayStation 5 (first
released in 2020). This is a pioneering work as it
is the first attempt to identify video game titles
by their screenshots. The computer simulations
confirmed the hypothesis that CNN’s inherent
capacity of automatically extracting relevant fea-
tures from images is sufficient to identify video
game titles from single screenshots in most sce-
narios, without relying on other features. Using
pre-trained weights from the ImageNet dataset, an
average accuracy of 74.51% over all the 22 systems
is achieved with the EfficientNetB3 architecture.
On the other hand, DenseNet169 architecture is
the best in 14 of the 22 tested systems.

When weights pre-trained in another screen-
shot dataset (Arcade) are used as initial weights
- instead of those from ImageNet - the accuracy
improves for both EfficientNetB2 and Efficient-
NetB3, at the same time that the amount of
epochs required to converge lowers. The average
accuracy over all the 22 systems increases from
74.51% to 76.36% with EfficientNetB3, while the
number of epochs required for models to converge
decreases from 23.7 to 20.5. On the other hand,
the Arcade weights do not improve DenseNet169
in most scenarios.

Overall, considering only the best architec-
ture and weights for each system, an accuracy of
77.67% is achieved. EfficientNetB3 is responsible
for the best results in 19 from the 22 systems.
The “Arcade weights” are responsible for the best
results in 17 of the 22 systems, confirming the
hypothesis that starting from weights trained on a
different dataset but the same task are better than
starting with the more general ImageNet weights
in most scenarios.

The simulations performed for this paper
showed evidence of the efficacy of CNNs in the
task of video game identification by screenshots.
Since the largest networks explored in this paper
achieved the best results, future research will
explore even larger CNN architectures and CNN
ensembles to further enhance accuracy. Addition-
ally, this study suggests potential applications in
other screenshot-based tasks, such as genre clas-
sification or similar game searches, leveraging the
efficacy of CNNs in video game identification.
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