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PERMUTATION TUTTE POLYNOMIAL

CSONGOR BEKE, GERGELY KÁL CSÁJI, PÉTER CSIKVÁRI, AND SÁRA PITUK

Abstract. The classical Tutte polynomial is a two-variate polynomial TG(x, y) asso-
ciated to graphs or more generally, matroids. In this paper, we introduce a polynomial
T̃H(x, y) associated to a bipartite graph H that we call the permutation Tutte polyno-
mial of the graph H . It turns out that TG(x, y) and T̃H(x, y) share many properties, and
the permutation Tutte polynomial serves as a tool to study the classical Tutte polyno-
mial. We discuss the analogues of Brylawsi’s identities and Conde–Merino–Welsh type
inequalities. In particular, we will show that if H does not contain isolated vertices,
then

T̃H(3, 0)T̃H(0, 3) ≥ T̃H(1, 1)2,

which gives a short proof of the analogous result of Jackson:

TG(3, 0)TG(0, 3) ≥ TG(1, 1)
2

for graphs without loops and bridges. We also give improvement on the constant 3 in
this statement by showing that one can replace it with 2.9243.

1. Introduction

For a graph G = (V,E) with v(G) vertices and e(G) edges, the Tutte polynomial
TG(x, y) is defined as

TG(x, y) =
∑

A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−v(G),

where k(A) denotes the number of connected components of the graph (V,A), see [17].
There is a vast literature on the properties of the Tutte polynomial and its applications,
for instance, [4, 6, 8, 18] or the book [9].

This paper aims to introduce an auxiliary polynomial that helps study the Tutte
polynomial and has properties that make it interesting even on its own. We call this new
polynomial the permutation Tutte polynomial. It is defined for every bipartite graph.

Definition 1.1. Let H = (A,B,E) be a bipartite graph. Suppose that V (H) = [m].
For a permutation π : [m] → [m], we say that a vertex i ∈ A is internally active if

π(i) > max
j∈NH(i)

π(j),

where the maximum over an empty set is set to be −∞. Similarly, we say that vertex
j ∈ B is externally active if

π(j) > max
i∈NH (j)

π(i).
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Let ia(π) and ea(π) be the number of internally and externally active vertices in A and
B, respectively. Let

T̃H(x, y) =
1

m!

∑

π∈Sm

xia(π)yea(π).

We will call T̃H(x, y) the permutation Tutte polynomial of H .

Definition 1.2. The coefficients of T̃H(x, y) will be denoted by ti,j(H), that is,

T̃H(x, y) =
∑

i,j

ti,j(H)xiyj.

Example 1.3. Let H = P5 be the path on 5 vertices where A consists of 3, B consists
of 2 vertices, respectively. Then

T̃P5(x, y) =
2

15
x3 +

4

15
x2 +

1

3
xy +

2

15
y2 +

1

15
x+

1

15
y.

The motivation behind Definition 1.1 is the following characterisation of the Tutte
polynomial.

Theorem 1.4 (Tutte [17]). Let G be a connected graph with m edges. Label the edges
with 1, 2, . . . , m arbitrarily. In the case of a spanning tree T of G, let us call an edge
e ∈ E(T ) internally active if e has the largest label among the edges in the cut determined
by T and e by removing e from T . Let us call an edge e /∈ E(T ) externally active if e has
the largest label among the edges in the cycle determined by T and e by adding e to T .
Let ia(T ) and ea(T ) be the number of internally and externally active edges, respectively.
Then

TG(x, y) =
∑

T∈T (G)

xia(T )yea(T ),

where the summation goes for all spanning trees of G.

Theorem 1.4 was originally a definition for the Tutte polynomial [17]. This charac-
terization of the Tutte polynomial immediately shows that the coefficients of the Tutte
polynomial are non-negative. In this theorem, we are restricted to the same labelling of
the edges for all spanning trees. For those who have never seen this definition before, it
might be very surprising that the Tutte polynomial is independent of the actual choice
of the labelling.

To explain the connection between TG(x, y) and T̃H(x, y), we need the concept of the
local basis exchange graph.

Definition 1.5. The local basis exchange graph H [T ] of a graph G = (V,E) with respect
to a spanning tree T is defined as follows. The graph H [T ] is a bipartite graph whose
vertices are the edges of G. One bipartite class consists of the edges of T , the other
consists of the edges of E \ T , and we connect a spanning tree edge e with a non-edge f
if f is in the cut determined by e and T , equivalently, e is in the cycle determined by f
and T . (Clearly, this definition works for general matroids and their basis.)

Figure 1 depicts a graph G with a spanning tree T and the bipartite graph H [T ]
obtained from T .

For a fixed labelling of the edges of G, we get a labelling of the vertices of H [T ], and
the internally (externally) active edges of G correspond to internally (externally) active
vertices of H [T ], so the two definitions of internal and external activity are compatible.
Taking all permutations of the edge labels and averaging out will correspond to averaging
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out the constant TG(x, y) on the level of G, and will lead to the definition of T̃H[T ](x, y).
This gives the identity

TG(x, y) =
∑

T∈T (G)

T̃H[T ](x, y),

where the summation is over all spanning trees of G (see Lemma 3.1 for further details).
This identity is the starting point of several proofs of our theorems concerning the Tutte
polynomial.

1

2

3

4

6
5

7 8

1 2 3 5 7

4 6 8

Figure 1. Example for a graph G and the local basis exchange graph
H [T ] obtained from a spanning tree T .

In this paper, we use this machinery to study linear identities and inequalities. In
particular, we study the analogues of Brylawski’s identities [4]. We also study a classical
conjecture of Merino and Welsh [14] asserting that if G is a graph without loops and
bridges, then

max(TG(2, 0), TG(0, 2)) ≥ TG(1, 1).

Conde and Merino [5] gave the following strengthened version of this conjecture:

TG(2, 0) + TG(0, 2) ≥ 2TG(1, 1)

and
TG(2, 0)TG(0, 2) ≥ TG(1, 1)

2.

We will refer to these inequalities as the additive and multiplicative versions of the
Conde–Merino–Welsh conjecture later.

Jackson [12] proved the following inequality:

TG(3, 0)TG(0, 3) ≥ TG(1, 1)
2

for every graph G without loops and bridges. In this paper, we show that

T̃H(3, 0)T̃H(0, 3) ≥ T̃H(1, 1)
2

holds for every bipartite graph H without isolated vertices, and this inequality implies
Jackson’s inequality (see the transfer-lemma, Lemma 3.3). Our proof is completely
different from the original proof of Jackson’s inequality. Our proof uses the Harris’
inequality from probability theory and relies on the fact that permutations on m elements
can be generated by simply ordering m random numbers chosen uniformly from [0, 1].

This idea is the heart of several inequalities for T̃H(x, y), and this is the key advantage

of T̃H(x, y) over TG(x, y).
As it turned out, the Merino–Welsh conjecture is not true for all matroids [2], implying

by the transfer-lemma that T̃H(2, 0)T̃H(0, 2) ≥ T̃H(1, 1)
2 is not true for all bipartite
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graphs without isolated vertices. Nevertheless, we also give several graph classes for

which T̃H(2, 0)T̃H(0, 2) ≥ T̃H(1, 1)
2 holds, including complete bipartite graphs, regular

bipartite graphs and trees. We also improve on Jackson’s inequality by showing that

T̃H(x, 0)T̃H(0, x) ≥ T̃H(1, 1)
2

for every bipartite graph H without isolated vertices if x ≥ 2.9243. By the transfer
lemma, this implies that

TG(x, 0)TG(0, x) ≥ TG(1, 1)
2

for every graph G without loops and bridges (and matroids without loops and coloops)
for the same values of x.

Graphs and matroids. This is a remark about the Tutte polynomials of matroids. In
this paper, we mainly consider TG(x, y) for a graph G, but all our proofs work verbatim
for the Tutte polynomial TM(x, y) of a matroid M . Furthermore, there are two results
where it is more convenient to give immediately the statements for matroids instead of
graphs, these are Corollary 5.9 and Theorem 8.1. For this reason, we give a very brief
account into the theory of matroids.

A matroid M is a pair (E, I) such that I ⊆ 2E , satisfying the axioms

(i) ∅ ∈ I,
(ii) if A′ ⊆ A ∈ I, then A′ ∈ I, and
(iii) if A,B ∈ I such that |B| < |A|, then there exists an x ∈ A \ B such that

B ∪ {x} ∈ I.

The elements of I are called independent sets. Given a set S ⊆ E, the maximal indepen-
dent subsets of S all have the same cardinality, and this cardinality is called the rank of
the set S, denoted by r(S). The maximum size independent sets of M are called bases,
and their set is denoted by B(M). The size every basis of M is the same, and this value
is called the rank of M . The dual of a matroid M is the matroid M∗ whose bases are
{E \B | B ∈ B(M)}. For further details on matroids, see for instance [15]

Given a graph G = (V,E), the edge sets of the spanning forests of G form the inde-
pendent sets of a matroid MG, called the cycle matroid of G. If G is connected, then
the bases of MG are the spanning trees of G. One can define the Tutte polynomial of a
matroid as

TM (x, y) =
∑

S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S),

where r(S) is the rank of a set S ⊆ E. When M = MG, then TMG
(x, y) = TG(x, y). A

loop in a matroid M is an element x ∈ E such that r({x}) = 0, that is, {x} /∈ I. A
coloop is an element that is a loop in the dual M∗ of the matroid M . Equivalently, a
coloop is an element that is contained in every basis of M . For a cycle matroid MG,
loops correspond to loop edges and coloops correspond to bridges in the graph G. We
call a matroid simple if r(S) = |S| for |S| ≤ 2, so there are no loops and there are no
pairs x, x′ such that {x, x′} /∈ I, i.e., there are no parallel elements. We call a matroid
cosimple if M∗ is simple.

Since we never use that our matroid comes from a graph, all our results hold even for
general matroids.

Notations. The notation [m] stands for the set {1, 2, . . . , m}.
Throughout this paper, G will denote an arbitrary graph, and H will denote a bipartite

graph. For a vertex v, the graph H− v is the graph obtained from H by deleting v. The
graph Pn denotes the path on n vertices, and Cn is the cycle on n vertices. Kn denotes
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the complete graph on n vertices, and Ka,b denotes the complete bipartite graph with
classes of size a and b.

For a bipartite graph H = (A,B,E), we will also use the notations A(H), B(H) for
the bipartite classes if H is not clear from the context. For any graph G, v(G) denotes
the number of vertices of G. When G is an arbitrary graph, we generally use the notation
v(G) = n, but when H is a bipartite graph, then we use the notation v(H) = m, since H
often comes from a spanning tree T of G, and in this case, the vertices of H correspond
to the edges of G.

Organization of this paper. In Section 2, we establish some basic recursive formulas

for T̃H(x, y). Then in Section 3 we build the connection between TG(x, y) and T̃H(x, y). In
Section 4, we give some examples for Conde–Merino–Welsh-type inequalities for TG(x, y)

and T̃H(x, y). In Section 5, we show how to apply Harris’ inequality to obtain several

inequalities for T̃H(x, y). In Section 6, we build on the previous section to improve on
the constant in Jackson’s inequality. In Section 7, we study a special coefficient of the

polynomial T̃H(x, y). In Section 8 we discuss Brylawski’s identities for T̃H(x, y) and
TG(x, y). Finally, in Section 9 we include some remarks.

2. Basic recursions

In this section, we establish several basic recursive identities for the permutation Tutte
polynomial that we will use subsequently.

Lemma 2.1. If H is the disjoint union of H1 and H2, then

T̃H(x, y) = T̃H1(x, y)T̃H2(x, y).

In particular, if v ∈ A is an isolated vertex, then

T̃H(x, y) = xT̃H−v(x, y).

Similarly, if v ∈ B is an isolated vertex, then

T̃H(x, y) = yT̃H−v(x, y).

Proof. Assume that H has m vertices and let T̃H(x, y) =
∑

i,j ti,j(H)xiyj. Let us consider

the number of permutations of V (H) such that there are i internally active vertices in
A and j externally active vertices in B. By the above notation the number of these
permutations is m!ti,j(H). We sort these permutations by looking at the number of
internally and externally active vertices that are in H1, and the number of internally and
externally active vertices that are in H2. The number of permutations π ∈ Sm such that
iaH1(π) = i1, iaH2(π) = i2, eaH1(π) = j1 and eaH2(π) = j2 is

m1!ti1,j1(H1)m2!ti2,j2(H2)
m!

m1!m2!
,

where m1 = v(H1) and m2 = v(H2). This holds, as to get such a permutation, we first
have to decide which values will be assigned to the vertices of H1 and which to H2, and
then assign these two sets of values to the two vertex sets independently, in a way such
that in Hk we have ik internally and jk externally active vertices (k = 1, 2). Note that a
set of mk distinct numbers can be identified with the set [mk], so this assignment within
each subgraph can be viewed as a permutation of its vertex set. Thus we get

m!ti,j(H) = m!
∑

i1,i2,j1,j2
i1+i2=i
j1+j2=j

ti1,j1(H1)ti2,j2(H2).
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Lemma 2.1 now follows from the definition of the product of two polynomials. �

The next lemma is the analogue of the property TM(x, y) = TM∗(y, x) of the Tutte
polynomial, where M∗ is the dual matroid of M .

Lemma 2.2. For a bipartite graph H = (A,B,E), let H ′ = (B,A,E) be the graph
obtained by switching the two sides of H. Then

T̃H(x, y) = T̃H′(y, x).

Proof. For any π ∈ Sm, we have iaH(π) = eaH′(π) and eaH(π) = iaH′(π), so

T̃H(x, y) =
1

m!

∑

π∈Sm

xiaH(π)yeaH (π) =
1

m!

∑

π∈Sm

xeaH′(π)yiaH′(π) = T̃H′(y, x).

�

Lemma 2.3. If H is a bipartite graph on m vertices that does not contain isolated
vertices, then

T̃H(x, y) =
1

m

∑

v∈V (H)

T̃H−v(x, y).

Proof. For π ∈ Sm, let v(π) be the vertex of H such that π(v(π)) = 1. Let α(π) be
the permutation of V (H − v(π)) where α(x) < α(y) iff π(x) < π(y). Then a vertex is
internally (externally) active in α if and only if it is internally (externally) active in π,
since v(π) cannot be active as v(π) is not isolated. Therefore iaH(π) = iaH−v(π)(α(π))
and eaH(π) = eaH−v(π)(α(π)). As π runs through Sm, we remove each vertex v ∈ V (H)
exactly (m− 1)! times and get each permutation α of Sym ([m]\{v}) exactly once, so

T̃H(x, y) =
1

m!

∑

π∈Sm

xiaH (π)yeaH(π)

=
1

m!

∑

π∈Sm

xiaH−v(π)(α(π))yeaH−v(π)(α(π))

=
1

m!

∑

v∈V (H)

∑

α∈Sym([m]\{v})
xiaH−v(α)yeaH−v(α)

=
1

m

∑

v∈V (H)

T̃H−v(x, y).

�

3. Connection with the Tutte polynomial

In this section, we establish the main connection between the Tutte polynomial and the
permutation Tutte polynomial. This connection will enable us to transfer linear identities
and inequalities from the permutation Tutte polynomial to the Tutte polynomial.

Lemma 3.1. Let G be a graph. For each spanning tree T of G, let H [T ] be the local
basis exchange graph with respect to T . Then

TG(x, y) =
∑

T∈T (G)

T̃H[T ](x, y),

where the sum is over the set of spanning trees T (G) of G.
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Proof. For a fixed spanning tree T and a permutation π of the edges, the internally
and externally active edges correspond to the internally and externally active vertices of
H [T ]. Hence

TG(x, y) =
∑

T∈T (G)

xiaH[T ](π)yeaH[T ](π).

Now averaging it for all permutations π ∈ Sm we get that

TG(x, y) =
1

m!

∑

π∈Sm

TG(x, y)

=
1

m!

∑

π∈Sm

∑

T∈T (G)

xiaH[T ](π)yeaH[T ](π)

=
∑

T∈T (G)

1

m!

∑

π∈Sm

xiaH[T ](π)yeaH[T ](π)

=
∑

T∈T (G)

T̃H[T ](x, y).

�

Remark 3.2. The local basis exchange graph H [T ] has an isolated vertex if and only if G
contains a bridge or a loop. Furthermore, H [T ] is connected if and only G is 2-connected.

The following lemma enables us to study Conde-Merino-Welsh type inequalities.

Lemma 3.3 (Transfer lemma). Let x0, x1, x2, y0, y1, y2 ≥ 0. Suppose that for any bipar-
tite graph H, we have

T̃H(x1, y1)T̃H(x2, y2) ≥ T̃H(x0, y0)
2.

Then for any graph G, we have

TG(x1, y1)TG(x2, y2) ≥ TG(x0, y0)
2.

More generally, if for x0, x1, . . . , xn, y0, y1, . . . , yn ≥ 0 and α1, . . . , αn ≥ 0 satisfying∑n
k=1 αk = 1, the inequality

n∏

k=1

T̃H(xk, yk)
αk ≥ T̃H(x0, y0)

holds true for every bipartite graph H, then for every graph G, we have
n∏

k=1

TG(xk, yk)
αk ≥ TG(x0, y0).

Proof. We have

TG(x1, y1)TG(x2, y2) =



∑

T∈T (G)

T̃H[T ](x1, y1)





∑

T∈T (G)

T̃H[T ](x2, y2)




≥



∑

T∈T (G)

(
T̃H[T ](x1, y1)T̃H[T ](x2, y2)

)1/2



2

≥



∑

T∈T (G)

T̃H[T ](x0, y0)




2
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= TG(x0, y0)
2.

The first and last equality are the applications Lemma 3.1. The first inequality is a

Cauchy–Schwarz inequality applied to the numbers T̃H[T ](x1, y1)
1/2, T̃H[T ](x2, y2)

1/2 for
T ∈ T (G). This is where we use that x1, x2, x3, y1, y2, y3 ≥ 0 to ensure that we can
consider the square roots. The second inequality is simply the condition of the lemma.

The proof of the more general statement follows the same way, the only difference is
that Cauchy–Schwarz inequality we have to use the following version of Hölder’s inequal-
ity:

n∏

k=1

(
M∑

j=1

akj

)αk

≥
M∑

j=1

n∏

k=1

aαk

kj .

�

4. Conde-Merino-Welsh type inequalities

In this section, we study inequalities of type

T̃H(x1, y1)T̃H(x2, y2) ≥ T̃H(x0, y0)
2

and
TG(x1, y1)TG(x2, y2) ≥ TG(x0, y0)

2.

As Lemma 3.3 shows, the former inequality implies the latter one. Hereafter we refer to
these types of inequalities as Conde-Merino-Welsh type inequalities.

In this section, we collect two simple results. The first one is motivated by a result
of Merino, Ibañez and Rodríguez [13] and implies their result by the transfer lemma
(Lemma 3.3). The proof is almost the same as their proof.

Lemma 4.1. If H does not contain isolated vertices, then

T̃H(4, 0)T̃H(0, 4) ≥ T̃H(2, 2)
2.

Proof. By definition, T̃H(x, y) = alt(H)xa + f(x, y) = alt(H)yb + g(x, y), where the
coefficients of f and g are non-negative. This implies that

T̃H(4, 0) ≥ alt(H)4a and T̃H(0, 4) ≥ alt(H)4b.

By Lemma 7.6, we have T̃H(2, 2) = alt(H)2a+b, so

T̃H(4, 0)T̃H(0, 4) ≥ alt(H)24a+b = T̃H(2, 2)
2.

�

Our next goal is to show that a complete bipartite graph H satisfies

T̃H(2, 0)T̃H(0, 2) ≥ T̃H(1, 1)
2. Note that T̃H(1, 1) = 1 for every bipartite graph H .

Lemma 4.2. For the complete bipartite graph Ka,b with m = a+ b, we have

T̃Ka,b
(x, y) =

a∑

i=1

a(a− 1)...(a− i+ 1)b

m(m− 1)...(m− i)
xi +

b∑

j=1

b(b− 1)...(b− j + 1)a

m(m− 1) . . . (m− j)
yj.

Proof. If i > 0, which means that there is an internally active vertex v in A, then π(v)
is greater than π(w) for every w ∈ B. This means that there cannot be any externally
active vertex in B, so j must be 0. Similarly, if j > 0, then i = 0. If we want to count
the number of permutations π such that ia(π) = 0 and ea(π) = j, we have to consider
all the permutations such that π−1(1), π−1(2), . . . , π−1(j) are in B, but π−1(j + 1) is in
A. The case j = 0 is similar. �
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Proposition 4.3. Let a, b ≥ 1, then

T̃Ka,b
(2, 0)T̃Ka,b

(0, 2) ≥ T̃Ka,b
(1, 1)2.

Proof. We first check the statement if min(a, b) = 1. We can assume that a = 1, b =
m− 1. Then

T̃K1,m−1(x, y) =
1

m

(
ym−1 + ym−2 + · · ·+ y + x

)
,

and so

T̃K1,m−1(2, 0)T̃K1,m−1(0, 2) =
2

m

2m−1 + · · ·+ 2

m
≥ 1 = T̃Ka,b

(1, 1)2

if m ≥ 2. Now we prove the statement by induction on m. The case m = 2 is trivial.
Suppose that we already know the statement holds till m − 1. We can assume that
min(a, b) ≥ 2. Then for H = Ka,b we have

T̃H(2, 0)T̃H(0, 2) =

(
1

m

∑

v∈V
T̃H−v(2, 0)

)(
1

m

∑

v∈V
T̃H−v(0, 2)

)

≥ 1

m2

(
∑

v∈V

(
T̃H−v(2, 0)T̃H−v(0, 2)

)1/2
)2

≥ 1

m2

(
∑

v∈V
1

)2

= 1

= T̃Ka,b
(1, 1)2.

In the first step, we used the recursion formula for T̃H(x, y). In the second step, we used
a Cauchy–Schwarz inequality. In the third step, we used that H − v is also a complete
bipartite graph without isolated vertices. This completes the induction step and the
proof. �

Remark 4.4. We remark that

T̃Kr,r
(2, 0) + T̃Kr,r

(0, 2) = T̃Kr,r
(2, 2) = alt(Kr,r)2

2r =
22r(
2r
r

) ≈
√
rπ.

The first equality follows from the fact that Kr,r cannot contain active vertices on both

sides. The second equality is Lemma 7.6. Using that T̃Kr,r
(2, 0) = T̃Kr,r

(0, 2) this shows
that

T̃Kr,r
(2, 0)T̃Kr,r

(0, 2) ≈ rπ

4
.

4.1. Counter-examples. The paper [2] shows that there are matroids without loops
and coloops for which

TM (2, 0)TM(0, 2) < TM(1, 1)2.

This immediately implies that T̃H(2, 0)T̃H(0, 2) ≥ T̃H(1, 1)
2 cannot be true in general.

In this section, we construct such bipartite graphs. A historical comment: the counter-
example for the Merino–Welsh conjecture grew out from the counter-examples treated
in this section.

Definition 4.5. For positive integers a, b, c with c ≤ b, let Ha,b,c be the graph that we
obtained from Ka,b = (A,B,E) by attaching c pendant vertices to c distinct elements of
B. So the resulting graph has a+ b+ c vertices with a + c and b on the different sides.
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Remark 4.6. In the paper [2], the authors consider the matroid U
(2)
3k,2k, the 2-thickening

of the uniform matroid U3k,2k on 3k elements with rank 2k. For this matroid, the local
basis exchange graph is isomorphic to H2k,2k,2k for every basis.

Let
S(a, b, c) = T̃Ha,b,c

(x, y).

Then using Lemma 2.3, we get that

S(a, b, c) =
1

a+ b+ c
(aS(a− 1, b, c) + cxS(a, b− 1, c− 1) + (b− c)S(a, b− 1, c) + cS(a, b, c− 1)) .

Together with the boundary conditions

S(0, b, c) =

(
x+ y

2

)c

yb−c,

S(a, 0, c) = xa+c,

S(a, b, 0) = T̃Ka,b
(x, y),

this function is completely determined and can be computed in a fast way.
For various choices of (a, b, c), we got that

T̃Ha,b,c
(2, 0)T̃Ha,b,c

(0, 2) < 1.

For example, if a = 19, b = c = 21, then

T̃Ha,b,c
(2, 0) =

17823568079808010514820609

519645565199326904320
≈ 34299.4711654...

and

T̃Ha,b,c
(0, 2) =

205317845112145723813

7322325659223715408773120
≈ 0.000028039977278...,

and their product is approximately 0.961756392151...
Notably, (a, b, c) = (22, 22, 22) also provides a counter-example to the matroidal ver-

sion of the Merino–Welsh conjecture.

Remark 4.7. Let us call a matroid basis-equivalent if all the local basis exchange graphs
are isomorphic. Clearly, basis-transitive matroids are such matroids. An interesting
question is to determine which bipartite graphs H can be the local basis exchange graph

of a basis-equivalent matroid. Since TM(x, y) = cT̃H(x, y) in this case, then by comparing
the coefficients of xa, we get a very strong necessary condition: c = TM(1, 1) = 1

alt(H)
∈ Z

and 1
alt(H)

T̃H(x, y) has only integer coefficients.

5. Applications of correlation inequalities

In this section, we show the advantage of T̃H(x, y) over TG(x, y) in proving Conde-
Merino-Welsh-type inequalities.

Let us immediately give two inequalities as motivations.

Lemma 5.1. Let H be an arbitrary bipartite graph. Suppose that 0 ≤ x ≤ 1 and y ≥ 1
or 0 ≤ y ≤ 1 and x ≥ 1. Then

T̃H(x, y)T̃H(1, 1) ≥ T̃H(x, 1)T̃H(1, y).

If both x, y ≥ 1 or both 0 ≤ x, y ≤ 1, then

T̃H(x, y)T̃H(1, 1) ≤ T̃H(x, 1)T̃H(1, y).

Note that T̃H(1, 1) = 1, so it appears in the lemma only for aesthetic reasons.
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Lemma 5.2. Let H be an arbitrary bipartite graph, and let di be the degree of vertex i.
Suppose that 0 ≤ x ≤ 1 and y ≥ 1 or 0 ≤ y ≤ 1 and x ≥ 1. Then

T̃H(x, y) ≥
∏

i∈A

(
1 +

x− 1

di + 1

)
·
∏

j∈B

(
1 +

y − 1

dj + 1

)
.

To prove Lemma 5.1 and 5.2, we need the following inequality of Harris that is also a
special case of the FKG-inequality [10].

Lemma 5.3 (Harris [11], Fortuin, Kasteleyn, Ginibre [10]). Suppose that µ is the uniform
measure on [0, 1]N , and X1, . . . , Xt are non-negative monotone increasing functions in
the sense that if xi ≥ x′

i for i = 1, . . . , N , then for 1 ≤ j ≤ t we have

Xj(x1, . . . , xN) ≥ Xj(x
′
1, . . . , x

′
N ).

Then

Eµ

[
t∏

j=1

Xj

]
≥

t∏

j=1

Eµ[Xj ].

Furthermore, if X is monotone increasing and Y is monotone decreasing, then

E[XY ] ≤ E[X ]E[Y ].

In what follows, we repeatedly use the same idea to express T̃H(x, y). This is a crucial
idea.

We can create a random ordering of the vertices of H as follows: for each vertex i
we choose a uniform random number xi from the interval [0, 1]. The numbers xi then
determine an ordering of the edges. The probability that two numbers are equal is 0.

Lemma 5.4. Let H be a bipartite graph and let T̃H(x, y) =
∑

ti,j(H)xiyj. Let v(H) = m
and let x1, x2, . . . xm be i.i.d. random variables with distribution xi ∼ U(0, 1). Let I(A) =
|{v ∈ A| xv ≥ xv′ for v′ ∈ NH(v)}| and I(B) = |{v ∈ B| xv ≥ xv′ for v′ ∈ NH(v)}|. Then

P (I(A) = i, I(B) = j) = ti,j(H).

Proof. For π ∈ Sm, let Eπ be the event that xπ(1) > xπ(2) > · · · > xπ(m). Then we have
P (I(A) = i, I(B) = j|Eπ) = 1 if ia(π) = i and ea(π) = j, otherwise it is 0, so by the law
of total probability we have

P (I(A) = i, I(B) = j) =
∑

π∈Sm

P (I(A) = i, I(B) = j|Eπ) · P (Eπ)

=
1

m!

∑

π∈Sm

P (I(A) = i, I(B) = j| Eπ)

= ti,j(H).

�

In what follows we do a little trick. For i ∈ A we generate xi ∼ U(0, 1) as before, but
for j ∈ B we actually first generate a uniformly random number yj from [0, 1] and let
xj = 1− yj. The role of this trick will be apparent soon.

For i ∈ A, let us introduce the random variable

Xi(xi, {yj}j∈B) =
{

x if maxj∈NH(i)(1− yj) ≤ xi,
1 if maxj∈NH(i)(1− yj) > xi.
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and for j ∈ B, let

Yj({xi}i∈A, yj) =
{

y if maxi∈NH (j) xi ≤ 1− yj,
1 if maxi∈NH (j) xi ≥ 1− yi.

Lemma 5.5. (a) We have

T̃H(x, y) = E

[
∏

i∈A
Xi ·

∏

j∈B
Yj

]
.

(b) If x ≥ 1, then Xi(xi, {yj}j∈B) is a monotone increasing function for each i ∈ A.
If 0 ≤ x ≤ 1, then Xi(xi, {yj}j∈B) is a monotone decreasing function for each i ∈ A.
For 0 ≤ y ≤ 1 the function Yj({xi}i∈A, yj) is monotone increasing for each j ∈ B.
Finally, for 0 ≤ y ≤ 1 the function Yj({xi}i∈A, yj) is monotone decreasing for each
j ∈ B.

Remark 5.6. This lemma is the reason why we generated xj by xj = 1− yj for j ∈ B.
If we consider the function

X ′
i(xi, {xj}j∈B) =

{
x if maxj∈NH(i) xj ≤ xi,
1 if maxj∈NH(i) xj > xi.

instead of Xi(xi, {yj}j∈B), this would be neither increasing, nor decreasing.

Proof. Since we simply generated a uniform random ordering of the vertices, we get that

T̃H(x, y) = E

[
∏

i∈A
Xi ·

∏

j∈B
Yj

]
.

We only prove the first statement of part (b), the proof of the other claims are analo-
gous. Observe that if xi, {yj}j∈B satisfies that maxj∈NH(i)(1 − yj) < xi, then increasing
xi, {yj}j∈B cannot ruin this inequality. It can occur though that maxj∈NH(i)(1− yj) < xi

previously was not true, but after increasing xi, {yj}j∈B it becomes true. In this case
the value of Xi(xi, {yj}j∈B) jumps from 1 to x, that is, since x ≥ 1, the value of
Xi(xi, {yj}j∈B) is increasing. A similar argument proves the other three statements
of part (b). �

Now we are ready to prove Lemma 5.1 and 5.2.

Proof of Lemma 5.1. If x ≥ 1 and 0 ≤ y ≤ 1, then
∏

i∈A Xi and
∏

j∈B Yj are both

monotone increasing random variables. Hence by the Harris-inequality (Lemma 5.3), we
have

T̃H(x, y) = E

[
∏

i∈A
Xi ·

∏

j∈B
Yj

]
≥ E

[
∏

i∈A
Xi

]
· E
[
∏

j∈B
Yj

]
= T̃H(x, 1)T̃H(1, y).

The other inequalities follow the same way. �

Proof of Lemma 5.2. We have

E[Xi] =

(
1− 1

di + 1

)
+

x

di + 1
= 1 +

x− 1

di + 1
,

and

E[Yj ] =

(
1− 1

dj + 1

)
+

y

dj + 1
= 1 +

y − 1

dj + 1
.

Note that Xi and Yj are monotone increasing functions in terms of the variables {xi}i∈A
and {yj}j∈B if x ≥ 1 and 0 ≤ y ≤ 1, and they are monotone decreasing functions in
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terms of the variables {xi}i∈A and {yj}j∈B if 0 ≤ x ≤ 1 and y ≥ 1. Hence, by Harris’
inequality (Lemma 5.3), we have

T̃H(x, y) = E

[
∏

i∈A
Xi ·

∏

j∈B
Yj

]
≥
∏

i∈A
E[Xi]·

∏

j∈B
E[Yj] =

∏

i∈A

(
1 +

x− 1

di + 1

)
·
∏

j∈B

(
1 +

y − 1

dj + 1

)
.

�

Remark 5.7. An interesting application of the above inequalities is the following. Sup-
pose that a graph G has n vertices, m edges and the length of the shortest cycle is g.
Then for any spanning tree T , the local basis exchange graph H = H [T ] has a minimum
degree g − 1 on the side of the non-spanning-tree edges. This means that if x ≥ 1, we
have

T̃H(x, 0) ≥ T̃H(x, 1)T̃H(1, 0) ≥ T̃H(x, 1)
∏

j∈B

(
1− 1

dj + 1

)
≥ T̃H(x, 1)

(
1− 1

g

)m−n+1

.

By summing this inequality for all spanning trees, we get that

TG(x, 0) ≥ TG(x, 1)

(
1− 1

g

)m−n+1

.

This inequality is particularly useful if one studies graphs with large girth, and a variant
of this inequality was used in the paper [3].

Theorem 5.8. Let H be a bipartite graph with minimum degree δ ≥ 1. Then

T̃H

(
2 +

1

δ
, 0

)
T̃H

(
0, 2 +

1

δ

)
≥ T̃H(1, 1)

2.

In particular, we have

T̃H(3, 0)T̃H(0, 3) ≥ T̃H(1, 1)
2.

Let G be a graph without loops and bridges. Then

TG(3, 0)TG(0, 3) ≥ TG(1, 1)
2.

Proof. Let x = 2 + 1
δ
. Let us use that T̃H(1, 1) = 1,

T̃H(x, 0) ≥
∏

i∈A

(
1 +

x− 1

di + 1

)
·
∏

j∈B

(
1− 1

dj + 1

)
,

and

T̃H(0, x) ≥
∏

i∈A

(
1− 1

di + 1

)
·
∏

j∈B

(
1 +

x− 1

dj + 1

)
.

So it is enough to prove that
(
1 +

x− 1

dv + 1

)(
1− 1

dv + 1

)
≥ 1

if dv is the degree of a vertex v. The inequality (1 + (x − 1)ε)(1 − ε) ≥ 1 is equivalent
with (x − 2)ε ≥ (x − 1)ε2, that is, ε ≤ x−2

x−1
= 1

δ+1
which is satisfied since dv ≥ δ for all

vertices v ∈ V (H). The second inequality follows from the first one by simply taking
δ = 1. The third inequality follows from the second one by Lemma 3.3. �

Corollary 5.9. If M is a matroid that is simple and co-simple at the same time, then

TM

(
5

2
, 0

)
TM

(
0,

5

2

)
≥ TM(1, 1)2.
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Proof. Since M is simple and co-simple at the same time, the minimum degree of any
basis exchange graph of M is at least 2, so we can apply the previous theorem with
δ = 2. Then the transfer lemma implies the statement.

�

5.1. Regular bipartite graphs. In this part we prove that regular bipartite graphs
satisfy the inequality T̃H(2, 0)T̃H(0, 2) ≥ T̃H(1, 1)

2.

Theorem 5.10. If H is a regular bipartite graph, then for x ∈ [0, 2], we have

T̃H(x, 2− x) ≥ 1.

In particular,

T̃H(2, 0)T̃H(0, 2) ≥ T̃H(1, 1)
2.

Proof. We define the random variables Xi and Yj as before. Recall that if x ≥ 1 and
0 ≤ y ≤ 1, then all of these variables are monotone increasing. We can assume that
x ∈ [1, 2] and y = 2 − x ∈ [0, 1]. Since H is regular, it contains a perfect matching
M = {(u1, v1), (u2, v2), . . . (uk, vk)}, where k = m/2. Then

T̃H(x, y) = E

[
∏

i∈A
Xi ·

∏

j∈B
Yj

]
= E

[
k∏

i=1

(Xui
Yvi)

]
≥

k∏

i=1

E [Xui
Yvi ]

since for each i the random variables Xui
Yvi are monotone increasing, thus we can use

Harris’ inequality (Lemma 5.3). Now observe that

E [Xui
Yvi ] = 1 +

x− 1

d+ 1
+

y − 1

d+ 1
= 1

since the probability of ui being active is 1
d+1

, just as the probability of vi being active,

and these two events exclude each other. Hence T̃H(x, y) ≥ 1 = T̃H(1, 1). �

5.2. Trees. In this section, we prove that trees also satisfy the inequality T̃H(2, 0)T̃H(0, 2) ≥
T̃H(1, 1)

2. First, we need a lemma about the decompositions of trees.

Lemma 5.11 (Gluing lemma). Let x ≥ 1 and 0 ≤ y ≤ 1. Let H1 be a rooted tree with
root vertex v1. Let H2 be another rooted tree with root vertex v2. Let H be obtained from
H1 and H2 by identifying v1 and v2 in the union of H1 and H2. Let v be the vertex
obtained from identifying v1 and v2. Assume that the bipartite parts of H determines the
bipartite parts of H1 and H2, that is, if v ∈ A(H), then v1 ∈ A(H1) and v2 ∈ A(H2),
and if v ∈ B(H), then v1 ∈ B(H1) and v2 ∈ B(H2).

(a) If v ∈ A, then

xT̃H(x, y) ≥ T̃H1(x, y)T̃H2(x, y).

(b) If v ∈ B, then

T̃H(x, y) ≥ T̃H1(x, y)T̃H2(x, y).

Proof. First, we prove part (b), and the proof of part (a) will be very similar.
As before, we introduce the random variables Xi and Yj. In particular,

Yv({xi}i∈A(H), yv) =

{
y if maxi∈NH(v) xi ≤ 1− yv,
1 if maxi∈NH(v) xi ≥ 1− yv.

and similarly,

Yv1({xi}i∈A(H1), yv) =

{
y if maxi∈NH1

(v) xi ≤ 1− yv,
1 if maxi∈NH1

(v) xi ≥ 1− yv.
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and

Yv2({xi}i∈A(H2), yv) =

{
y if maxi∈NH2

(v) xi ≤ 1− yv,
1 if maxi∈NH2

(v) xi ≥ 1− yv.

Note that we think of H1 and H2 as they are embedded into H , that is why we used
the variable yv for both Yv1 and Yv2 . In this sense, Yv ≥ Yv1 because if Yv = y, then
Yv1 = Yv2 = y automatically holds. Since y < 1, we also get that Yv ≥ Yv1Yv2 . Hence

T̃H(x, y) = E



∏

i∈A(H)

Xi ·
∏

j∈B(H)

Yj


 ≥ E


Yv1Yv2

∏

i∈A(H)

Xi ·
∏

j∈B(H)\v
Yj


 ≥

≥ E



∏

i∈A(H1)

Xi ·
∏

j∈B(H1)

Yj


 · E



∏

i∈A(H2)

Xi ·
∏

j∈B(H2)

Yj


 = T̃H1(x, y)T̃H2(x, y).

In the proof of part (a), we use that xXv ≥ Xv1Xv2 . Whence

xT̃H(x, y) = E


x

∏

i∈A(H)

Xi ·
∏

j∈B(H)

Yj


 ≥ E


Xv1Xv2

∏

i∈A(H)\v
Xi

∏

j∈B(H)

Yj




≥ E



∏

i∈A(H1)

Xi ·
∏

j∈B(H1)

Yj


E



∏

i∈A(H2)

Xi ·
∏

j∈B(H2)

Yj


 = T̃H1(x, y)T̃H2(x, y).

�

Definition 5.12. Let
P (H) := T̃H(2, 0)T̃H(0, 2).

The following lemma is an immediate consequence of Lemma 5.11.

Lemma 5.13. Let H1 be a rooted tree with root vertex v1. Let H2 be another rooted tree
with root vertex v2. Let H be obtained from H1 and H2 by identifying v1 and v2 in the
union of H1 and H2. Then

P (H) ≥ 1

2
P (H1)P (H2).

Proof. Suppose that v ∈ V (H) obtained from identifying v1 and v2. We can assume
that v ∈ A as the argument for v ∈ B is completely analogous. Then by part (a) of
Lemma 5.11 we have

2T̃H(2, 0) ≥ T̃H1(2, 0)T̃H2(2, 0).

Let H ′ = (B,A,E) be the graph obtained by switching the two sides of H . Then
v ∈ B(H ′) and by part (b) of Lemma 5.11 we have

T̃H′(2, 0) ≥ T̃H′
1
(2, 0)T̃H′

2
(2, 0).

By Lemma 2.2 this is equivalent with

T̃H(0, 2) ≥ T̃H1(0, 2)T̃H2(0, 2).

By multiplying the two inequalities we get that

2P (H) ≥ P (H1)P (H2).

�

Next, we need a lemma that says that we can always decompose a tree into two trees
such that none of them is too small or too large.
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Lemma 5.14. Let M ≥ 2. Let H be a tree. If H has M edges, then it can be decomposed
to edge-disjoint trees H1 and H2 such that both of them have at least M/3 edges.

Remark 5.15. The lemma is tight in the sense that if we have a tree H on 3k + 1
vertices such that from a vertex of degree 3 we have 3 paths of length k, then in any
decomposition, there is a tree with at most k edges.

Proof of Lemma 5.14. We give an algorithm to find such a decomposition. If the tree is
a path, then the problem is trivial. If the tree is not a path, then let v be a vertex of
degree at least 3. Let a1 ≤ a2 ≤ · · · ≤ ak be the number of edges of the branches from
v, that is, k ≥ 3 is the degree of v and a1 + · · ·+ ak = M . Clearly, a1 ≤ M/k ≤ M/3.
Let us introduce the function t(v) := ak. Let us distinguish three cases.

Case 1: there is an i < k such that M/3 ≤ a1 + · · ·+ ai−1 ≤ 2M/3. In this case, we
are done because we can put the first i− 1 branches into H1 and the rest to H2.

Case 2: There is an i < k such that a1 + · · ·+ ai−1 < M/3 but a1 + · · ·+ ai ≥ 2M/3.
Then ai > M/3. Since i < k, we have ak ≥ ai > M/3, but then a1 + · · ·+ ak > M . So
this case cannot happen.

Case 3: a1 + · · ·+ ak−1 < M/3. In this case, let us start to walk in the k-th branch to
the next vertex of degree at least 3, let us call it u. So consider the first k − 1 branches
as one in the sequel. Since we are walking on a path, the size of this branch changes one
by one. If at some point the size of the branch is at least M/3, then we are done. If this
is not the case, then we arrive at the next vertex of degree at least 3, namely u, and we
can repeat the whole argument. An important observation is though that t(u) < t(v).
So by repeating this argument, we eventually arrive at a decomposition where the parts
have sizes between M/3 and 2M/3. �

Theorem 5.16. For every tree H, we have P (H) ≥ 1. In fact, if H has at least 10
vertices, then P (H) ≥ 2.

Proof. By a computer program, we first checked the claim for trees on at most 18 vertices.
Let

Π(m) = min
H∈Tm

P (H)

be the minimum of P (H) among trees on m vertices.
The table at the end of the proof summarizes our findings for m ≤ 18. One key

observation is that Π(m) ≥ 2 for 10 ≤ m ≤ 18. The other important observation is that

Π(m1)Π(m2) ≥ 4

if m1 + m2 ≥ 20 and 3 ≤ m1, m2 ≤ 17. Let H be a tree with m vertices such that
19 ≤ m ≤ 27. Then by Lemma 5.14, we can decompose it to trees H1 and H2 such that

7 ≤
⌈m− 1

3

⌉
+ 1 ≤ v(H1), v(H2) ≤

⌊2(m− 1)

3

⌋
+ 1 ≤ 18.

Since v(H1) + v(H2) = m + 1 ≥ 20, we get that P (H) ≥ 1
2
P (H1)P (H2) ≥ 2. So the

claim is true for trees on at most 27 vertices. From now on, we proceed by induction on
the number of vertices: we prove that P (H) ≥ 2 if H has at least 10 vertices. Let H be
a tree on m vertices. As we have seen, the claim is true if 10 ≤ m ≤ 27. If m ≥ 28, then
we can decompose it into two trees H1 and H2 such that v(H1), v(H2) ≥ m−1

3
+ 1 ≥ 10,

so by induction, we have P (H) ≥ 1
2
P (H1)P (H2) ≥ 2. This finishes the proof. �
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m number of trees Π(m)
2 1 1
3 1 1.3333
4 2 1.3611
5 3 1.5111
6 6 1.5766
7 11 1.6585
8 23 1.7958
9 47 1.8640
10 106 2.0589
11 235 2.1546
12 551 2.3426
13 1301 2.4600
14 3159 2.5990
15 7741 2.8138
16 19320 2.9519
17 48629 3.1965
18 123867 3.3424

Remark 5.17. The same proof gives that if m ≥ 10, then

Π(m) > 2 · 1.0001m−1,

so Π(m) grows exponentially! It is worth comparing this result with Remark 4.4 about
balanced complete bipartite graphs.

6. Improvement over 3

This section aims to prove that if x ≥ 2.9243, then for any bipartite graph H without
isolated vertices, we have

T̃H(x, 0)T̃H(0, x) > T̃H(1, 1)
2.

From now on let
Px(H) = T̃H(x, 0)T̃H(0, x).

Clearly, P (H) that was introduced in the previous section is P2(H) with this notation.

Lemma 6.1. Let H be a bipartite graph and v ∈ V (G). Let x ≥ 1 and suppose that v
has degree 1.
(a) If v ∈ A, then

T̃H(x, 0) ≥
x+ 1

2
T̃H−v(x, 0).

(b) If v ∈ B, then

T̃H(x, 0) ≥
1

2
T̃H−v(x, 0).

In particular,

Px(H) ≥ x+ 1

4
Px(H − v).

Proof. Let u be the unique neighbour of v. We can think of H as the graph obtained
from glueing K2 with H − v at vertex u. If v ∈ B, then u ∈ A and by the gluing lemma
(Lemma 5.11), we have

T̃H(x, 0) ≥
1

x
T̃K2(x, 0)T̃H−v(x, 0) =

1

2
T̃H−v(x, 0).



18 CSONGOR BEKE, GERGELY KÁL CSÁJI, P. CSIKVÁRI, AND SÁRA PITUK

To prove part (a) of the lemma, we need a strengthening of the glueing lemma: if u ∈ B,
then

T̃H(x, 0) ≥ T̃K2(x, 1)T̃H−v(x, 0).

This strengthening only works because in K2 there are no other vertices in A apart
from v. This inequality can be proved as follows. As before, we introduce the random
variables Xi and Yj. In particular,

Yu({xi}i∈A(H), yu) =

{
0 if maxi∈NH(u) xi ≤ 1− yu,
1 if maxi∈NH(u) xi ≥ 1− yu,

and similarly,

Y ′
u({xi}i∈A(H−v), yu) =

{
0 if maxi∈NH (u)\{v} xi ≤ 1− yu,
1 if maxi∈NH (u)\{v} xi ≥ 1− yu.

Observe that Yu ≥ Y ′
u since if Yu = 0, then Y ′

u = 0 too. Furthermore, every function is
monotone increasing. Then

T̃H(x, 0) = E



∏

i∈A(H)

Xi ·
∏

j∈B(H)

Yj


 = E


XvYu

∏

i∈A(H)
i6=v

Xi ·
∏

j∈B(H)
j 6=u

Yj


 ≥

E


XvY

′
u

∏

i∈A(H)
i6=v

Xi ·
∏

j∈B(H)
j 6=u

Yj


 ≥ E [Xv] · E


Y ′

u

∏

i∈A(H)
i6=v

Xi ·
∏

j∈B(H)
j 6=u

Yj


 =

x+ 1

2
T̃H−v(x, 0).

�

Definition 6.2. We say that a graph H is a minimal graph with respect to Px(·) if it
contains no induced subgraph H ′ such that Px(H

′) < Px(H).

Lemma 6.3. Assume that x >
√
37−1
2

≈ 2.541381265. Suppose that H is a minimal
graph with respect to Px(·). Then H cannot contain two vertices of degree 1 connected
to the same vertex. Furthermore, if we delete all degree 1 vertices from H, then the
obtained graph cannot contain any degree 1 vertex.

Proof. For K1,2, we have

Px(K1,2) = T̃K1,2(x, 0)T̃K1,2(0, x) =
x

3
· x

2 + x

3
.

If a bipartite graph H contains K1,2 as an induced subgraph, then we can think of H as
the graph obtained from glueing K1,2 with an appropriate graph H1. Then by the gluing
lemma (Lemma 5.11), we have

Px(H) ≥ 1

x
Px(K1,2)Px(H1) ≥

x2 + x

9
Px(H1).

Since x >
√
37−1
2

, the largest zero of x2+x−9, we get that Px(H) > Px(H1) contradicting
the minimality of H . Thus H cannot contain K1,2 as an induced subgraph, implying
both parts of the theorem. �

Lemma 6.4. Let H = (A,B,E) be a bipartite graph such that |A| = a and |B| = b. If
x, y ≥ 1, then

T̃H(x, y) ≥ T̃Ka,b
(x, y).
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Proof. Given a graph H and a fixed permutation π, the addition of an edge (i, j) not in
H may result in i or j ceased to be active but cannot create a new active vertex. Since

x, y ≥ 1, this means that T̃H(x, y) decreases term by term after the addition of an edge.
Hence

T̃H(x, y) ≥ T̃Ka,b
(x, y).

�

Lemma 6.5. Let a + b = m and x > 2. Then

T̃Ka,b
(x, 1)T̃Ka,b

(1, x) ≥
(

x2

4(x− 1)

)m

.

Proof. We first prove a slightly weaker result, namely, that

T̃Ka,b
(x, 1)T̃Ka,b

(1, x) ≥ f(m)

(
x2

4(x− 1)

)m

,

where f(m) is a function such that for every c < 1, we have f(m) > cm for large enough
m. Later we remove f(m) with a little trick. In this proof, f(m) will be m−K for some
K, but we will not specify K as we will remove it anyway.

Recall from Lemma 4.2 that

T̃Ka,b
(x, y) =

a∑

i=1

a(a− 1)...(a− i+ 1)b

m(m− 1)...(m− i)
xi +

b∑

j=1

b(b− 1)...(b− j + 1)a

m(m− 1) . . . (m− j)
yj.

Observe that
ti+1,0(Ka,b)x

i+1

ti,0(Ka,b)xi = (a−i)x
m−i−1

. So the maximum of ti,0(Ka,b)x
i is achieved at i =⌊

xa−(m−1)
x−1

⌋
if this number is at least 1, otherwise the maximal term is t1,0(Ka,b)x =

abx
m(m−1)

. For the sake of simplicity, we just use the approximation given by Stirling’s

formula at i = xa−m
x−1

(we omit taking the integer part, this again only affects a polynomial
multiplicative error):

ti,0(Ka,b)x
i ≈ b

a!(m− i)!

(a− i)!m!
xi ≈

(
a
e

)a (m−i
e

)m−i

(
a−i
e

)a−i (m
e

)mxi =
aa(m− i)m−i

(a− i)a−imm
xi,

where the approximations are up to subexponential terms. (After the first step we built
b into the subexponential term.)

Using the notation a = αm, we have

i =
xα− 1

x− 1
m,

and the above expression is further approximately equal to

αα

(
1− xα−1

x−1

)1−xα−1
x−1

(
α− xα−1

x−1

)α−xα−1
x−1




m

xi =

(
αα(x(1 − α))x(1−α)/(x−1)

(1− α)
1−α
x−1 (x− 1)1−α

)m

xi

= (αα(1− α)1−αx(1−α) x
x−1 (x− 1)α−1)mxi

= (αα(1− α)1−αx(x− 1)α−1)m.

So either α < 1
x

and T̃Ka,b
(x, 0) > x

m
or α ≥ 1

x
and

T̃Ka,b
(x, 0) = f1(m)(αα(1− α)1−αx(x− 1)α−1)m,

where f1(m) is some subexponential term.
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If we introduce the notation b = βm, then again either β < 1
x

and T̃Ka,b
(0, x) > x

m
or

β ≥ 1
x

and

T̃Ka,b
(0, x) = f2(m)(ββ(1− β)1−βx(x− 1)β−1)m,

where f2(m) is some subexponential term. Note that β = 1− α,

T̃Ka,b
(x, 1) = T̃Ka,b

(x, 0) + T̃Ka,b
(0, 1), and 0 < T̃Ka,b

(0, 1) < T̃Ka,b
(1, 1) = 1.

If α, β ≥ 1/x, then

T̃Ka,b
(x, 1)T̃Ka,b

(1, x) = f1(m)f2(m)

(
α2α(1− α)2(1−α) x2

x− 1

)m

,

and the minimum of α2α(1− α)2(1−α) is at α = 1
2
, where it is equal to 1

4
. So we get that

T̃Ka,b
(x, 1)T̃Ka,b

(1, x) ≥ f(m)

(
x2

4(x− 1)

)m

,

where f(m) is some function that grows faster than any cm with c < 1.
Suppose that either α < 1

x
or β < 1

x
. Since x > 2, it cannot happen that both α, β < 1

x

as their sum is 1. By symmetry, we can assume that β < 1
x

and α > 1− 1
x
. Observe that

the function
h(α) := αα(1− α)1−αx(x− 1)α−1

is monotone increasing on the interval
[
1
x
, 1
]

as the derivative of its logarithm is

ln
(

α
1−α

)
+ ln(x − 1) which is 0 at α = 1

x
and positive if α > 1

x
. Since 1 − 1

x
> 1

x
we get

that h(α) ≥ h
(
1− 1

x

)
= (x− 1)1−2/x. We claim that

(x− 1)1−2/x ≥ x2

4(x− 1)

if x ≥ 2. This is equivalent to the fact that 1
x
(x − 1)1−1/x ≥ 1

2
. Since they are equal at

x = 2, it is enough to show that for x ≥ 2, the left-hand side is monotone increasing.

Indeed, taking the derivative of its logarithm we get ln(x−1)
x2 ≥ 0. Hence, in this case, it

is still true that

T̃Ka,b
(x, 1)T̃Ka,b

(1, x) ≥ f(m)

(
x2

4(x− 1)

)m

.

Now let us take k copies of Ka,b and observe that kKa,b is a subgraph of Kka,kb. Thus,
by the previous lemma, we have

(T̃Ka,b
(x, 1)T̃Ka,b

(1, x))k = T̃kKa,b
(x, 1)T̃kKa,b

(1, x) ≥ T̃Kka,kb
(x, 1)T̃Kka,kb

(1, x) ≥ f(km)

(
x2

4(x− 1)

)km

.

Hence

T̃Ka,b
(x, 1)T̃Ka,b

(1, x) ≥ f(km)1/k
(

x2

4(x− 1)

)m

for every k. Since we have f(km) > ckm for every c < 1 and large enough k, we get that

T̃Ka,b
(x, 1)T̃Ka,b

(1, x) ≥
(

x2

4(x− 1)

)m

.

�

Lemma 6.6. If x ≥ 1, then the function

g(k, x) :=
ln
(
1 + x−1

k+1

)

ln
(
1 + 1

k

)

is a monotone increasing function in k. In particular, g(2, x) ≤ g(k, x) if k ≥ 2.
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Proof. Let us differentiate g(k, x) in the variable k:

d

dk
g(k, x) =

(k + x) ln
(
k+x
k+1

)
− k(x− 1) ln

(
k+1
k

)

k(k + 1)(k + x)
(
ln
(
k+1
k

))2 .

We need to prove that it is positive if x ≥ 1 and k ≥ 2. If x = 1, then the numerator is
obviously 0. If we differentiate the numerator in the variable x, we get that

d

dx

(
(k + x) ln

(
k + x

k + 1

)
− k(x− 1) ln

(
k + 1

k

))
= ln

(
k + x

k + 1

)
+ 1− k ln

(
k + 1

k

)
.

This is obviously non-negative since k ln
(
k+1
k

)
≤ k · 1

k
= 1. So the numerator is increasing

in x, so it is always positive for x ≥ 1 and k ≥ 2.
�

Theorem 6.7. If x ≥ 2.9243, then we have

T̃H(x, 0)T̃H(0, x) > 1

for any bipartite graph H without isolated vertices.

Proof. Recall that Px(H) = T̃H(x, 0)T̃H(0, x). Suppose for contradiction that for some
graph H we have Px(H) < 1. We can also assume that H is a minimal graph with
respect to Px(·).

Let L denote the number of leaves of H . Let H ′ be the bipartite graph obtained from
H by deleting all these leaves. By Lemma 6.1 for H ′ we have

Px(H) ≥
(
x+ 1

4

)L

Px(H
′).

Observe that we can assume by Lemma 6.3 that we deleted at most one leaf pending
from each vertex and that the resulting graph does not contain any leaves. So for the
graph H ′ = (V ′, E ′) we have |V ′| ≥ L and its minimum degree is at least 2.

By Lemmas 5.1 and 5.2, we know that

T̃H′(x, 0)T̃H′(0, x) ≥ T̃H′(x, 1)T̃H′(1, x)T̃H′(1, 0)T̃H′(0, 1)

≥ T̃H′(x, 1)T̃H′(1, x)
∏

v∈V ′

(
1− 1

dv + 1

)
.

≥
∏

v∈V ′

(
1 +

x− 1

dv + 1

)
·
∏

v∈V ′

(
1− 1

dv + 1

)
.

Next, we practically distinguish the two cases whether
(
∏

v∈V ′

(
1− 1

dv + 1

))−1

=
∏

v∈V ′

(
1 +

1

dv

)

is small or (exponentially) large. If it is large, then we argue that
∏

v∈V ′

(
1 + x−1

dv+1

)
is

even larger. If it is small, then we will argue that T̃H′(x, 1)T̃H′(1, x) is still exponentially

large. So in both cases, T̃H′(x, 0)T̃H′(0, x) is exponentially large. The details are the
following.

Let

C =

(
∏

v∈V ′

(
1 +

1

dv

))1/|V ′|

.
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Observe that since every degree is at least 2 in H ′, we have

∏

v∈V ′

(
1 +

x− 1

dv + 1

)
=
∏

v∈V ′

(
1 +

1

dv

)g(dv ,x)

≥
(
∏

v∈V ′

(
1 +

1

dv

))g(2,x)

by Lemma 6.6. Note that

g(2, x) =
ln
(
1 + x−1

3

)

ln
(
3
2

) > 1

since x > 5/2. Hence we have

T̃H′(x, 0)T̃H′(0, x) ≥
∏

v∈V ′

(
1 +

x− 1

dv + 1

)
·
∏

v∈V ′

(
1− 1

dv + 1

)
≥ C(g(2,x)−1)|V ′|.

We can, of course, combine Lemma 6.4 and 6.5 and get that

T̃H′(x, 1)T̃H′(1, x) ≥
(

x2

4(x− 1)

)|V ′|
.

This implies that

T̃H′(x, 0)T̃H′(0, x) ≥ T̃H′(x, 1)T̃H′(1, x)
∏

v∈V ′

(
1− 1

dv + 1

)
≥
(

x2

4(x− 1)

)|V ′|
· C−|V ′|.

Now let us consider two cases.
Case 1. Suppose that Cg(2,x) ≥ x2

4(x−1)
. Then

T̃H′(x, 0)T̃H′(0, x) ≥ C(g(2,x)−1)|V ′| ≥
(

x2

4(x− 1)

) g(2,x)−1
g(2,x)

|V ′|
.

Case 2. Suppose that Cg(2,x) ≤ x2

4(x−1)
. Then

T̃H′(x, 0)T̃H′(0, x) ≥
(

x2

4(x− 1)

)|V ′|
· C−|V ′| ≥

(
x2

4(x− 1)

) g(2,x)−1
g(2,x)

|V ′|
.

So, after all, we get that

Px(H) ≥
(
x+ 1

4

)L

Px(H
′) ≥

(
x+ 1

4

)L(
x2

4(x− 1)

) g(2,x)−1
g(2,x)

|V ′|
.

Note that L ≤ |V ′| and for x ≥ 2.9243, we have

x+ 1

4

(
x2

4(x− 1)

) g(2,x)−1
g(2,x)

> 1.

Hence Px(H) > 1, contradiction.
�

7. The alternating function of a bipartite graph

In this section, we study a special coefficient of the permutation Tutte polynomial,
which we call the alternating number of the graph.

Proposition 7.1. Let H = (A,B,E) be a bipartite graph without isolated vertices. Let
|A| = a and |B| = b. Then

ta,0(H) = t0,b(H).
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Proof. Let π ∈ Sm be a permutation such that ia(π) = a and ea(π) = 0. Since every
vertex of A is internally active in π, if j ∈ B and i ∈ NH(j) ⊆ A, we have π(i) > π(j).
So letting π′(v) = m + 1 − π(v), we get a permutation in which every vertex of B is
externally active. Clearly, no vertex of A remains internally active in π′, so ia(π′) = 0
and ea(π′) = b. The bijection π 7→ π′ shows that the coefficient of xa is the same as the

coefficient of yb in T̃ (x, y). �

Corollary 7.2. Let H = (A,B,E) be a bipartite graph. Let |A| = a and |B| = b. If r is
the number of isolated vertices in A, and ℓ is the number of isolated vertices in B, then

ta,ℓ(H) = tr,b(H).

Proof. Let H ′ be the graph we obtain from H by removing all isolated vertices. Then

Lemma 2.1 implies that T̃H(x, y) = xryℓT̃H′(x, y). Using Proposition 7.1 for H ′, we get
that

ta−r,0(H) = t0,b−ℓ(H),

hence
ta,ℓ(H) = tr,b(H).

�

Now we are ready to define the alternating number of a bipartite graph H .

Definition 7.3. Let H = (A,B,E) be a bipartite graph. Let |A| = a and |B| = b.
Let r denote the number of isolated vertices in A, and ℓ denote the number of isolated
vertices in B. We define

alt(H) := ta,ℓ(H) = tr,b(H)

as the alternating number of H .

Remark 7.4. The notation alt(H) is originated from the fact that if H = Pn, then
alt(Pn) =

An

n!
, where An denotes the number of alternating permutations. For instance,

A5 = 16. This is in complete accordance with alt(P5) =
2
15

= 16
120

is the coefficient of x3

and y2 in the polynomial T̃P5(x, y) from Example 1.3.

Lemma 7.5. For any bipartite graph H without isolated vertices,

alt(H) =
1

m

∑

v∈V (A)

alt(H − v) =
1

m

∑

v∈V (B)

alt(H − v).

Proof. By Lemma 2.3, we have that

alt(H) = ta,0(H)

=
1

m



∑

v∈V (A)

ta,0(H − v) +
∑

v∈V (B)

ta,0(H − v)




=
1

m

∑

v∈V (B)

ta,0(H − v)

=
1

m

∑

v∈V (B)

alt(H − v).

The third inequality holds because |A(H − v)| < a for v ∈ V (A), so ta,0(H − v) = 0.
The last inequality follows from |A(H− v)| = a and the fact that since v ∈ V (B) and H
does not have any isolated vertices, H − v does not have isolated vertices in B(H − v).
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The proof of the second identity is analogous. �

Lemma 7.6. For any bipartite graph H = (A,B,E) with |A| = a and |B| = b vertices,
we have

T̃H

(
x,

x

x− 1

)
= alt(H)

xm

(x− 1)b
.

In particular,

T̃H(2, 2) = alt(H)2m.

Proof. We use induction on v(H). If v(H) = 1, then H = K1 and the single vertex is
either in A, a = 1, b = 0 and

T̃H

(
x,

x

x− 1

)
= x,

or the single vertex in B, a = 0 and b = 1, in which case

T̃H

(
x,

x

x− 1

)
=

x

x− 1
.

Suppose that H has m > 1 vertices, and the statement holds for any graph on at most
m− 1 vertices.

First, suppose that H has isolated vertices, and let v be one of them. If v ∈ A, then

T̃H

(
x,

x

x− 1

)
= xT̃H−v

(
x,

x

x− 1

)
= x · alt(H − v)

xm−1

(x− 1)b
= alt(H)

xm

(x− 1)b
.

If v ∈ B, then

T̃H

(
x,

x

x− 1

)
=

x

x− 1
T̃H−v

(
x,

x

x− 1

)
=

x

x− 1
alt(H−v)

xm−1

(x− 1)b−1
= alt(H)

xm

(x− 1)b
.

If H does not have isolated vertices, then Lemma 2.3 and Lemma 7.5 implies that

T̃H

(
x,

x

x− 1

)
=

1

m



∑

v∈V (A)

T̃H−v

(
x,

x

x− 1

)
+
∑

v∈V (B)

T̃H−v

(
x,

x

x− 1

)


=
1

m

∑

v∈V (A)

alt(H − v)
xm−1

(x− 1)b
+

1

m

∑

v∈v(B)

alt(H − v)
xm−1

(x− 1)b−1

= alt(H)
xm−1

(x− 1)b
+ alt(H)

xm−1

(x− 1)b−1

= alt(H)
xm

(x− 1)b
.

�

Remark 7.7. A symmetric form of this statement is the following: if (x−1)(y−1) = 1,
then

T̃H(x, y) = alt(H)xayb.

Recall that given edge weights (we)e∈E(G), the maximum weight spanning tree is the
spanning tree that maximizes

∑
e∈E(T )we. Kruskal’s algorithm provides a very fast

way to find this tree. The following proposition connects the quantity alt(H) with the
problem of finding the maximum weight-spanning tree.



PERMUTATION TUTTE POLYNOMIAL 25

Proposition 7.8. Let G be a graph. For each edge e ∈ E(G), let us choose uniformly
randomly an xe ∈ [0, 1]. Let T be a spanning tree with local basis exchange graph H [T ].
Then the probability that the maximum weight spanning tree with respect to the weights
(xe)e∈E is T is exactly alt(H [T ]).

Proposition 7.9. Let H be a bipartite graph on m vertices. Then alt(H) is the volume
of the polytope determined by 0 ≤ ti ≤ 1 (1 ≤ i ≤ m), ti + tj ≤ 1 if (i, j) ∈ E(H), i.e
the independent set polytope of H.

Proof. For i ∈ A, let xi ∼ U(0, 1) and yi = 1 − xi. Then yi ∼ U(0, 1). Let ℓ be the
number of isolated vertices in B. From Lemma 5.4, we have

alt(H) = P (I(A) = |A|, I(B) = ℓ)

= P (xi ≥ xj if i ∈ A, j ∈ B, (i, j) ∈ E(H))

= P (yi + xj ≤ 1 if i ∈ A, j ∈ B, (i, j) ∈ E(H))

= Vol (0 ≤ ti ≤ 1, ti + tj ≤ 1 if (i, j) ∈ E(H)) .

�

We note that Proposition 7.9 leads to a definition of alt(G) for not necessarily bipartite
graphs, and as Proposition 7.11 shows it was already studied in the literature.

Definition 7.10. For any graph G, we define alt(G) = P (xi + xj ≤ 1 if (i, j) ∈ E(G)),
where xi ∼ U(0, 1) i.i.d. random variables, or equivalently,
alt(G) = Vol (x | 0 ≤ ti ≤ 1, ti + tj ≤ 1 if (i, j) ∈ E(G)).

Proposition 7.11 (Steingrimsson [16]). For any graph G on n vertices which does not
have isolated vertices, we have

alt(G) =
1

2n

n∑

i=1

alt(G− vi).

Remark 7.12. Using the relation in the previous lemma, one can also generalize the
second statement of Lemma 7.6 to not necessarily bipartite graphs.

We end this section with some simple observations.

Proposition 7.13. Let G be a graph on n vertices without isolated vertices. Then

alt(Kn) ≤ alt(G) ≤ alt(Sn).

Proof. Observe that adding an edge only increases the number of constraints on the
polytope {x | 0 ≤ xi ≤ 1, xi + xj ≤ 1 if (i, j) ∈ E(G)} whence decreasing the volume.
So the minimum of alt(·) is achieved at Kn. The maximum is achieved at a graph for
which the deletion of any edge results in an isolated vertex. Only a union of star graphs
has this property. Indeed, any connected component should be a tree –otherwise, we can
delete the edges outside of a spanning tree– and if a tree is not a star, then it contains
a path on 4 vertices, and we would be able to delete the middle edge. For a union of
stars, we have

alt(Sn1 ∪ · · · ∪ Snk
) =

k∏

i=1

1

ni
≤ 1

n
= alt(Sn),

using that ni ≥ 2 for i ∈ [k]. �

Remark 7.14. One can also prove that the minimum value of alt(T ) among trees on
n vertices is achieved at the path Pn. We omit the proof of this fact as it is somewhat
technical.
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8. Brylawski’s identities

Brylawski’s identities [4] describe the linear relationships between the coefficients of
the Tutte polynomial. The following version is given in [1].

Theorem 8.1 (Generalized Brylawski’s identity for matroids ). Let M be a matroid on
the set S. Let m denote the size of S and r the rank of S. Let TM(x, y) =

∑
i,j ti,j(M)xiyj

be the Tutte polynomial of M . Then for any integer h ≥ m, we have

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(M) = (−1)m−r

(
h− r

h−m

)
,

and for any integer 0 ≤ h < m, we have

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(M) = 0.

Here we give the corresponding statement to T̃H(x, y). Note that since TM(x, y) can
be written as a sum of the permutation Tutte polynomials of the local basis exchange
graphs of G, this version implies Theorem 8.1. The proof of Theorem 8.1 in [1] relies on
the fact that TM (x, y) simplifies to (x− 1)r(E)y|E| along the parabola (x− 1)(y− 1) = 1.

The variant of this statement holds for T̃H(x, y), as Lemma 7.6 shows. So to prove
Theorem 8.2 one only needs to modify the proof given in [1]. Alternatively, one can
prove the statement by induction, this is the proof that we give here.

Theorem 8.2 (Brylawski’s identity). Let H be a bipartite graph with m = a+b vertices.

Let T̃H(x, y) =
∑

ti,j(H)xiyj. Then for any h < v(H), we have

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H) = 0.

Furthermore, if h = v(H) + k, k ≥ 0, then we have

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H) = (−1)balt(H)

(
b+ k

k

)
.

Proof. The proof is by induction on v(H). If H has only one vertex, then the sum
becomes 1 if v ∈ A and −h if v ∈ B. It is easy to check that these values satisfy the
formulae given in the theorem.

Now suppose that we know the identities for bipartite graphs with at most m − 1
vertices, and let H be any bipartite graph on m vertices. First, we look at the case when
there is an isolated vertex v ∈ A. Then by Lemma 2.1 we have ti,j(H) = ti−1,j(H − v),
and so

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H) =

h∑

i=1

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H)

=
h∑

i=1

h−i∑

j=0

(
h− i

j

)
(−1)jti−1,j(H − v) =

h−1∑

i′=0

h−1−i′∑

j=0

(
h− 1− i′

j

)
(−1)jti′,j(H − v).

This implies that neither side changes by adding an isolated vertex to A.
Now consider the case when there are no isolated vertices in A. Let ℓ ≥ 0 denote the

number of isolated vertices in B. Let S = {v1, v2, . . . , vℓ} be the set of these isolated
vertices. Let H ′ be the graph induced by the vertex set V \ S.
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Then ti,j(H) = ti,j−ℓ(H
′), so if h = m+k, k ≥ 0, then using first Lemma 2.1 to remove

the vertices of S from H , and then applying Lemma 2.3 to H ′ we get that

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H) =

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j−ℓ(H

′) =

=
1

m− ℓ

∑

w∈V (H′)

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j−ℓ(H

′−w) =
1

m− ℓ

∑

w∈V (H′)

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H−w).

Now we distinguish several cases. First consider the case when h = v(H)+k, where k ≥ 0.
Then we can use the induction hypothesis. We have h = (v(H)−1)+(k+1), and if w ∈ A,
then |B(H−w)| = |B(H)| does not change, and if w ∈ B, then |B(H−w)| = |B(H)|−1.
So by induction, we have

=
1

m− ℓ

(
∑

w∈A
alt(H − w)(−1)b

(
b+ k + 1

k + 1

)
+
∑

w∈B−S

alt(H − w)(−1)b−1

(
b+ k

k + 1

))

=
1

m− ℓ

(
∑

w∈A
alt(H ′ − w)(−1)b

(
b+ k + 1

k + 1

)
+
∑

w∈B−S

alt(H ′ − w)(−1)b−1

(
b+ k

k + 1

))

In the last step, we used that adding isolated vertices does not change the value of alt(·),
that is, alt(H ′ − w) = alt(H − w). Next we use Lemma 7.5.

=
(−1)balt(H ′) · (m− ℓ)

m− ℓ
·
((

b+ k + 1

k + 1

)
−
(
b+ k

k + 1

))
= (−1)balt(H)

(
b+ k

k

)
.

If h ≤ m− 2, then we can simply use induction.

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H) =

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j−ℓ(H

′)

=
1

m− ℓ

∑

w∈H′

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j−ℓ(H

′−w) =
1

m− ℓ

∑

w∈H′

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H

′)

=
1

m− ℓ

∑

w∈H′

0 = 0.

Finally, if h = m − 1, then we can combine the induction hypothesis with Lemma 7.5.
(Below we skipped the steps using alt(H − w) = alt(H ′ − w) and alt(H ′) = alt(H) for
sake of brevity.)

1

m− ℓ

∑

w∈H′

h∑

i=0

h−i∑

j=0

(
h− i

j

)
(−1)jti,j(H − w)

=
1

m− ℓ

(
∑

w∈A
(−1)balt(H − w) +

∑

w∈B−S

(−1)b−1alt(H − w)

)
= alt(H)− alt(H) = 0,

which completes the proof. �

Proposition 8.3. If H is connected and ti,j(H) > 0 for some i, j, then ti′j′(H) > 0 for
all i′ ≤ i, j′ ≤ j, (i′, j′) 6= (0, 0).
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Proof. If ti,j(H) > 0, then there is a permutation π, where there are i active vertices in A
and j active vertices in B. Observe that these vertices have to form an independent subset
of v(H) since two active vertices can’t be connected. Now let i′ ≤ i, j′ ≤ j, (i′, j′) 6= (0, 0).
We will construct a permutation π′ that has i′ active vertices in A and j′ in B, which
implies that ti′,j′(H) > 0. Let π′ be the following: assign m,m−1, . . . , m−(i′+j′)+1 to
some of the originally active vertices, such that there are i′ in A and j′ in B. Since they
are independent, they will be active. Then always write the next biggest number on a
vertex, such that it has a neighbour that already has a number. Since H is connected,
we can always continue this until every number is assigned. By the construction of the
process, no other vertex will become active. �

9. Concluding remarks

Note that there is an extension of Definition 1.1 for not necessarily bipartite graphs.

Definition 9.1. Let G = (V,E) be an arbitrary graph. Suppose that V = [m]. For a
permutation π: [m] → [m], we say that a vertex i ∈ V is active if

π(i) > max
j∈NG(i)

π(j).

Let A(π) denote the set of active vertices with respect to the permutation π. We assign
the variable xi to the vertex i. Then

T̃G(x1, x2, . . . , xm) =
1

m!

∑

π∈Sm

∏

i∈A(π)

xi.

A univariate version of this polynomial was considered in [7], though they treated
degree 1 slightly differently. It would be interesting to explore these polynomials in more
depth.

In this paper, we proved that if x1 = 2.9243, then

TM(x1, 0)TM(0, x1) ≥ TM(1, 1)2

for every matroid M . In [2], it was proved that if x < x0, where x0 is the largest zero of
the polynomial x3 − 9x+ 9, then there exist matroids for which

TM(x, 0)TM(0, x) < TM(1, 1)2.

We have x0 ≈ 2.22668... It would be interesting to close the gap between the lower and
the upper bound. We believe that the truth is closer to the lower bound, but it is very
unlikely that some variant of our method would yield a bound that goes below 2.5.
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