arXiv:2311.00208v2 [cs.LG] 6 May 2024

What Formal Languages Can Transformers Express? A Survey

Lena Strobl
Umea University, Sweden
lena.strobl@umu. se

David Chiang
University of Notre Dame, USA
dchiang@nd.edu

Abstract

As transformers have gained prominence
in natural language processing, some re-
searchers have investigated theoretically
what problems they can and cannot solve,
by treating problems as formal languages.
Exploring such questions can help clarify
the power of transformers relative to other
models of computation, their fundamental
capabilities and limits, and the impact of ar-
chitectural choices. Work in this subarea has
made considerable progress in recent years.
Here, we undertake a comprehensive survey
of this work, documenting the diverse as-
sumptions that underlie different results and
providing a unified framework for harmoniz-
ing seemingly contradictory findings.

1 Introduction

Transformers (Vaswani et al., 2017) have gained
prominence in natural language processing (NLP),
both in direct applications like machine transla-
tion and in pretrained models like BERT (Devlin
et al., 2019) and GPT (Radford et al., 2018; Brown
et al., 2020; OpenAl, 2023). Consequently, some
researchers have sought to investigate their theoreti-
cal properties. Such studies can broadly be divided
into studies of expressivity and trainability. While
trainability is very important and the focus of much
study (e.g., Bhattamishra et al., 2023; Allen-Zhu
and Li, 2023), here we focus on expressivity, which
is a prerequisite for trainability.

Studies of expressivity could be further divided
into those from the perspectives of approximation
theory and of formal language theory. The former
(e.g., Yun et al., 2020; Sanford et al., 2023), inves-
tigates transformers as approximators of various
classes of functions, along the lines of the universal
approximation theorem for feedforward neural net-
works (Hornik et al., 1989; Cybenko, 1989). The
latter, which is the subject of this survey, inves-
tigates transformers as recognizers or generators

William Merrill
New York University, USA
willm@nyu.edu

Gail Weiss
EPFL, Switzerland
gail.weiss@epfl.ch

Dana Angluin
Yale University, USA
dana.angluin@yale.edu

of formal languages — that is, the inputs or out-
puts are treated as sequences of discrete symbols
from a finite alphabet, and crucially as sequences
of unbounded length.

The core research question in this subarea is:
How can we characterize the expressivity of trans-
formers in relation to various formal models, such
as automata, boolean circuits or formal logic? Ap-
plications of this subarea, which are not addressed
by the papers surveyed here but could be by future
work, would hopefully answer questions like:

* What new transformer variants are suggested
by formal models?

* Do failure cases anticipated from formal mod-
els occur in practice?

* What insights into the complexity of human
language are offered by a characterization of
transformer expressivity?

This paper provides a comprehensive survey of
research in this subarea. Compared to the sur-
veys of Ackerman and Cybenko (2020) and Merrill
(2021, 2023), which cover convolutional neural net-
works (CNNs), RNNs, and transformers, this is a
narrower, but deeper, survey on transformers only.

Interpreting theoretical transformer results is
complex due to diverse assumptions. Many vari-
ants of transformers exist in practice, and even
more have been proposed in theory. This diversity
leads to varied, even seemingly contradictory, re-
sults. We set up a unified framework for talking
about transformer variants (§4), and discuss how
some of these variants compare to one another in
expressivity.

We then provide background on various formal
models that transformers have been compared with
(§5). Then, in §6, we systematically survey cur-
rent results in this literature, documenting their
assumptions and claims in terms of the definitions
of Sections 4 and 5.

mailto:lena.strobl@umu.se
mailto:willm@nyu.edu
mailto:gail.weiss@epfl.ch
mailto:dchiang@nd.edu
mailto:dana.angluin@yale.edu

2 Overview

Table 1 summarizes the results surveyed here. One
way to classify them is into lower bounds (what
transformers can do) and upper bounds (what trans-
formers can’t do).

Much work on lower bounds has looked at au-
tomata like finite automata, counter machines,and
Turing machines, all of which had been success-
fully related to RNNs before (Siegelmann and Son-
tag, 1995; Merrill, 2020). This wide diversity of
machines is due to different variants of transform-
ers, especially whether a transformer decoder is al-
lowed to take a number of intermediate steps before
outputting a decision (§4.3.4), which dramatically
increases its power (§6.1).

By contrast, investigation of upper bounds has
mainly focused on circuit complexity (§5.2), which
had been successfully related to feedforward net-
works before (Parberry, 1994; Siu et al., 1995; Beiu
and Taylor, 1996; Sima and Orponen, 2003). This
line of research began with restricted models of
transformer encoders and progressed to increas-
ingly realistic variants and tighter bounds. One
way to restrict transformers is by discretizing the
attention mechanism (§4.2.1); another is to limit
the precision of number representations (§4.4).

More recent work has turned to formal logic
(§5.3) as a way of characterizing the expressive
power of transformers. The finer control afforded
by logics opens the possibility for them to be used
as upper bounds, lower bounds, or both.

3 Preliminaries

Sets We denote by Ny = {0,1,2,...} and N =
Np\ {0} the set of natural numbers with and without
0, respectively. We write [n] = {0,1,2,...,n -1}
for any n € N. We write 2 for a finite alphabet,
which, in NLP applications, is the set of words or
subwords known to the model.

Vectors We use d, d’, etc., for dimensionalities
of vector spaces, lowercase bold letters (X,y,...)
for vectors, and uppercase bold letters (X, Y, ...)
for matrices. For any vector x € R, we number its
elements starting from 0. For i € [d], we write x;
or [x]; (not x;) for the i-th component of x.

Sequences For any set A, we write A* for the set
of all finite sequences over A. We write the length
of asequence s € A as |s| and number its elements
starting from O; thus, s = sos1 -+ 55-1. We use
the variable w for a string in £* and n for the length

of w. For sequences in R*, we use lowercase bold
letters (X, Y, . ..), and for sequences in (Rd)*, we
use the variable X.

A function f: A* — B* is length-preserving if
|f(w)| = |w| for all w € A*. For every function
g: A — B, we denote its extension to sequences
by g as well. That is, g: A* — B* is defined as
follows: forall s € A* and i € [|s|], g(s); = g(s;).

Neural networks An affine transformation is
a function L: R% — R%uw parameterized by
weights W, € R%u*din and bias by € R4 such
that for every x € R%, L(x) = W.x +b;. We say
that L is linear if by, = 0.

The activation functions we use are the recti-
fied linear unit (ReLLU) R(x) = max(x, 0) and the
logistic sigmoid function o (x) = 1/(1 + e™%).

The softmax function S: R* — R* converts any
sequence of reals into a probability distribution:

Xi

S(x); = Vi € [Ix]].

Ziel|x|] €¥
4 Transformers

In this section, we define transformers and relevant
variants, and how transformers are used to describe
formal languages. For additional background on
transformers (not in relation to formal languages),
Huang et al. (2022) give a lucid commentary on
the original paper, Phuong and Hutter (2022) give
formal definitions and pseudocode, and Lin et al.
(2022) survey many variants of transformers.

Transformers are composed of an input layer
(§4.1), one or more hidden layers (§4.2), and an
output layer (§4.3). The inputs and outputs of the
layers are sequences of vectors, which we treat as
members of (R4)".!

4.1 Inputlayer

Strings are initially mapped to sequences of vec-
tors using a length-preserving function e: £* —
(R4)", which is the sum of a word embedding
WE: X — R9 and a position(al) embedding or
encoding PE,,: [n] — R4 forn € N:

e(wo---wu_1); = WE(w;) + PE, (i).

In theoretical constructions, the word embedding
can be any computable function.

IThis differs from the original paper (Vaswani et al., 2017),
which treats them as matrices in R”*¢. Our notation aligns
better with notation for formal languages and emphasizes the
variability of the sequence length.

The original transformer paper (Vaswani et al.,
2017) introduced the following position embed-
ding:

10000774 sin i
10000~ =-D/d ¢cog

if j even

[PE(0)]; = { if j odd

Theoretical papers have explored other position
embeddings, including i itself (Pérez et al., 2021),
i/n (Yao et al., 2021; Chiang and Cholak, 2022),
and 1/i or 1/i* (Pérez et al., 2021).

4.2 Hidden layers

A transformer layer is a length-preserving function
£: (RY)" 5 (RY)". There are two variants. The
post-norm variant (Vaswani et al., 2017) is

X' = Ny (X +AX))
L(X) =M (X +F (X)) (1

and the pre-norm variant (Wang et al., 2019) is

X =X +AMX))
L(X) =X+ F(M(X)) (2)

where

* A is a multi-head self-attention with d in-
put/output dimensions, H heads, and dyy
key/value dimensions per head

e ¥ is a feed-forward network (§4.2.2) with d
input/output dimensions and d¢ hidden dimen-
sions

* N and N, are layernorms with d dimensions.

We define each of these components below.

4.2.1 Attention

Attention was initially developed to facilitate re-
trieval of previously processed data from a variable-
length history (Bahdanau et al., 2015). Transform-
ers use a simple variant of attention known as
scaled dot-product attention.

Scaled dot-product attention with d input/output
dimensions and dyy key/value dimensions is a func-
tion A: RY x (R?)" — R¥ parameterized by linear
transformations

K V. nd dyy O. pdky d
W2 W, wY:RY 5 R WQ:R% SR

and defined for every z € R, X € (R?)" (with
|X| =n),and j € [n] as

Ww(z) - WK(X))

s(z,X); = = (3)
kv
a(z,X) = S(s(z, X)) @)
A= X)=WE(D ez X); W (X)),
j<Tn)

Typically, A is extended to a function A: (R4)" x
(RY)" — (R?)" that is length-preserving in its first
argument. In cross-attention, z is computed by the
decoder while X is computed by the encoder. In
self-attention, the two arguments are identical:

SA: (RY)" - (R
SA(X) = A(X, X).

Attention masking In future masked (also
known as causally masked) self attention, a term
m(i, j) is added to Eq. (3) to force every position
to attend only to preceding positions:
. 0 ifj<i
m(i, J) = {

—oo otherwise.

Some papers use strict future masking, that is,
m(i, j) = 0iff j < i, and occasionally past mask-
ing (j > i) and strict past masking (j > i).

Multi-head attention with dy, key/value dimen-
sions per head is the sum of H attentions with dy,
key/value dimensions:

A@X)= > Au(zX).

he[H]

Multi-head self attention is defined analogously.
This is equivalent to the original formulation,
which concatenated the outputs of the heads and
passed the result through a shared, larger, Wg.

Hard attention Some theoretical analyses sim-
plify attention by replacing the softmax with vari-
ants that focus attention only on the position(s)
with the maximum value, breaking ties in various
ways. For any s € R*, let M(s) = {i € [|s|] | Vj €
[Is|],s; < s;} be the set of indices of the maximal
elements of s. In leftmost-argmax, the leftmost
maximal element is used:

[Sn(s)]i =1[i = min M(s)]

whereas in average-argmax the maximal elements
share weight equally:

I[i € M(s)]

(SO = =

If softmax is thought of as a Boltzmann distribution,
then average-argmax is its low-temperature limit.

By substituting Sy or S, for S in Eq. (4), we
get leftmost-hard and average-hard attention, re-
spectively. Leftmost-hard attention was previously
called hard attention by Hahn (2020) and unique
hard attention by Hao et al. (2022). One may also
consider rightmost-hard attention, in which the
rightmost maximal element is used. Average-hard
attention was also called hard attention by Pérez
et al. (2021) and saturated attention by Merrill
et al. (2022), and has been argued to be a realistic
approximation to how trained transformers behave
in practice (Merrill et al., 2021).

4.2.2 Feed-forward networks

Although feed-forward networks can take many
forms, in the context of transformers, we use the fol-
lowing definition. A feed-forward network (FFN)
with d input/output dimensions and dg hidden di-
mensions is a function ¥ : RY — R parameter-
ized by two affine transformations, L..: R4 — R4
and LZT: R4 — R4 such that

F(x) = LE(R(Ly(x)))
where R is applied component-wise.

4.2.3 Layer normalization

A d-dimensional layer normalization (Ba et al.,
2016), or layernorm for short, is a function
N : R4 — R? parameterized by vectors yy, Sy €
R and scalar e > 0:

X—X

Vvar(x) + ey

where © is component-wise multiplication and

N(EX) =yny© + BN

var(x) = é Z (x; — %)2.

i€[d]

The original definition of layernorm (Ba et al.,
2016) sets e = 0, but, for numerical stability,
all implementations we are aware of set 5 > 0.
Observe that N is Lipschitz-continuous iff £ s > 0.

Some transformer analyses omit N for simplic-
ity (Pérez et al., 2021), while others set ex to
achieve various effects (Hahn, 2020; Chiang and
Cholak, 2022).

4.3 Networks and output layers

We now define a complete transformer network.

4.3.1 Transformer encoders

A transformer encoder is a length-preserving func-
tion 7 : £* — (R)" parameterized by the weights
of an input layer e and D transformer layers
Li,...,Lp. A post-norm transformer encoder is:

T(w)=Lpo---0oLroLjoe(w)

where each £; is a post-norm layer (1) and o is
function composition. A pre-norm transformer en-
coder is additionally parameterized by the weights
of a final layernorm N and is defined as:

Tw)=NoLpo---oLyoLioe(w)

where each £ is a pre-norm layer (2).

The encoder’s output is a sequence of vectors in
(R4)". To use it as a language recognizer, we add
an output layer that converts 7 (w) to a probability

p=o(w-[T(w)li+b)

where w € R4, b € R, and i is a distinguished
position. The encoder accepts iff p > %

Chiang and Cholak (2022) also consider a re-
quirement that an encoder accepts/rejects strings
with bounded cross-entropy. That is, we say that
an encoder recognizes a language L with cross-
entropy at most 7 iff for all strings w, if w € L then
—logp <n,andif w ¢ L then —log(1 — p) <n.

We are aware of two choices for the distin-
guished position i. Most papers use the last position
(i = n - 1), but some (Chiang and Cholak, 2022;
Chiang et al., 2023), inspired by binary classifiers
based on BERT (Devlin et al., 2019), prepend a
special symbol CLS at position 0 and use i = 0.
While this is a minor difference, it should be noted
that the guarantee of exactly one occurrence of CLS
in the input can be useful in some constructions.

4.3.2 Transformer decoders

A transformer decoder is a transformer encoder
7 with future masking in its attention, typically
used to generate rather than recognize strings. The
input is the prefix of previously-generated symbols,
W<y = Wo - - Ww;_1, and the output is a probability
distribution p(w; | w;) over the next symbol,

ﬁ(| wer) =S(WI[T (W<r)]i-1 +b)

where W € RIZIX4 and b € RIZI. We assume wg =
BOS and every string ends with EOS, where BOS and

EOS are special symbols that do not occur anywhere
else. To sample a string, we first sample w; from
p(w | BOS), then, for each time step ¢ > 1, sample
w, from p(w; | w<,). The process stops when
w, = EOS. Because each sampled output symbol
becomes part of the input at the next time step, this
kind of model is called autoregressive.

While a decoder can be used to recognize strings
similarly to an encoder, it can also be used to gen-
erate the entire string; at least two definitions have
been given for this.

First, Hahn (2020) considers a weighted lan-
guage as a distribution over strings p(w). For any
length ¢, the KL divergence (relative entropy) of the
model p(w) from the true distribution p(w), for
predicting w; conditioned on all previous words, is

MlpI L= DS pwegw,) log 2 1<)

Wy Pwe | wey)
As Hahn'’s results are negative, he does not spell
out a positive criterion, but he seems to implicitly
require that this divergence vanish at infinity:

lim A [p || p] = 0. o)

Second, let us say that a transformer decoder
e-generates L iff

L=A{w|Vtellwll.p(w: [w<) 2 &}.

Then Yao et al. (2021), following Hewitt et al.
(2020), say that a transformer decoder T gener-
ates a language L iff there exists an & > 0 such that
T e-generates L. (This means that a transformer
decoder may generate more than one language, de-
pending on the € chosen.) They also show that any
g-generator can be converted into a recognizer.
While not focusing on transformers, Lin et al.
(2021) demonstrate limitations of autoregressive
models for generation; for example, that there is
a language L € P that cannot be e-generated in
polynomial time for any € > 0 if P # NP.

4.3.3 Transformer encoder—decoders

A transformer encoder—decoder combines a trans-
former encoder and decoder, adding to each layer
of the decoder an additional attention sublayer,
known as cross attention, which attends to the out-
put of the encoder. In the literature surveyed here,
only the construction of Pérez et al. (2021) and
related constructions (Bhattamishra et al., 2020b;
Wei et al., 2022a) employ an encoder—decoder.

4.3.4 Intermediate steps

When a transformer decoder or encoder—decoder
is run as a language recognizer, it allows for the
possibility of inserting a number of intermediate
time steps between the end of the input string and
the decision. The encoder—decoder models above
do this, as do some decoder-only models (Feng
et al., 2023; Merrill and Sabharwal, 2024). As we
will see (§6.1), intermediate steps vastly increase
the model’s power, which has also been observed
in practice in the form of a “scratchpad” (Nye et al.,
2022) or “chain of thought” (Wei et al., 2022b).

4.4 Uniformity and precision

Although meaningful theoretical claims can be
made about transformers for fixed-length strings
(e.g. Yun et al., 2020), it is crucial when examin-
ing transformers as language recognizers to allow
for unbounded string length. Fixing a maximum
length makes all languages finite, collapsing many
language classes into one.

It might be objected that considering unbounded
lengths is too abstract, because in practice one
can always fix a maximum length. But this maxi-
mum length, driven by practical needs, is growing
steadily: for example, GPT-4 Turbo uses 128,000
tokens of context. At the same time, some theoreti-
cal findings surveyed here seem to have practical
consequences for modest string lengths. For exam-
ple, we will see that there are reasons to think that
in theory, transformers cannot recognize PARITY;
in practice, they fail to learn PARITY for strings
with lengths in [2, 50] (Bhattamishra et al., 2020a).

Some theoretical studies of transformers do al-
low them to depend on the input length n. To bor-
row a term from circuit complexity (§5.2), they
allow certain kinds of non-uniformity. As we have
seen, some position embeddings (§4.1) depend on
n. We discuss some other instances below.

Numeric precision Transformers operate, in
principle, on real numbers. While hard attention
transformers could be defined using only rational
numbers, even rational numbers can represent an ar-
bitrary amount of information. With RNNs, the use
of real or rational numbers has led to results that
make them appear more powerful in theory than
in practice (Siegelmann and Sontag, 1994, 1995;
Weiss et al., 2018).

Consequently, many studies use limited-
precision numbers. Some studies limit number
representations to have O (1) bits, as floating-point

numbers do in practice (Chiang et al., 2023). But
Merrill and Sabharwal (2023b) argue that in O (1)
precision, attention cannot attend uniformly to a
string of sufficient length 7, as the attention weights
(@) would all round down to zero. So O (log n) bits
of precision is a common choice (Yao et al., 2021;
Merrill and Sabharwal, 2023a,b). Other choices are
possible as well: Merrill and Sabharwal (2023a)
use the set F = {a/2” | a € Z, b € N}.

Restricting intermediate activations to limited
precision introduces many decisions about when
and how rounding should take place, which can
potentially affect expressivity. For example, when
summing n numbers, one could round after each
addition or only at the end of the summation. Better
formalizing these decisions and their impact on
expressivity is an area for future research.

Parameters A few constructions allow the pa-
rameters themselves to depend on n, which we
consider to be a stronger dependence, because if
these transformers were to be learned from data,
different transformers would have to be learned for
different maximum lengths. Finally, a few papers
construct transformers in which d, and therefore
the number of parameters, depends on n, which we
consider to be stronger still.

4.5 Summary

In summary, transformers can vary in at least the
following ways, any of which could a priori impact
theoretical claims:

* Architecture: encoder-only, decoder-only, or
encoder—decoder

* For encoders: definition of recognition

¢ For decoders and encoder—decoders: defini-
tion of generation and how many intermediate
steps

* Position embedding (PE)

* Attention pattern: leftmost-hard, rightmost-
hard, average-hard, or softmax

* Attention masking: none, future, or past

* Layernorm: inclusion or omission, value of
EN

* Residual connections: pre-norm or post-norm

* Precision: infinite, O (logn), O(1)

* Uniformity: whether parameter values or num-
ber of parameters depend on 7.

5 Languages and Language Classes

Next, we present various formal models that trans-
formers are compared to in the literature surveyed.

5.1 Automata and classes L, NL, P

We assume familiarity with finite automata and Tur-
ing machines; for definitions, please see the text-
book by Sipser (2013). Counter machines are au-
tomata with integer-valued registers (Fischer et al.,
1968); they have been studied extensively in con-
nection with LSTM RNNs (Weiss et al., 2018; Suz-
gun et al., 2019; Merrill, 2019, 2020).

The language classes L (languages decidable
in O(logn) space) and P (languages decidable
in polynomial time) are defined using determin-
istic Turing machines (with a read-only input
tape and a read/write work tape). The class NL
(languages decidable in nondeterministic O (log n)
space) uses nondeterministic Turing machines. The
class DLOGTIME (languages decidable in O (log n)
time) uses random-access Turing machines (Bar-
rington et al., 1990). It is known that

LCNLCP
but none of these inclusions are known to be strict.

5.2 Circuits and classes AC?, ACC?, TC?, NC!

Circuits are a model of parallel computation partic-
ularly relevant to transformers. For more details,
please see the textbook by Arora and Barak (2009).

Circuits operate on binary values. If we choose
a fixed-length encoding of the symbols of X as
strings of b = [log, |Z|] bits, then a circuit can
simulate input alphabet ¥ by encoding the value of
the i-th input symbol into positions ib to ib+(b—1).
For the rest of this section, we assume ¥ = {0, 1}.

Circuits A circuit C with input length n is
a directed acyclic graph with n input vertices
si,...,8, and zero or more gate vertices, each la-
beled with a rype NOT, AND, or OR. Input vertices
have fan-in (in-degree) zero, NOT gates have fan-
in one, and the fan-in of AND and OR gates can
be either two or unbounded. One (input or gate)
vertex t is designated the output of the circuit.
Given an input string w € {0, 1}", each input ver-
tex s; is assigned the value w;, and each gate vertex
is assigned the value computed by applying the log-
ical function corresponding to its type to the values

assigned to its in-neighbors. The circuit computes
the boolean function C: {0,1}" — {0, 1}, map-
ping each input string to the value assigned to ¢.
The depth of C, denoted D(C), is the length of the
longest directed path from any s; to t. The size of
C, denoted |C|, is the number of vertices in C.

Circuit families A circuit family is a sequence
C = {C,, },en such that for each n, C, is a circuit
with input length n. We treat C as a function on
{0, 1}* as follows: for every w € {0, 1}*, C(w) =
Ciw|(w). Then C defines the language L(C) =
{w € {0,1}* | C(w) = 1}, and we say that C
recognizes L(C). The depth and size of C are the
functions n +— D(C,) and n — |C,|.

Uniformity As defined, a circuit family contains
a different circuit for each length n, with no con-
straint on the relationship between the circuits. For
example, let L be any unary language: L C {1}*.
Forn € N, if 1" ¢ L, define C, to be a circuit
for the constant O function (an OR gate with fan-in
0), and if 1" € L, define C,, to be a circuit for the
AND of all the inputs. Thus, every unary language,
even an undecidable one, is recognized by a circuit
family of size O(n) and depth O(1).

A uniformity restriction on a circuit family
{Cp}nen requires that the task of constructing a
description of the circuit C,, given input n be com-
putable within some specified resource bound as
a function of n, potentially making it comparable
with classes defined by bounds on Turing machine
time or space. Two such uniformity bounds are
used in the work here: L and DLOGTIME. Because
these bounds are very restrictive, a special represen-
tation of the circuit C, is used, namely, the ability
to answer queries of the type of a gate and whether
the output of one gate is an input to another gate.

We assume that the vertices of the circuit C,, are
numbered from O to |C,,| — 1. The direct connec-
tion language of a family of circuits C is the set of
all tuples (f,i, j,1™) such that in C,,, vertex i has
type f and there is an edge from vertex i to vertex
J (Barrington et al., 1990). Given a computable
function bounding the size of C and access to a
membership oracle for the direct connection lan-
guage, for any n it is straightforward to write out
the list of vertices, edges, and types in Cj,.

Then a circuit family C is L-uniform (resp.,
DLOGTIME-uniform) if there is a Turing machine
that runs in logarithmic space (resp., determinis-
tic logarithmic time) to decide membership in the

direct connection language of C.

Circuit complexity classes Circuit complexity
classes classify circuit families and the languages
they recognize based on uniformity, depth, size,
fan-in bound, and the allowed gates. Since trans-
formers have constant depth, circuit classes with
constant depth are of particular interest; the classes
that are used in the work we survey are:

« AC? contains those languages that can be
recognized by families of circuits with un-
bounded fan-in, constant depth, and polyno-
mial size.

» ACC is like AC?, but also has gates that out-
put 1 iff the inputs sum to 0 modulo some
constant.

« TC? is like AC?, but also allows MAJORITY
gates, which have unbounded fan-in and out-
put 1 iff at least half of their inputs are 1.

« NC! is like AC?, but with fan-in at most 2 and
depth in O(logn).

The known relationships between these classes are:
AC’ ¢ Acc® ¢ TC? ¢ NC!

in the DLOGTIME-uniform, L-uniform, and non-
uniform settings; moreover, L-uniform NC' c L.

5.3 Logic

A formal language can also be defined as a set
of finite strings that satisfy a closed formula of a
logic. For more details, refer to Thomas (1997) or
Straubing (1994).

In the first-order logic of strings, or FO, the for-
mulas are the smallest set containing:

* Variables x, y, and so on.

¢ Atomic formulas Q,(x), x =y, x < y, where
a € X is a symbol and x, y are variables.

* 1 A2, P11V d2, b1 — $2, ¢y, where ¢
and ¢, are formulas.

* Vx.¢, dx.¢, where x is a variable and ¢ is a
formula.

Under the intended interpretation, variables stand
for positions of a finite string w, and Q,(x) is
true iff w, = a. For example, if £ = {a, b},
Vx.Vy.Qq4(x) AQp(y) — x < y defines the regular

language a*b*. The language defined by a closed
formula ¢ consists of those strings that satisfy ¢.

The languages definable in FO are exactly
the star-free languages (McNaughton and Papert,
1971). Other variants add more quantifiers:

* FOC adds counting quantifiers 3=*y.¢, which
hold iff there are exactly x values of y that
make ¢ true (Barrington et al., 1990).

* FOM adds majority quantifiers Mx.¢, which
hold iff at least half of the values of x make ¢
true (Barrington et al., 1990).

We are also interested in various sets of predicates:

* Modular predicates MOD!, (x), which hold iff
x =r (mod m) (Barrington et al., 1992).

* BIT(x, y), which holds iff the y-th bit of x is 1.

* Mon, the set of all predicates on one position,
possibly depending on 1.2

* ARB, the set of all predicates on one or more
positions.

A logic extended with predicates is conventionally
written with the predicates in square brackets; for
example, we write FO[BIT] for first-order logic
with the BIT predicate.

In linear temporal logic or LTL (Kamp, 1968),
every formula implicitly depends on a single time
(or position). There are atomic formulas Q, for
every a € X, the connectives A, V, and -, as well as
operators since and until. The formula « since 8
is true iff @ was true at some past time i and 5 was
true from i to now (exclusive). LTL is equivalent
to FO (Kamp, 1968).

5.4 Relationships

Figure 1, which depicts the relationships between
the language classes defined above, shows that the
classes defined by circuits/logics cut across the
(perhaps more familiar) Chomsky hierarchy. In
this figure and in this section, all circuit classes
are understood to be DLOGTIME-uniform unless
specified otherwise.

2 Although Barrington et al. (2005) define Mon to be the
collection of all monadic predicates without dependence on 7,
Barcel6 et al. (2024) do allow them to depend on 7.

recursively :
enumerable

context NC?
sensitive
context TC
free| FOMIBIT]

SHUFFLE-DYCK-2
BFVP

regular AC?

MAJORITY o | FOIBIT

W(S5) DYCK-k ww a (BIT]

PARITY ww
DYCK-(k, D)

Figure 1: Relationship of some languages and language
classes discussed in this paper (right) to the Chomsky
hierarchy (left), assuming that TC® ¢ NC! and L ¢ NL.
Circuit classes are DLOGTIME-uniform.

54.1 Beyond AC®

The classic examples of languages not in AC? are
PARITY and MAJORITY. The language PARITY C
{0,1}* contains all bit strings containing an odd
number of 1’s, and MAJORITY C {0, 1}* consists
of all bit strings in which more than half of the
bits are 1’s. Other problems in TC? but not AC®
include sorting, integer multiplication (Chandra
et al., 1984), and integer division (Hesse, 2001).

Dyck languages The language DYCK-k for k >
0 is the language of strings over k pairs of paren-
theses that are correctly balanced and nested. If
we write the i-th parenthesis pair as (;); for each
i € [k], then DYCK-k is generated by the context-
free grammar {S — (;S);S | i € [k]}U{S —
e}. These languages are of interest because any
context-free language can be obtained by apply-
ing a string homomorphism to the intersection of a
Dyck language with a regular language (Chomsky
and Schiitzenberger, 1963).

Some papers surveyed here consider variations
on Dyck languages. The language DYCK-(k, D)
for D > 0 is the subset of DYCK-k consisting of
strings with maximum nesting depth D; it is a star-
free regular language (and therefore in AC?).

The language SHUFFLE-DYCK-£ is the set of
strings over k pairs of parentheses in which, for
each parenthesis pair, erasing the other types of
parentheses leaves a correctly balanced and nested
string. For example, [(()]) is in SHUFFLE-DYCK-
2. If k > 1, SHUFFLE-DYCK-k is not context free.

5.4.2 Beyond TC’

As we will see (§6.3.2), some transformer variants
lie within TC?. What problems lie beyond?

The word problem for permutation groups A
permutation of [k] is a bijection x: [k] — [k],
and Sy is the set of all permutations of [k]. Treat-
ing Sk as an alphabet and compositions of per-
mutations as strings, we can define the language
W(Sk) of compositions of permutations of [k]
that equal the identity permutation. For exam-
ple, in S3, the permutation (120) maps 0 — 1,
1 —» 2,and 2 — 0, so that W(S3) contains
(120) o (120) o (120) but not (120) o (120). These
languages are easy for finite automata to recognize,
but difficult with only fixed computation depth. In-
deed, W(Ss) is complete for NC' under AC? re-
ductions (Barrington, 1989), so it is not in TCY,
assuming that TC? ¢ NC! (as is widely believed).
This makes it an example of a regular language that
transformer encoders probably cannot recognize.
The languages W (Sx) have some relevance to
natural language: they resemble expressions like
the child of the enemy of Ann where the interpre-
tation of the child of is (roughly) a permutation of
possible referents (Paperno, 2022), and problems
that have been used to benchmark transformers’
state-tracking abilities (Kim and Schuster, 2023).

Other languages that are widely believed to be
not in TCY include:

* The language of closed Boolean formulas that
are true (BFVP) is context-free but complete
for NC! under DLOGTIME reductions (Buss,
1987), so it is outside TC? if TC® ¢ NC'.

* Undirected graph connectivity is L-complete
under L-uniform NC' reductions (Cook and
McKenzie, 1987; Reingold, 2008), so it is
outside L-uniform NC! (and therefore outside
TCY) if L-uniform NC' ¢ L.

* There is a context-free language Lp that is
NL-complete under L reductions (Sudborough,
1975), so it is outside L (and therefore outside
NC! and TC?) if L ¢ NL.

* Solving systems of linear equalities and uni-
versal context-free grammar recognition are
P-complete under L reductions (Jones and
Laaser, 1976; Greenlaw et al., 1995), so they
are outside TCY if L ¢ P.

* Matrix permanent is known to be outside of
TC? (Allender, 1999).

5.4.3 Circuits and logics

DLOGTIME-uniform AC? and TC? are equivalent
to FO[BIT] and FOM[BIT], respectively. There are
many such equivalences between circuit classes
and logics. As a rule of thumb, adding unbounded
fan-in gates to a circuit family correlates with
adding quantifiers to the corresponding logic, and
increasing the degree of non-uniformity of a cir-
cuit family correlates with adding numerical pred-
icates to the corresponding logic (Barrington and
Immerman, 1994). For example, making AC® and
TCP completely non-uniform corresponds to adding
arbitrary numerical predicates (ARB) to FO and
FOM, respectively (Immerman, 1997; Barrington
et al., 1990).

As we will see below, circuits and logics have
their advantages and disadvantages for capturing
the expressivity of transformers. An advantage of
the circuit approach is that they have a more trans-
parent resemblance to transformers. Transformers
are computations with bounded depth, so it’s not
hard to see that they should be computable by cir-
cuit families with bounded depth (AC? or TC).
On the other hand, an advantage of the logical ap-
proach is that if we seek an exact characterization
of transformers, it can be easier in a logic to add or
remove quantifiers or predicates, to limit quantifier
depth or number of variables, to partition terms into
different sorts, and so on, than to make adjustments
to a circuit family.

6 Current Results

While this area of research still has many unre-
solved questions, the emerging picture has three
levels of expressivity. At the upper end are
decoders or encoder—decoders with intermediate
steps; these are equivalent to Turing machines
(§6.1). At the lower end are encoders with leftmost-
hard or rightmost-hard attention; these can recog-
nize only languages in AC? (§6.2). In the middle
are encoders with average-hard or softmax atten-
tion, which are the least well-understood but appear
to lie between AC? and TC? (§6.3).

In this section, “transformer” refers to a trans-
former encoder unless otherwise indicated.

6.1 Decoders with intermediate steps

Pérez et al. (2021) consider transformer encoder—
decoders with several modifications:

* The PE includes components i, 1/i, and 1/i>.

Lower bound Source PE Attention Notes

> MAJORITY Pérez et al. 2019 none average-hard

> SHUFFLE-DYCK-k Bhattamishra et al. 2020a none softmax, future mask

2 SSCMs Bhattamishra et al. 2020a none softmax, future mask

> DYCK-k Yao et al. 2021 i/n,i/n?, n softmax & leftmost-hard

oP Pérez et al. 2021 i,1/i,1/i* average-hard poly(n) steps
> PARITY Chiang and Cholak 2022 i/n, (=1)) softmax

2 FOC[MOD; +] Chiang et al. 2023 sinusoidal softmax

2 FO[Mon] Barcel6 et al. 2024 arbitrary leftmost-hard

2 LTL+C[Mon] Barcelo et al. 2024 arbitrary average-hard

Upper bound Source Precision Attention Notes

? PARITY, DYCK-1 Hahn 2020 R leftmost-hard

PARITY, DYCK-2 Hahn 2020 R softmax, future mask &n > 0, vanishing KL
c AC? Hao et al. 2022 Q leftmost-hard

c TC? Merrill et al. 2022 F average-hard

C FOC[MOD; +] Chiang et al. 2023 o(1) softmax

C L-uniform TC® Merrill & Sabharwal 2023a O (logn) softmax

C FOM[BIT] Merrill & Sabharwal 2023b O (logn) softmax

C L-uniform TC? Strobl 2023 F average-hard

Equivalent Source PE Attention Notes

=RE Pérez et al. 2021 i,1/i,1/i> average-hard unbounded steps
=FO Angluin et al. 2023 none rightmost-hard, strict future mask

= FO[MOD] Angluin et al. 2023 sinusoidal rightmost-hard, strict future mask

= FO[Mon] Angluin et al. 2023 arbitrary rightmost-hard, strict future mask

= Merrill & Sabharwal 2024 none average-hard, future mask poly(n) steps

Table 1: Surveyed claims and their assumptions. Please see the main text for full details of assumptions.

* In self attention, Eq. (3) takes the negative
absolute value of the dot-product, and Eq. (4)
uses average-hard attention.

* The FFNs use sigmoids instead of ReL.Us.

As described above (§4.3.3), the decoder is allowed
to run for arbitrarily many time steps until an ac-
ceptance criterion is met. Under these assumptions,
transformer encoder—decoders can recognize any
recursively enumerable language.? This result uses
arbitrary precision, but as a corollary, they show
that a T (n)-time-bounded Turing machine can be
simulated in a transformer using O (log T'(n)) pre-
cision and O(T (n)) intermediate steps.

Bhattamishra et al. (2020b) provide a simpler
proof of Pérez et al.’s result by reducing to an RNN
and appealing to the construction of Siegelmann
and Sontag (1995). They do this for two sets of
assumptions. First,

* The PE includes only i.

* The self attention sublayers are as above.

3Pérez et al. (2021) define both Turing machines and
encoder—decoders to halt only when accepting. The construc-
tion could easily be modified to capture decidable languages.

10

¢ The FFNs use saturated linear activation func-
tions: o (x) = max(0, min(1, x)).

Second, they show the same with no PE and stan-
dard dot-product attention with future masking.
Wei et al. (2022a) define a notion of statistically-
meaningful (SM) approximation and show that
transformer encoder—decoders SM-approximate
Turing machines. Both the decoder and Turing
machine are limited to N time steps; additionally,

* The PE can be an arbitrary computable func-
tion on [N].

* Attention is average-hard.
* The FFNs have three ReL.U layers.

Feng et al. (2023) observe that the problems of
evaluating arithmetic expressions or solving linear
equations over Z, are NC'-hard under DLOGTIME
reductions, so (if TC® ¢ NC!) they cannot be
solved by O (log n)-precision transformer decoders
without intermediate steps.* Similarly, the univer-

sal recognition problem for CFGs is P-complete, so

4This uses the result of Merrill and Sabharwal (2023b),
which would have to be adapted to transformer decoders, but
this should be straightforward.

(if L ¢ P) it cannot be solved by O (log n)-precision
transformer decoders without intermediate steps.

However, these problems can be solved by a
transformer decoder using (a polynomial number
of) intermediate steps. The decoder has GELU
activations (Hendrycks and Gimpel, 2016) and
PE including i and (for linear equation solving)
m? sin 2‘7” and m? cos 2‘7” where m is the number
of variables. More generally, they define a class of
dynamic-programming algorithms that these trans-
formers can solve using intermediate steps. All
these decoders have parameters that depend on n.

Merrill and Sabharwal (2024) show that a trans-
former decoder with O (log(n + T'(n))) precision
and O(T (n)) intermediate steps can simulate a Tur-
ing machine for T'(n) steps, and in particular, de-
coders with a polynomial number of intermediate
steps recognize exactly the languages in P. The
proof is similar to that of Pérez et al. (2021), but
uses a standard definition of transformers without
PEs, relying only on the mild assumption that the
input string begins with BOS.

6.2 Leftmost-hard/rightmost-hard attention

Hahn (2020) shows that leftmost-hard attention
transformers cannot recognize PARITY or DYCK-1,
using a variant of Furst et al.’s random restriction
method for proving that PARITY is outside of ACC.

Hao et al. (2022) show more generally that
any language recognized by a transformer with
leftmost-hard attention is in AC®. The proof gives
a normal form for transformers with leftmost-hard
attention and uses it to construct an ACY circuit
family. It uses the fact that only O(logn) bits of
information are needed per position.

Barcel6 et al. (2024) give a lower bound on
leftmost-hard-attention transformers with arbitrary

PEs depending on a single position i and length
a(1-27%)

n, including i, #, (=1)%, cos o> and
sin %. They show that these transformers

can recognize any language definable in FO[Mon].
Their proof converts a FO[Mon] formula to LTL
(85.3), which is simulated in a transformer.
Angluin et al. (2023) exactly characterize
rightmost-hard-attention transformers with strict
future masking. Without PEs, these transformers
recognize exactly the class of star-free languages,
that is, languages definable in FO. With periodic
PEs, they are exactly equivalent to FO[MOD], and
with arbitrary PEs, they are exactly equivalent to
FO[Mon]. Strict masking is important, as non-

11

strict masking is less expressive. They give two
proofs of the star-free to transformer direction, one
which goes through LTL (§5.3) and one which uses
Krohn-Rhodes theory. These proofs use a Boolean-
valued version of RASP (Weiss et al., 2021) as an
intermediate representation.

6.3 Average-hard and softmax attention

Theoretical results on average-hard and softmax at-
tention transformers have not yet clearly separated
the two, so we treat them together. Both kinds of
attention enable counting, which can be used to
solve problems like MAJORITY that are outside
ACP. But these transformers are no more powerful
than DLOGTIME-uniform TC?, implying that they
likely cannot solve problems complete for NC!, L,
and other classes believed to be above TC (8§5.4).

6.3.1 Lower bounds: particular languages

The languages MAJORITY, DYCK-k, and PARITY
are all not in ACY, so are interesting test cases.

Pérez et al. (2019) prove that a transformer
encoder—decoder with a trivial decoder and without
any PE recognizes MAJORITY; Merrill et al. (2022)
prove the same for transformer encoders.

Bhattamishra et al. (2020a) prove that
SHUFFLE-DYCK-k (which equals DYCK-1 when
k = 1) is recognizable by a soft-attention trans-
former with future masking, no PE, no layernorm,
and no residual connections. Yao et al. (2021)
show that a transformer decoder can generate
DycCK-k using O(logn) precision, softmax and
leftmost-hard attention, future masking, and a
PE including i/n, i/n’, and n. They also give
constructions for DYCK-(k, D).

Chiang and Cholak (2022) show that transform-
ers whose PE includes i/n and (—1)’ = cosim can
recognize PARITY.

On the other hand, Hahn (2020) shows that soft-
max attention transformers cannot generate PAR-
ITY or DYCK-2 under the following two conditions:

1. all position-wise functions are Lipschitz-
continuous, and

2. generation is defined using the KL divergence
criterion in Eq. (5).

The apparent contradiction is resolved by con-
sidering the different assumptions underlying each
result. Chiang and Cholak (2022) address this by
giving two constructions corresponding to Hahn’s
two conditions. The first has Lipschitz-continuous

position-wise functions, but has high cross-entropy
(§4.3.1); as a generator, it would not meet crite-
rion (5). The second construction uses layernorm
with g = 0, which is not Lipschitz-continuous,
but it has arbitrarily low cross-entropy.

A number of authors have tested empirically
whether transformers can learn the above lan-
guages. Ebrahimi et al. (2020) find that they are
competitive with LSTMs at learning DYCK-2 and
DycCK-4, and that prepending a BOS symbol helps.

Bhattamishra et al. (2020a) train transformers
with future masking and no PE on DYCK-1 and
SHUFFLE-DYCK-k, finding near-perfect learning
and length generalization. For the languages
Dyck-(1, D) with learned or sinusoidal PEs, they
find that the models do not generalize well for
D > 1. Yao et al. (2021) then investigate DYCK-
(k, D) for several values of k and D and several
PEs. They report strong generalization only when
using i/n for the PE, and posit that this is the key.
It is hard, however, to directly compare the two
results: Bhattamishra et al. (2020a) require cor-
rect prediction of the possible next symbols at each
string prefix, while Yao et al. (2021) average over
predictions of right brackets.

Delétang et al. (2023) study experimentally how
well transformers (and other networks) learn tasks
at various levels of the Chomsky hierarchy, includ-
ing generalization to longer strings. They find that
transformers learn MAJORITY, but not PARITY.

6.3.2 Upper bounds: TC’

Merrill et al. (2022) prove an upper bound analo-
gous to that of Hao et al. (2022), but for average-
hard-attention transformers. They show that an
average-hard-attention transformer with activations
in IF can be simulated in TC. Strobl (2023) tightens
this bound to L-uniform TCY.

Furthermore, Merrill and Sabharwal (2023a)
show that softmax attention, O(logn)-precision
transformers are in L-uniform TC, and then tighten
this bound to DLOGTIME-uniform TC? (Merrill
and Sabharwal, 2023b). The proof constructs sub-
routines to answer queries about the types of nodes
and connectivity of pairs of nodes in the computa-
tion graph of a transformer, and shows that these
queries can be translated to queries for a TC circuit
family with O(logn) time overhead.

An upper bound of DLOGTIME-uniform TC? im-
mediately implies an upper bound of FOM[BIT]
(Merrill and Sabharwal, 2023b). Chiang et al.
(2023) prove a tighter upper bound using a logic

12

called FOC[MOD; +], but on transformers with
O(1) precision. This result is discussed below.

6.3.3 Other lower bounds

In addition to explicit constructions for particular
languages mentioned above, various lower bounds
have been proven, which are quite diverse.

Counter machines Bhattamishra et al. (2020a),
following Merrill et al. (2020), define a subclass
of counter machines called simplified and stateless
k-counter machines (SSCMs). These can update
each counter based on the current input symbol,
but have no state and cannot read the counters until
the end of the string. They show that any SSCM
can be converted to an equivalent transformer with
future masking and no residual connections.

Finite automata Liu et al. (2023) study the abil-
ity of transformers with future masked attention
to simulate deterministic finite automata (DFAs),
in the sense of computing not only the same ac-
ceptance decision but also the same state sequence.
Although a transformer with depth N can simulate
a DFA for N timesteps, Liu et al. show how to con-
struct lower-depth shortcuts for subclasses roughly
corresponding to classes of regular languages in
Fig. 1. Though the parameters of these construc-
tions depend on N, in the context of this survey,
a noteworthy finding is that any regular language
in ACC? can be recognized up to length N by a
transformer whose FFNs use sine activations and
whose number of parameters is independent of V.

First-order logic Chiang et al. (2023) obtain
both an upper and a lower bound by defining a
logic FOC[MOD; +], which is first-order logic with
counting quantifiers, using two sorts for positions
and counts (Immerman, 1999, p. 185-187), where
positions have the MOD predicate (but not < or =),
and counts have <, +, and =, capturing the fact that
transformers can add and compare activations, but
not positions. They show that this logic is interme-
diate in expressivity between O(1)-precision and
infinite-precision transformers. The lower-bound
proof uses a normal form that eliminates quantifiers
over counts and makes quantifiers over positions
have depth 1; a perhaps surprising consequence is
that O (1)-precision transformers are no more pow-
erful than 2-layer uniform-attention transformers.

Temporal logic Barcel6 et al. (2024) show
that average-hard-attention transformers with ar-
bitrary PEs depending on a single position i and

length n, including i, 717, (~1)!, cos U2

: 10
sin ”(11_02), can recognize any language definable
in LTL with counting operators, Presburger arith-

metic on counts, and predicates in Mon.

, and

Programming languages Weiss et al. (2021) in-
troduce the RASP (Restricted Access Sequence
Processing) language as an abstraction of trans-
formers, discussing how its components relate to
the transformer architecture. However, they do not
prove any relationship.

Lindner et al. (2023) present Tracr, a compiler
from RASP programs to transformers. To do so,
they impose some restrictions: a maximum input
length, given at compile time; a mandatory BOS
token; and the removal of selector composition, a
RASP operation with no clear parallel in transform-
ers. They rewrite several programs from Weiss
et al. (2021) without this operation. In the other
direction, Friedman et al. (2023) define a restricted
class of transformers that can be learned and de-
compiled into RASP. Finally, Angluin et al. (2023)
use a version of RASP restricted to Boolean values,
and Zhou et al. (2024) use a restricted version of
RASP to explore length generalization.

7 Conclusions

Out of the large body of research surveyed above,
we highlight several conclusions:

1. Transformer decoders can use intermediate
steps to simulate Turing machines; with un-
bounded steps, they are Turing-complete.

Regarding the expressivity of transformer en-
coders, circuit complexity and logic are espe-
cially promising frameworks.

. Leftmost-hard-attention transformer encoders
are in AC? and cannot solve some intuitively
easy problems, like PARITY and MAJORITY.

. Softmax and average-hard attention give trans-
former encoders the ability to count. Still, they
lie within TC® and likely cannot solve prob-
lems like evaluating closed Boolean formulas.

Some open questions that we think should be prior-
ities for future research are:

5. Some variants (PEs, average-hard vs. softmax
attention, pre-norm vs. post-norm, the pres-
ence of BOS/EQS/CLS) appear to be instrumen-
tal in proofs reviewed here; can their effect on
expressivity be clarified?

13

6. Can the expressivity of softmax-attention
transformers be characterized more tightly or
even exactly in terms of some logic?

. Given the current practical importance of
decoder-only transformers and chain-of-
thought, what further insights can circuits or
logic provide into transformer decoders?

We hope this paper can serve as a valuable resource
for researchers pursuing these and other questions.

Acknowledgements

‘We would like to thank Frank Drewes, Jon Rawski,
Ashish Sabharwal, and the anonymous reviewers
for their valuable comments on earlier versions of
this paper.

References

Joshua Ackerman and George Cybenko. 2020. A
survey of neural networks and formal languages.
arXiv:2006.01338.

Zeyuan Allen-Zhu and Yuanzhi Li. 2023. Physics
of language models: Part 1, context-free gram-
mar. arXiv:2305.13673.

Eric Allender. 1999. The permanent requires large
uniform threshold circuits. Chicago Journal of
Theoretical Computer Science, 1999(7).

Dana Angluin, David Chiang, and Andy Yang.
2023. Masked hard-attention transformers and
Boolean RASP recognize exactly the star-free
languages. arXiv:2310.13897.

Sanjeev Arora and Boaz Barak. 2009. Computa-
tional Complexity: A Modern Approach. Cam-
bridge University Press.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. In NIPS
2016 Deep Learning Symposium.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In Pro-
ceedings of the Third International Conference
on Learning Representations (ICLR).

Pablo Barceld, Alexander Kozachinskiy, An-
thony Widjaja Lin, and Vladimir Podolskii. 2024.
Logical languages accepted by transformer en-
coders with hard attention. In Proceedings of the

http://arxiv.org/abs/2006.01338
http://arxiv.org/abs/2006.01338
https://arxiv.org/abs/2305.13673
https://arxiv.org/abs/2305.13673
https://arxiv.org/abs/2305.13673
http://cjtcs.cs.uchicago.edu/articles/1999/7/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/7/contents.html
https://arxiv.org/abs/2310.13897
https://arxiv.org/abs/2310.13897
https://arxiv.org/abs/2310.13897
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq

Twelfth International Conference on Learning
Representations (ICLR).

David A. Barrington. 1989. Bounded-width
polynomial-size branching programs recognize
exactly those languages in NC'. Journal of Com-
puter and System Sciences, 38(1):150-164.

David A. Barrington, Kevin Compton, Howard
Straubing, and Denis Thérien. 1992. Regular
languages in NC'. Journal of Computer and
System Sciences, 44(3):478-499.

David A. Mix Barrington, Neil Immerman,
Clemens Lautemann, Nicole Schweikardt, and
Denis Thérien. 2005. First-order expressibility
of languages with neutral letters or: The Crane
Beach conjecture. Journal of Computer and Sys-
tem Sciences, 70(2):101-127.

David A. Mix Barrington, Neil Immerman, and
Howard Straubing. 1990. On uniformity within
NC'. Journal of Computer and System Sciences,
41(3):274-306.

David Mix Barrington and Neil Immerman. 1994.
Time, hardware, and uniformity. In Proceedings
of the IEEE 9th Annual Conference on Structure
in Complexity Theory, pages 176-185.

Valeriu Beiu and John G. Taylor. 1996. On the cir-
cuit complexity of sigmoid feedforward neural
networks. Neural Networks, 9(7):1155-1171.

Satwik Bhattamishra, Kabir Ahuja, and Navin
Goyal. 2020a. On the ability and limitations
of Transformers to recognize formal languages.
In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 7096-7116.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal.
2020b. On the computational power of Trans-
formers and its implications in sequence mod-
eling. In Proceedings of the 24th Conference
on Computational Natural Language Learning
(CoNLL), pages 455-475.

Satwik Bhattamishra, Arkil Patel, Varun Kanade,
and Phil Blunsom. 2023. Simplicity bias in
Transformers and their ability to learn sparse
Boolean functions. In Proceedings of the 61st
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 5767-5791.

14

Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Sys-
tems 33 (NeurlPS), pages 1877-1901.

Samuel R. Buss. 1987. The Boolean formula value
problem is in ALOGTIME. In Proceedings of
the Nineteenth Annual ACM Symposium on The-
ory of Computing (STOC), pages 123-131.

Ashok K. Chandra, Larry Stockmeyer, and Uzi
Vishkin. 1984. Constant depth reducibility.
SIAM J. Computing, 13(2):423-439.

David Chiang and Peter Cholak. 2022. Over-
coming a theoretical limitation of self-attention.
In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics
(ACL), pages 7654-7664.

David Chiang, Peter Cholak, and Anand Pillay.
2023. Tighter bounds on the expressivity of
transformer encoders. In Proceedings of the 40th
International Conference on Machine Learning
(ICML), volume 202 of Proceedings of Machine
Learning Research, pages 5544-5562.

N. Chomsky and M. P. Schiitzenberger. 1963. The
algebraic theory of context-free languages. In
P. Braffort and D. Hirschberg, editors, Computer
Programming and Formal Systems, volume 35
of Studies in Logic and the Foundations of Math-
ematics, pages 118-161. Elsevier.

Stephen A. Cook and Pierre McKenzie. 1987.
Problems complete for deterministic logarithmic
space. Journal of Algorithms, 8(3):385-394.

G. Cybenko. 1989. Approximation by superposi-
tions of a sigmoidal function. Mathematics of
Control, Signals, and Systems, 2(4):303-314.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya,
Tim Genewein, Li Kevin Wenliang, Elliot Catt,

https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/j.jcss.2004.07.004
https://doi.org/10.1016/j.jcss.2004.07.004
https://doi.org/10.1016/j.jcss.2004.07.004
https://doi.org/https://doi.org/10.1016/0022-0000(90)90022-D
https://doi.org/https://doi.org/10.1016/0022-0000(90)90022-D
https://doi.org/10.1109/SCT.1994.315806
https://doi.org/10.1016/0893-6080(96)00130-X
https://doi.org/10.1016/0893-6080(96)00130-X
https://doi.org/10.1016/0893-6080(96)00130-X
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.conll-1.37
https://doi.org/10.18653/v1/2020.conll-1.37
https://doi.org/10.18653/v1/2020.conll-1.37
https://doi.org/10.18653/v1/2023.acl-long.317
https://doi.org/10.18653/v1/2023.acl-long.317
https://doi.org/10.18653/v1/2023.acl-long.317
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/28395.28409
https://doi.org/10.1145/28395.28409
https://doi.org/10.1137/0213028
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://proceedings.mlr.press/v202/chiang23a.html
https://proceedings.mlr.press/v202/chiang23a.html
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1016/0196-6774(87)90018-6
https://doi.org/10.1016/0196-6774(87)90018-6
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274

Chris Cundy, Marcus Hutter, Shane Legg, Joel
Veness, and Pedro A. Ortega. 2023. Neural net-
works and the Chomsky hierarchy. In Proceed-
ings of the Eleventh International Conference on
Learning Representations (ICLR).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional Transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (NAACL HLT), pages
4171-4186.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang.
2020. How can self-attention networks recog-
nize Dyck-n languages? In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2020, pages 4301-4306.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian
Ye, Di He, and Liwei Wang. 2023. Towards
revealing the mystery behind Chain of Thought:
A theoretical perspective. In Advances in Neural
Information Processing Systems 36 (NeurlPS),
pages 70757-70798.

Patrick C. Fischer, Albert R. Meyer, and Arnold L.
Rosenberg. 1968. Counter machines and counter

languages. Mathematical Systems Theory,
2:265-283.

Dan Friedman, Alexander Wettig, and Dangi Chen.
2023. Learning Transformer programs. In Ad-
vances in Neural Information Processing Sys-

tems 36 (NeurlPS), pages 49044-49067.

Merrick Furst, James B. Saxe, and Michael Sipser.
1984. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17:13—
27.

Raymond Greenlaw, H. James Hoover, and Wal-
ter L. Ruzzo. 1995. Limits to Parallel Computa-
tion: P-Completeness Theory. Oxford Univer-
sity Press. Preliminary version of Appendix A
available as Technical Report TR91-11, Univer-
sity of Alberta, Department of Computing Sci-
ence.

Michael Hahn. 2020. Theoretical limitations of
self-attention in neural sequence models. Trans-
actions of the Association for Computational
Linguistics, 8:156—171.

15

Yiding Hao, Dana Angluin, and Robert Frank.
2022. Formal language recognition by hard at-
tention Transformers: Perspectives from circuit
complexity. Transactions of the Association for
Computational Linguistics, 10:800-810.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (GELUs). arXiv:1606.08415.

William Hesse. 2001. Division is in uniform
TCC. 1In Automata, Languages and Program-
ming (ICALP), pages 104—114. Springer.

John Hewitt, Michael Hahn, Surya Ganguli, Percy
Liang, and Christopher D. Manning. 2020.
RNNs can generate bounded hierarchical lan-
guages with optimal memory. In Proceedings of
the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
1978-2010.

Kurt Hornik, Maxwell B. Stinchcombe, and Hal-
bert White. 1989. Multilayer feedforward net-

works are universal approximators. Neural Net-
works, 2(5):359-366.

Austin Huang, Suraj Subramanian, Jonathan Sum,
Khalid Almubarak, and Stella Biderman. 2022.
The annotated Transformer. Based on original
version by Sasha Rush.

Neil Immerman. 1997. Languages that capture
complexity classes. SIAM Journal on Comput-
ing, 16(4):760-778.

Neil Immerman. 1999. Descriptive Complexity.
Springer.

Neil D. Jones and William T. Laaser. 1976. Com-
plete problems for deterministic polynomial
time. Theoretical Computer Science, 3(1):105—
117.

Johan Anthony Willem Kamp. 1968. Tense Logic
and the Theory of Linear Order. Ph.D. thesis,
University of California, Los Angeles.

Najoung Kim and Sebastian Schuster. 2023. Entity
tracking in language models. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 3835-3855.

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R.
Gormley, and Jason Eisner. 2021. Limitations

https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.384
https://doi.org/10.18653/v1/2020.findings-emnlp.384
https://papers.nips.cc/paper_files/paper/2023/hash/dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/dfc310e81992d2e4cedc09ac47eff13e-Abstract-Conference.html
https://doi.org/10.1007/BF01694011
https://doi.org/10.1007/BF01694011
https://papers.nips.cc/paper_files/paper/2023/hash/995f693b73050f90977ed2828202645c-Abstract-Conference.html
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/BF01744431
https://doi.org/10.7939/R39Z90F7X
https://doi.org/10.7939/R39Z90F7X
https://doi.org/10.7939/R39Z90F7X
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00490
https://doi.org/10.1162/tacl_a_00490
https://doi.org/10.1162/tacl_a_00490
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1007/3-540-48224-5_9
https://doi.org/10.1007/3-540-48224-5_9
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
http://harvardnlp.github.io/annotated-transformer
https://doi.org/10.1137/0216051
https://doi.org/10.1137/0216051
https://doi.org/10.1016/0304-3975(76)90068-2
https://doi.org/10.1016/0304-3975(76)90068-2
https://doi.org/10.1016/0304-3975(76)90068-2
https://www.proquest.com/docview/302320357
https://www.proquest.com/docview/302320357
https://doi.org/10.18653/v1/2023.acl-long.213
https://doi.org/10.18653/v1/2023.acl-long.213
https://doi.org/10.18653/v1/2021.naacl-main.405

of autoregressive models and their alternatives.
In Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (NAACL HLT), pages 5147-5173.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and
Xipeng Qiu. 2022. A survey of transformers. A/
Open, 3:111-132.

David Lindner, Janos Kramar, Matthew Rahtz,
Thomas McGrath, and Vladimir Mikulik. 2023.
Tracr: Compiled transformers as a laboratory
for interpretability. In Advances in Neural Infor-
mation Processing Systems 36 (NeurIPS), pages
37876-37899.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay
Krishnamurthy, and Cyril Zhang. 2023. Trans-
formers learn shortcuts to automata. In Proceed-
ings of the Eleventh International Conference on
Learning Representations (ICLR).

Robert McNaughton and Seymour A. Papert. 1971.
Counter-Free Automata. MIT Press.

William Merrill. 2019. Sequential neural networks
as automata. In Proceedings of the Workshop on
Deep Learning and Formal Languages: Building
Bridges, pages 1-13.

William Merrill. 2020. On the linguis-
tic capacity of real-time counter automata.
arXiv:2004.06866.

William Merrill. 2021. Formal language theory
meets modern NLP. arXiv:2102.10094.

William Merrill. 2023. Formal languages and the
NLP black box. In Developments in Language
Theory, pages 1-8.

William Merrill, Vivek Ramanujan, Yoav Gold-
berg, Roy Schwartz, and Noah A. Smith. 2021.
Effects of parameter norm growth during trans-
former training: Inductive bias from gradient
descent. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1766—1781.

William Merrill and Ashish Sabharwal. 2023a.
The parallelism tradeoff: Limitations of log-
precision transformers. Transactions of the As-

sociation for Computational Linguistics, 11:531-
545.

16

William Merrill and Ashish Sabharwal. 2023b. A
logic for expressing log-precision transformers.

In Advances in Neural Information Processing
Systems 36 (NeurlPS), pages 52453-52463.

William Merrill and Ashish Sabharwal. 2024. The
expressive power of transformers with chain of
thought. In Proceedings of the Twelfth Interna-

tional Conference on Learning Representations
(ICLR).

William Merrill, Ashish Sabharwal, and Noah A.
Smith. 2022. Saturated transformers are
constant-depth threshold circuits. Transactions

of the Association for Computational Linguistics,
10:843-856.

William Merrill, Gail Weiss, Yoav Goldberg, Roy
Schwartz, Noah A. Smith, and Eran Yahav.
2020. A formal hierarchy of RNN architectures.
In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics
(ACL), pages 443-459.

Maxwell Nye, Anders Andreassen, Guy Gur-
Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz,
Maarten Bosma, David Luan, Charles Sutton,
and Augustus Odena. 2022. Show your work:
Scratchpads for intermediate computation with
language models. In Proceedings of the Work-
shop on Deep Learning for Code (DLAC).

OpenAl. 2023.
arXiv:2303.08774.

GPT-4 technical report.

Denis Paperno. 2022. On learning interpreted lan-
guages with recurrent models. Computational
Linguistics, 48(2):471-482.

Ian Parberry. 1994. Circuit Complexity and Neural
Networks. MIT Press.

Jorge Pérez, Pablo Barcel6, and Javier Marinkovic.
2021. Attention is Turing-complete. Journal of
Machine Learning Research, 22:75:1-75:35.

Mary Phuong and Marcus Hutter. 2022. Formal
algorithms for transformers. arXiv:2207.09238.

Jorge Pérez, Javier Marinkovi¢, and Pablo Barceld.
2019. On the Turing completeness of modern
neural network architectures. In Proceedings of
the Seventh International Conference on Learn-
ing Representations (ICLR).

https://doi.org/10.18653/v1/2021.naacl-main.405
https://doi.org/10.1016/j.aiopen.2022.10.001
https://papers.nips.cc/paper_files/paper/2023/hash/771155abaae744e08576f1f3b4b7ac0d-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/771155abaae744e08576f1f3b4b7ac0d-Abstract-Conference.html
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://archive.org/details/CounterFre_00_McNa
https://doi.org/10.18653/v1/W19-3901
https://doi.org/10.18653/v1/W19-3901
https://arxiv.org/abs/2004.06866
https://arxiv.org/abs/2004.06866
https://arxiv.org/abs/2102.10094
https://arxiv.org/abs/2102.10094
https://doi.org/10.1007/978-3-031-33264-7_1
https://doi.org/10.1007/978-3-031-33264-7_1
https://doi.org/10.18653/v1/2021.emnlp-main.133
https://doi.org/10.18653/v1/2021.emnlp-main.133
https://doi.org/10.18653/v1/2021.emnlp-main.133
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00562/116413/The-Parallelism-Tradeoff-Limitations-of-Log
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00562/116413/The-Parallelism-Tradeoff-Limitations-of-Log
https://papers.nips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.18653/v1/2020.acl-main.43
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=HBlx2idbkbq
https://arxiv.org/abs/2303.08774
https://doi.org/10.1162/coli_a_00431
https://doi.org/10.1162/coli_a_00431
http://jmlr.org/papers/v22/20-302.html
http://arxiv.org/abs/2207.09238
http://arxiv.org/abs/2207.09238
https://openreview.net/forum?id=HyGBdo0qFm
https://openreview.net/forum?id=HyGBdo0qFm

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training.

Omer Reingold. 2008. Undirected connectivity in
log-space. Journal of the ACM, 55(4):1-24.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky.
2023. Representational strengths and limitations
of transformers. In Advances in Neural Infor-
mation Processing Systems 36 (NeurIPS), pages
36677-36707.

Hava T. Siegelmann and Eduardo D. Sontag. 1994.
Analog computation via neural networks. Theo-
retical Computer Science, 131(2):331-360.

Hava T. Siegelmann and Eduardo D. Sontag. 1995.
On the computational power of neural nets. Jour-
nal of Computer and System Sciences, 50(1):132—
150.

Jifi Sfma and Pekka Orponen. 2003. General-
purpose computation with neural networks: A

survey of complexity theoretic results. Neural
Computation, 15(12):2727-2778.

Michael Sipser. 2013. Introduction to the Theory
of Computation, 3rd edition. Cengage Learning.

Kai-Yeung Siu, Vwani Roychowdhury, and
Thomas Kailath. 1995. Discrete Neural Compu-
tation. Prentice Hall.

Howard Straubing. 1994. Finite Automata, Formal
Logic, and Circuit Complexity. Springer.

Lena Strobl. 2023. Average-hard attention trans-
formers are constant-depth uniform threshold
circuits. arXiv:2308.03212.

I. H. Sudborough. 1975. On tape-bounded com-
plexity classes and multihead finite automata.

Journal of Computer and System Sciences,
10(1):62-76.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber,
and Sebastian Gehrmann. 2019. LSTM net-
works can perform dynamic counting. In Pro-
ceedings of the Workshop on Deep Learning and
Formal Languages: Building Bridges, pages 44—
54.

Wolfgang Thomas. 1997. Languages, automata,
and logic. In Grzegorz Rozenberg and Arto

17

Salomaa, editors, Handbook of Formal Lan-
guages: Volume 3 Beyond Words, pages 389—
455. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neural
Information Processing Systems 30 (NeurlPS).

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S.
Chao. 2019. Learning deep Transformer mod-
els for machine translation. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics (ACL).

Colin Wei, Yining Chen, and Tengyu Ma. 2022a.
Statistically meaningful approximation: a case
study on approximating Turing machines with
transformers. In Advances in Neural Informa-
tion Processing Systems 35 (NeurIPS), pages
12071-12083.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. 2022b. Chain-
of-thought prompting elicits reasoning in large
language models. In Advances in Neural Infor-
mation Processing Systems 35 (NeurlPS), pages
24824-24837.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018.
On the practical computational power of finite
precision RNNs for language recognition. In
Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(ACL), pages 740-745.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021.
Thinking like Transformers. In Proceedings of
the 38th International Conference on Machine
Learning (ICML), volume 139 of Proceedings
of Machine Learning Research, pages 11080—
11090.

Shunyu Yao, Binghui Peng, Christos Papadim-
itriou, and Karthik Narasimhan. 2021. Self-
attention networks can process bounded hier-
archical languages. In Proceedings of the 59th
Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International
Joint Conference on Natural Language Process-
ing (ACL-1IJCNLP), pages 3770-3785.

https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/1391289.1391291
https://papers.nips.cc/paper_files/paper/2023/hash/73bf692447f174984f30499ec9b20e04-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/73bf692447f174984f30499ec9b20e04-Abstract-Conference.html
https://doi.org/10.1016/0304-3975(94)90178-3
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1162/089976603322518731
https://doi.org/10.1162/089976603322518731
https://doi.org/10.1162/089976603322518731
https://arxiv.org/abs/2308.03212
https://arxiv.org/abs/2308.03212
https://arxiv.org/abs/2308.03212
https://doi.org/10.1016/S0022-0000(75)80014-6
https://doi.org/10.1016/S0022-0000(75)80014-6
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1007/978-3-642-59126-6_7
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://papers.nips.cc/paper_files/paper/2022/hash/4ebf1d74f53ece08512a23309d58df89-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/4ebf1d74f53ece08512a23309d58df89-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/4ebf1d74f53ece08512a23309d58df89-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://proceedings.mlr.press/v139/weiss21a.html
https://doi.org/10.18653/v1/2021.acl-long.292
https://doi.org/10.18653/v1/2021.acl-long.292
https://doi.org/10.18653/v1/2021.acl-long.292

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh
Rawat, Sashank J. Reddi, and Sanjiv Kumar.
2020. Are Transformers universal approxima-
tors of sequence-to-sequence functions? In 8th
International Conference on Learning Represen-
tations (ICLR).

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam
Razin, Omid Saremi, Josh Susskind, Samy Ben-
gio, and Preetum Nakkiran. 2024. What algo-
rithms can Transformers learn? A study in length
generalization. In Proceedings of the Twelfth
International Conference on Learning Represen-
tations (ICLR).

18

https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

