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Abstract. Knowledge distillation is a form of model compression that allows artificial

neural networks of different sizes to learn from one another. Its main application is

the compactification of large deep neural networks to free up computational resources,

in particular on edge devices. In this article, we consider proton-proton collisions

at the High-Luminosity LHC (HL-LHC) and demonstrate a successful knowledge

transfer from an event-level graph neural network (GNN) to a particle-level small

deep neural network (DNN). Our algorithm, DistillNet, is a DNN that is trained

to learn about the provenance of particles, as provided by the soft labels that are

the GNN outputs, to predict whether or not a particle originates from the primary

interaction vertex. The results indicate that for this problem, which is one of the main

challenges at the HL-LHC, there is minimal loss during the transfer of knowledge to

the small student network, while improving significantly the computational resource

needs compared to the teacher. This is demonstrated for the distilled student network

on a CPU, as well as for a quantized and pruned student network deployed on a

field-programmable gate array. Our study proves that knowledge transfer between

networks of different complexity can be used for fast artificial intelligence (AI) in

high-energy physics that improves the expressiveness of observables over non-AI-based

reconstruction algorithms. Such an approach can become essential at the HL-LHC

experiments, e.g., to comply with the resource budget of their trigger stages.
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1. Introduction

The Large Hadron Collider (LHC) produces complex data that requires high-energy

physics (HEP) experiments like ATLAS [1] or CMS [2] to employ sophisticated models

and simulation tools in order to understand the fundamental constituents of the universe

and their interactions. Over the past years, state-of-the-art machine learning solutions

have found their way into the data analysis workflows because of their ability to map the

data into a set of latent features, a so-called representation, with favorable properties

for tasks such as reconstruction, classification, or regression. Best representation

learning capabilities in HEP data have been demonstrated by large-scale models based

on graph neural networks and transformers, for instance, for the canonical task of

jet characterization [3, 4, 5, 6, 7] and for the reconstruction of the entire collision

event [8, 9, 10, 11]. These models, however, often have millions of parameters, and

a forward pass can produce latencies of several seconds per event. This makes them a

realistic option only in the offline processing of large recorded and simulated datasets,

where massive parallelization is possible on distributed computing resources.

Especially for the online selection steps of the analysis chain, but in extreme cases

also for the offline processing of data, such models can quickly become impractical or

even impossible to deploy. In an effort to make data processing more efficient, researchers

in other fields have turned to knowledge distillation (KD), first introduced in [12] as a

form of model compression. It allows the extraction of valuable insights from complex

models and represents them in a more compact form. A typical application of KD is

the transfer of knowledge from a large, complicated model, referred to as teacher model,

to a simpler neural network, called student model, which fits the resource budget of the

specific computing environment consisting of processors and/or co-processors.

A generic loss function used for the KD process can be formulated as

L = αS(ŷ, y) + β S(ŷ, y′) + γ T (y, y′), (1)

with ŷ being the ground truth, y the output of the teacher (e.g., class logits or regressed

quantities), and y′ the student output. Accordingly, S(ŷ, y) is a supervised criterion

for aligning the teacher output with the ground truth, similarly for the student output

through S(ŷ, y′). The core knowledge transfer term T (y, y′) makes the student mimic

the behavior of the teacher. The latter term can, for instance, be a mean squared

error between the student and teacher outputs, or the Kullback-Leibler divergence [13]

between their distributions. The parameters α, β, and γ are relative, tunable weights.

A first successful demonstration of KD in high-energy physics for streamlining data

analysis and reducing computational requirements has been performed in [14], where

a large convolutional neural network (CNN) was compressed into a smaller CNN able

to identify muons by energy deposits in resistive plate chambers. A second application

improves the jet tagging capability of lightweight networks [15].

In our specific case, we consider the problem of pileup mitigation, which is one of

the main challenges of future data taking periods at the LHC. It is the identification
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of particles erroneously attributed to the collision of interest when colliding bunches

containing 1011 of protons. Being one of the key challenges at the Large Hadron Collider

(LHC), earlier studies have demonstrated that GNNs and attention mechanisms can

quite accurately deduce the provenance of the reconstructed particle [10, 11, 16]. They

achieve their performance by considering the neighborhood of a particle and learning

from shower shapes a soft label that indicates if the particle comes from a pileup collision

(soft label ∼0) or the primary collision (soft label ∼1). These labels can then be used to

construct precise high-level observables describing the primary collision. However, this

comes at a significant computational cost due to inference times of O(s), rendering the

application of such algorithms and their practicality quite limited.

In this article, we study if the soft labels provided by a large, pre-trained graph

neural network (GNN) as featured in [16] can be used as regression targets for a

simple deep neural network, DistillNet, to achieve good physics performance at lower

computational cost. The fact the teacher is pre-trained implies that α of Equation 1 is

set to 0. Likewise, the parameter β is 0, because hard labels ŷ do not exist, as discussed

in the following. The term T denoting the transfer of knowledge between the algorithms

is given by the mean absolute error loss,

T (y, y′) ≡ LMAE =
1

N

N∑
i=1

|yi − y′i| , (2)

where N denotes the batch size given by the number of particles, yi is the soft truth

label from the GNN for particle i, and y′i is the prediction by DistillNet for the same

particle.

What makes the problem of pileup mitigation an ideal use case for studying

knowledge transfer from a GNN to a DNN is the intractability of hard labels (called ŷ in

Equation 1) for the particles that a DNN could be trained on directly. This is due to the

complexities of the simulation, the detector response, and the reconstruction, all of which

break the unique correspondence between reconstructed particle candidates and incident

truth particles, rendering any plausible ground truth that could be obtained through a

human annotation process insufficiently sharp (see [16] for a more detailed discussion).

Moreover, no truth labels are available in real data. The GNN in [16] sidesteps this

problem with a self-supervised training procedure, comparing samples with different

pileup levels to deduce soft labels for the reconstructed particle candidates. Through a

series of nearest-neighbor graph convolutions, the GNN output is a set of soft labels {y}
enriched with message-passing information, representing the full knowledge of the GNN

about the origin of the particle candidates. Being the only available labels, our aim is

to use a per-particle DNN to regress these targets, using the information about particle

neighborhood implicitly through the targets that are the GNN output {y}. That is,

we distill the GNN knowledge about the particles into a small DNN. For illustration

purposes, Figure 1 depicts the process of obtaining the GNN and DNN outputs.

The following sections contain a description of the GNN and, respectively, DNN, as

well as a comparison of their performance in terms of physics and resource requirements.
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Figure 1: The process of obtaining soft labels y with a GNN making use of kNN edge

convolutions (in this illustration k = 5, in the actual GNN k = 20). A label yi reflects

the GNN knowledge about the provenance of particle i. DistillNetregresses this label

with a simple DNN architecture such that the mean absolute error between {y} and

{y′} is minimized.

We present two different variants of the network, one optimized for performance that

can be deployed on a CPU, and one tailored to fit on field programmable gate arrays

(FPGA) to operate at real-time in the first online selection stage (“Level-1 trigger”) of

the HL-LHC experiments.

2. Algorithm

In the spirit of a simple student network, DistillNet is a feed-forward regression

neural network tasked to regress a per-particle pileup weight based on the input particle

features. It is composed of an input layer with 16 nodes, two hidden layers with 128

and 64 neurons, respectively, and an output layer with a single neuron. The connections

between the input layer and the first and second hidden layers use the Rectified Linear

Unit (ReLU) activation function. The output neuron is finally transformed with a

sigmoid activation function. In addition, a batch normalization layer is incorporated

between the second hidden layer and the output node. After conducting initial tests

employing 128 nodes for both hidden layers, a subsequent hyperparameter scan revealed

that reducing the size of the second hidden layer results in more consistent outcomes, and

that increasing the layer size beyond 128 nodes does not yield a significant improvement.

The algorithm description of the model is described in Algorithm 1.

The training data are composed of individual particles sampled from W(ℓν)+jets

events. The events have been generated with the Pythia v8.244 event generator [17, 18]

and reconstructed with the Delphes v3.4.3pre01 simulation [19] of the Phase-II CMS



Distilling particle knowledge for fast reconstruction at high-energy physics experiments5

detector that includes a highly granular forward calorimeter and extended tracker

coverage compared to the CMS Run-2 detector. This detector simulation gives us

so called E-Flow particle candidates that are the result of combining and linking the

information from the various subdetectors. The center-of-mass energy of the collisions is

14TeV. On average, 140 pileup collisions have been added to the primary collision, with

tails reaching 200 simultaneous collisions. DistillNet is trained on 15 million particles

for 40 epochs. Each particle is characterized by 16 features, a description of which can

be found in Table 1. These features are identical to the ones used in the training of the

teacher GNN. After training to convergence, the physics performance of DistillNet is

Algorithm 1 DistillNet Training

Require: Data set D, teacher model GNNθ, distillation model DNNϕ

while not converged do

x ∼ D ▷ Sample event-level inputs from data set

y = GNNθ(x) ▷ Evaluate teacher GNN to get soft labels

x→ x, y→ y ▷ Flatten particle inputs and soft label outputs

y′ = DNNϕ(x) ▷ Evaluate the distillation model on single particles

Lϕ = LMAE(y, y
′) ▷ Calculate the distillation loss

ϕ← ϕ− γ∇ϕLϕ ▷ Update distillation model parameters

end while

evaluated on an independent set of particles from W(ℓν)+jets events and on particles

from another physics process, the production of a top quark pair with dileptonic decays

of the top quarks. We find consistent behavior for the different processes and therefore

only present results for top quark pair production.

Table 1: Particle features used as input for DistillNet.

Variable Description

η Particle pseudorapidity

ϕ Particle azimuthal angle

log pT Log of the particle transverse momentum

logE Log of the particle energy

Q Particle charge

wPuppi Weight assigned by Puppi algorithm

pid One-hot particle ID (8 in total)

d0 Transverse Impact Parameter

dz Longitudinal Impact Parameter
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Figure 2: Upper row: distributions for pmiss
T (left) and the pmiss

T response (right). The

resolution for the three algorithms is given in the legend of the response distributions.

Bottom row: same for jet energy.

3. Physics Performance

To quantify the loss in knowledge of the student compared to the teacher, we look at the

experimental resolution in observables that are highly sensitive to contamination from

pileup. These are the momentum missing from the event in the transverse detector

plane, pmiss
T , and the transverse momentum of hadronic particle jets clustered with

the anti-kt algorithm [20] using a distance parameter of 0.4 and applying a pT cut

of 15GeV. In Ref. [16], a sizable improvement in the resolutions for the teacher network

compared to a classical pileup mitigation algorithm, Puppi [21], has been demonstrated.

Additionally, the teacher yielded identical performance to another ML-based pileup

mitigation algorithm, Puma. A loss in knowledge during the transfer from the teacher

to the student network should yield less precise labels {y′}, which will translate into

inferior pileup mitigation and thus a poorer experimental resolution in said quantities.

We define the resolution in observable X as (q75%− q25%)/2 in its response distribution,

which in turn is given by (X −Xgen)/Xgen. Here, qn%, is the n-th percentile, and Xgen
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Figure 3: Per-particle weight distributions of the GNN, DistillNet, and Puppi.

Particles from the hard interaction should receive a weight of ∼1, while pileup particles

should get w ∼ 0.

is the observable calculated in a sample without pileup and with no detector effects.

Figure 2 shows the distributions for pmiss
T and jet energy after the per-particle

weights have been propagated to the pmiss
T computation and, respectively, the jet

clustering. The pmiss
T shape forDistillNet follows closely the GNN and overall exhibits

a sound behavior, with large pmiss
T tails completely absent. Their presence would be a

smoking gun for pathological events from the generation of sizable fake pmiss
T . The

resolutions in pmiss
T for the teacher GNN are also presented. While the GNN yields a

10% inclusive improvement in resolution for pmiss
T over Puppi, DistillNet shows a

6-7% improvement over the benchmark. For jets, the improvement over Puppi achieved

with the GNN and with DistillNet are 18% and 12%, respectively. This means that

DistillNet is able to retain most of the information contained in the GNN and thus

most of the improvement over Puppi. At the same time, the per-particle Puppi weight

is the most important input feature for the knowledge distillation process, as it carries

the most domain knowledge for the problem of pileup mitigation. In fact, knowledge

transfer was found to be minimal when omitting this variable from the list of input

features, as particle inter-relations are only represented through this feature.

The similarity in observables between GNN and DistillNet prompts us to

compare the actual distributions of the per-particle weights for the different algorithms

in Figure 3. As expected, the distributions for the teacher and student network, y and

y′ in Equation 2 are very similar, with DistillNet also being able to mimic the GNN

behavior for particle candidates whose reconstruction is driven by neutral towers with

merged energy deposits from pileup particles and particles from the hard interaction in

the area 0 < w < 1. We furthermore study the weights differentially in the detector

η-ϕ plane. As shown in Figure 4, DistillNet faithfully reproduces the behavior of

the GNN, with problems already present in the teacher like in transition regions and

at tracker edges slightly more accentuated. Puppi on the other hand appears to be
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Figure 4: Ratio between the per particle pT of the GNN, DistillNet, and, respectively,

Puppi and the pT of the corresponding no pileup sample in the η -ϕ space of a 2D

histogram. The blue bins indicate an overestimation of activity, while the red bins

indicate an underestimation.

quite aggressive in the high-η region of the detector. Overall, we find the performance

of DistillNet to be in between the two benchmarks given by the GNN and Puppi.

4. Latency Studies

An improvement over a classical benchmark as presented in section 3 is one of the

requirements to consider knowledge distillation. The primary motivation, however, is

to find a compromise between the optimal physics performance provided by the teacher

and significantly reduced latencies. A smaller inference time and reduced memory

requirements can be useful in offline scenarios like large-scale processing and simulation

campaigns, where a pragmatic choice in this two-dimensional plane can yield faster

turnaround times and significantly reduced incurred costs. At the same time, an ultra-

fast neural network algorithm can be deployed on FPGAs in the online selection stage for

a more informed decision on whether to keep or discard a collision event. For instance,

a better pmiss
T estimate will help to be more efficient at rejecting background events

with fake pmiss
T and result in a higher yield for events involving electroweak processes

or potential dark matter particles. To that end, we perform timing studies on a high-

performance computing CPU as well as on an FPGA as foreseen for the trigger stages

at the HL-LHC experiments.

4.1. On CPU

The CPU timing studies are performed on a single core of an Intel® Xeon® CPU E5-

2650 v4 with an x86-64 architecture, operating with an enabled frequency boost to

a maximum turbo clock speed of 2.90GHz. The timing script itself does not employ

hyper-threading and only uses a single thread. When comparing the raw numbers of the

networks in Table 2, their size difference becomes apparent: the teacher GNN exceeds

DistillNet in the number of trainable parameters by a factor 27, and a forward pass

consists of 35 times as many floating point operations. One of the key differences
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Table 2: Parameter comparison between teacher (GNN) and student (DistillNet).

The number of floating point operations is provided for an event with 9000 particle

candidates.

Trainable Params. MFLOPs

GNN 270k 6590

DistillNet 10k 0.0209 · 9000 ∼ 188

between the GNN and DistillNet is the hierarchy at which they operate. A single

sample passed to the GNN comprises an entire event, which has up to 9000 (zero-padded)

reconstructed particle candidates. On the other hand, DistillNet works with single

particles and thus breaks the event correspondence between them. For a fair comparison,

a single forward pass through the GNN therefore corresponds to 9000 forward passes

for DistillNet, whose latencies have to be summed.

However, the vectorization capabilities of modern machine learning frameworks like

PyTorch [22] utilizing the SIMD (Single Instruction, Multiple Data) paradigm will make

operations much more efficient, thereby saving dramatically in inference time. This is

shown in Figure 5. Scanning the batch size that corresponds to the number of particles,

we first measure the latency of the GNN when processing the content of one event. For

the GNN, since one sample comprises one event, the timing measurements correspond

to multiples of 9000 particles. It can be seen that the inference time per event is about

3 s for the GNN and stays constant for batch sizes of 1 to 10 events, i.e., of 9000 to 90000

particles‡. The nature of graph-based data involves varying graph sizes, connectivity,

and structure, making it challenging to effectively parallelize across the entire batch. On

the other hand, DistillNet exhibits remarkable performance advantages, particularly

when handling larger numbers of particles per batch, with improvements in latency up

to almost three orders of magnitude due to the easily vectorizable calculations executed

by the deployed linear layers. Specifically, in DistillNet’s matrix-vector product,

only the matrices undergo an increase in size as the batch sizes increases. Consequently,

larger matrices contribute to reduced inference times, provided they fit within the CPU

cache.

The primary constraints impacting performance on the CPU are twofold: the

cache size of the CPU becomes a bottleneck as batch sizes grow substantially (beyond

O(10.000) particles). Conversely, the maximum clock speed becomes a limiting factor

at smaller batch sizes.

‡ Our specific GNN implementation uses a constant number of FLOPs, as zero-padded particles are

added to the input data up to a fixed-length input of 9000. In theory, the number of FLOPs and thus

the evaluation time scales linearly with the number of particles
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size on CPU.

4.2. FPGA Implementation

Pileup removal will be a crucial component of the hardware event filtering systems of

particle detectors during the HL-LHC phase. These Level-1 trigger systems, so-called

will consist of O(1000) field programmable gate arrays (FPGAs) tasked with reducing

the data rate driven by the bunch collision frequency of 40MHz to 750 kHz in real-time.

In particular for the CMS experiment upgrade, charged tracks will be processed and

reconstructed in this system [23]. This will allow for information to be combined with

data from the calorimeters and muon chambers, in order to reconstruct “Particle Flow”

(PF) [24] particle candidates resembling the input we obtain from the Delphes E-Flow

reconstruction. After reconstruction of the particle candidates, they are passed to a

modified Puppi algorithm where pileup removal is performed. For simplicity reasons,

we perform our latency studies with the dataset consisting of the E-Flow candidates

used in the earlier section, even though a degradation in the accuracy and expressiveness

of particle attributes is to be expected due to coarser information available to online

algorithms. The total allocated latency to perform both PF reconstruction and Puppi

pileup removal is 1.5µs according to [23]. The Puppi hardware implementation has a

latency of O(100 ns). Since Puppi is an inherently local algorithm, it can be parallelized.

It is foreseen that O(10) copies of the algorithm are running in parallel, each receiving

a particle on every clock tick.

To estimate whether DistillNet is suitable for pileup removal in the Level-1

trigger, the model is compressed at training time. First, the architecture is reduced to

64 and 32 neurons in each hidden layer, respectively. Secondly, the model is trained

quantization-aware using QKeras [25] to a bitwidth of 8, meaning each weight in the
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Table 3: Accuracy, latency and resource utilization for QDistillNet. Resources are

expressed as a percentage of those available on a Xilinx VU 13+ (part xcvu13p-

flga2577-2-e).

Acc. Latency [ns] II [cc] BRAM LUT FF DSP

QDistillNet 97.7% 25 1 1 (0.02%) 2.379 (0.2%) 441 (0.01%) 6 (0.05%)

network can only take on one of 28 = 256 discrete values. To further reduce the model

resource consumption, small weights that do not contribute much to the overall decision

are removed in an iterative procedure referred to as pruning. This is achieved using

the TensorFlow Model Optimization toolkit. The model is pruned to 75% sparsity,

meaning 75% of the weights are removed from the network. The final accuracy of this

compressed model is 97.7%, and is hereby referred to as QDistillNet. This presents a

minor performance loss compared to DistillNet, which has an accuracy of 98.9%, but

still improves upon the 96.6% accuracy of Puppi. In our case, we define the accuracy as

the mean of the per bin ratio of predicted weights to the total number of GNN weights

of the per-particle weight distribution shown in Figure 3.

This model is translated into FPGA firmware using the synthesis framework

hls4ml [26]. Due to the small network size, a fully parallel implementation is used.

The target FPGA is a Xilinx Virtex Ultrascale 13+ with a clock frequency of 240MHz

(part xcvu13p-flga2577-2-e). This is the same hardware and clock frequency that is

foreseen for the upgraded CMS Level-1 trigger at HL-LHC. The resources at disposal on

the FPGA are digital signal processors (DSPs), lookup tables (LUTs), memory (BRAM)

and flip-flops (FF). The BRAM is only used as a look-up table read-only memory for

calculating the final sigmoid output.

The final latency and resource utilization report for QDistillNet is shown

in Table 3. The latency of one single-particle inference is measured as 25 ns, which is

smaller or comparable to the foreseen implementation of the Puppi algorithm and could

be deployed consecutively with Puppi in order to utilize the Puppi weight as a powerful

input variable. The initiation interval (II), the number of clock cycles between when

the algorithm is ready to receive new data inputs, is 1. That means QDistillNet can

continuously receive new particle input. The resource consumption of a single instance

of QDistillNet is minimal, using <0.5% of the FPGA resources. It would therefore be

feasible to run several of these networks in parallel at very low resource cost. Assuming

ten copies of QDistillNet, the total resource consumption would still be below 2% of

the resources available on the FPGA.

5. Discussion

We have presented a successful knowledge distillation (KD) from a graph neural network

(GNN) to a deep neural network (DNN) to solve the challenging task of pileup mitigation

at greatly reduced computational cost at the High-Luminosity LHC. Starting from a
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pre-trained teacher operating at the event level, the DNN, which works with particle-

level input, learns to approximate the teacher output, yielding an improvement in

resolution in key experimental quantities. This holds true both for an offline scenario,

where large-scale data processing campaigns could profit from a reduction in latencies

compared to the GNN of up to 3 orders of magnitude, as well as in real-time with an

implementation of a quantized and pruned algorithm on FPGAs. Our study marks the

first time that the information encoded in a graph neural network is distilled into a small

deep neural network to solve reconstruction tasks at high-energy physics experiments,

specifically, the problem of particle provenance in extreme environments such as at the

High-Luminosity LHC.

If implemented at LHC experiments, either in the trigger stages or for offline

analysis, DistillNet will improve the selection efficiency for scenarios of physics beyond

the standard model involving invisible particles and significant hadronic activity, while

keeping computational costs at a minimum compared to alternative machine learning

algorithms. Especially when operating at real time in the trigger, its limitation

are primarily the constraints (e.g., the number of parallel processing units) of the

hardware system and the degree domain-specific information is available through the

input features. Future research should explore other applications of KD such as the

compression of powerful jet tagging algorithms, or the extension of target architectures

beyond DNNs, such as convolutional neural networks or, more generally, architectures

that lie between GNNs and DNNs in terms of their complexity.

Data Availability Statement

The datasets used for training and testing DistillNet are published

at https://doi.org/10.5281/zenodo.10670352. The training code is available

at https://github.com/tbrandes01/DistillNet.
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