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Large groups of active cilia collectively beat in a fluid medium as metachronal waves, essential for
some microorganisms motility and for flow generation in mucociliary clearance. Several models can
predict the emergence of metachronal waves, but what controls the properties of metachronal waves
is still unclear. Here, we investigate numerically the respective impacts of active beating and viscous
dissipation on the properties of metachronal waves in a collection of oscillators, using a simple model
for cilia in the presence of noise on regular lattices in one- and two-dimensions. We characterize
the wave using spatial correlation and the frequency of collective beating. Our results clearly show
that the viscosity of the fluid medium does not affect the wavelength; the activity of the cilia does.
These numerical results are supported by a dimensional analysis, which shows that the result of
wavelength invariance is robust against the model taken for sustained beating and the structure of
hydtodynmanic coupling. Interestingly, enhancement of cilia activity increases the wavelength and
decreases the beating frequency, keeping the wave velocity almost unchanged. These results might
have significance in understanding paramecium locomotion and mucociliary clearance diseases.

I. INTRODUCTION

The emergence of phase-travelling waves in dense ar-
rays of active beating cilia, known as metachronal waves,
is a complex multiscale physics problem [1–7] and is
nonequilibrium because of the internal activity-driven
movements of cilia. The active beating of each cilium
arises from the sliding of microtubules by thousands of
molecular motors, and the subsequent interaction with
the surrounding fluid medium. The coupling of a large
number of these oscillators lead to synchronized dynam-
ics over larger length scales. Illustrations are abundant
in nature with ciliary living systems differing by cilia
assembly geometry, cilia activity, or properties of the
surrounding fluid. In respiratory tissues, the continuous
cleaning of our lungs is provided by cilia beating waves
that generate mucus flow [8, 9]. For certain microorgan-
isms such as paramecium, synchronized beating of cilia
help in their efficient locomotion [10]. The complexity
of cilia active beating pattern and their interaction with
each other through a complex environment makes it dif-
ficult to predict the emergent wave properties, despite
recent theoretical and experimental advancements.

Models of cilia arrays [11–15], aim to identify the con-
ditions required for such a coordinated state and to com-
prehend the physical parameters that govern the prop-
erties of the metachronal wave and the subsequent mu-
cus transport. Several models have been proposed [11–
13, 16, 17], wherein the coupling is primarily described
as a viscous hydrodynamic coupling. In these models,
different types of active forces - from simple to complex,

successfully generate continuous beating of a cilium. Nu-
merical simulations enable to investigate the intricate
structure of cilia by considering their beating as a fila-
ment bending wave [12, 18, 19]. Another approach is to
model cilia by actuated micron-sized beads called rotors
[20–23] or rowers [11, 24, 25]. For a large group of cilia ar-
ranged in an array, it has been shown that hydrodynamic
coupling can lead to metachronal waves for various mod-
els of cilia [12, 14, 15]. Recently, the influence, on these
collective behaviors, of several physical parameters such
as noise [25, 26] and disorder in the arrangement and ori-
entation of cilia has been investigated both numerically
[25, 27, 28] and experimentally [28, 29], showing that
spatial heterogeneity favors transport. Other important
physical quantities that may play a role on the coordina-
tion are the activity related to the sustained beating and
the dissipation in the viscous fluid, that will have oppo-
site impacts on the metachronal waves emerging from
cilia beating. Experimentally, a decrease in beating fre-
quency with viscosity was found [30, 31], whereas the
beating amplitude and the metachronal wavelength were
found constant up to ≈ 50 times the viscosity of water
[32, 33]. Theoretically, the mutual influence of activity
and dissipation were almost not explored [34]. Here, our
fundamental inquiry pertains to the interplay between
cilia beating characteristics and fluid medium and its
impact on the overall properties of metachronal waves.
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II. THE ROWER MODEL

We study the metachronal waves in the rower model of
cilia in viscous fluid for one and two-dimensional regular
lattices in the presence of thermal noise. In the rower
model [11, 24, 25], the complex active beating of a cilium
is simplified into the back and forth motion, along an
axis, of a micron-sized bead immersed in a viscous fluid,
thus ensuring a low Reynolds number regime. Such an
oscillating motion is driven by two harmonic potential
branches, corresponding to the stroke and anti-stroke of
the cilia beating, with a geometric switching mechanism.
The bead moves downhill of a potential until it reaches
one of the two terminal positions for which switching to
the second branch occurs (Fig. 1A, B). This switching is
like pumping energy to lift the bead on the upper side
of the other potential at the terminal. At a given time,
the bead can be found in one of these two states, the
stroke and anti-stroke of the cilia beating, represented
by a discrete σ = ±1. The driving force for a bead
displacement y for a given σ can be written as

f(y, σ) = −dV (y,σ)
dy = −k(y − σµ/2), (1)

where k is the force constant associated with the har-
monic potentials, µ is the distance between minima of
two potentials, and A is the beating amplitude. The
supply of energies during each downhill motion in a har-
monic potential, kA2/2, and during each switch, the
pumping energy kµA, keep the bead oscillating in the
dissipating media. We refer to this pumping energy dur-
ing each switch as ‘activity’ for the rower model of cilia.
Therefore, for a given µ, the ‘activity’ of the bead de-
pends on values of k and A. Because of its simplicity
and ability to capture the two-stroke beating of cilia,
the rower model has become a method of choice for the-
oretical and experimental studies of synchronization in
ciliary systems [15, 29].

We consider a system of N rowers beating in the y
direction in a viscous medium. Rowers are placed reg-
ularly in one- or two-dimensions (square) lattices (see
Fig. 1C) at fixed positions ri (for i = {1, 2, 3, ..., N}).
The displacement, yi, of a rower i is hydrodynamically
coupled with the others and is given by

dyi
dt

=
fi
γ

+
∑
j ̸=i

O(i, j) fj + ξi, (2)

where γ = 6πηa is the viscous drag coefficient for a bead
with radius a and O(i, j) the coupling strength between
rower i and j. In the far-field hydrodynamic coupling
approximation, for which both the distance from the
surface and the distance between two adjacent rowers
(lattice spacing ℓ) are large compared to a, O(i, j) is set
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FIG. 1. Rower model of cilia [11]. (A) The motion of a
micron-sized bead in a viscous medium under two harmonic
potential branches, corresponding to σ ± 1, represents the
stroke and anti-stroke beating of a cilium. (B) The bead
switches branches when it reaches terminal position y = ±A.
(C) Rowers are arranged in 2D on a L × L square lattice,
with their beating direction along the y-axis, as indicated by
the double-arrow. Hydrodynamic interaction between rower
i and j is modelled by the Oseen coupling, which is dependent
on the rij vector.

by the Oseen tensor: O(i, j) = 1
8πηrij

(
1 + (

yij

rij
)2
)
, with

i ̸= j, and rij = rj − ri, the separation vector between
rowers i and j. The last term is due to the thermal
noise, obeying the following delta-correlation: ⟨ξ(t)⟩ =
0, ⟨ξ(t1)ξ(t2)⟩ = 2D δ(t1 − t2). For simplicity, we as-
sume no correlation between the noise acting on each of
the rowers as in [25]. The noise strength or diffusivity
is equal to D = kB T/γ, kB and T being the Boltzmann
constant and the temperature. The displacement of a
single isolated bead shows sustained oscillations with the
frequency ν0 = 1/(2 τd log [(µ+ 2A)/(µ− 2A)]), where
τd = γ/k is the relaxation time for the bead to reach
equilibrium in a harmonic potential [24]. Such two cou-
pled rowers beat collectively with antiphase synchroniza-
tion [11]. For many rowers, the interplay between the
activity of the rowers and coupling through the medium
generates metachronal waves [11].

III. NUMERICAL RESULTS

The Euler method with an integration step equal to
5×10−3s has been used to evolve the coupled dynami-
cal equation (Eq. 2), starting from random initial val-
ues for {σi, yi}. The open boundary condition is im-
plemented. Parameters are chosen within the exper-
imentally relevant range [24, 35]: a=1.5µm, ℓ=8µm,
k=2.6 pN ·µm−1, µ=2µm, A=0.56 − 0.8µm, η=2 −
20mPa·s, and T=300K. Results presented here for
large system sizes; N=L=200 (for 1d) and N=L2=1600
(for 2d). Comparing results with smaller systems (not
shown here), we confirm that the presented results have
no system size dependence.
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FIG. 2. Metachronal waves in 1d. A. Snapshot of displace-
ments of the first 100 rowers. The displacement of even (odd)
sites is plotted in light (dark) color. B. Correlation func-
tion C(x=mℓ) between two rowers is plotted against separa-
tion distance x. C. Kymograph of the beating state σ, with
white color (black) representing σ=1 (σ= −1). Parameters:
A = 0.8, η=6mPa·s, and N=200.

A. Characterization of metachronal waves

Figure. 2 shows the metachronal waves on the one-
dimensional lattice. The beads’ displacement against
the rowers’ position for a given time displays two spatial
waves that are visualized by connecting displacements yi
by lines for all rowers at the even and odd lattice sites
separately (Fig. 2A) in agreement with [11, 36]. This is a
unique feature of the rower model, and arises due to a de-
gree of anti-phase synchronization between two adjacent
rowers. The wave propagation is illustrated in Fig. 2C
by the kymograph obtained for σi(t). To characterize it,
we compute the spatial correlation function between two
rowers as a function of their separation vector r:

C(r) =

∑
ij⟨σi(ri, t)σj(rj , t)⟩δ(r− rij)∑

ij δ(r− rij)
. (3)

As the rowers are placed on a regular lattice with lat-
tice spacing ℓ, the coordinates of r are discrete and can
be written as (mℓ, nℓ) with m,n ∈ {0, 1, 2, ..., L}. The
measurement is done after a large equilibration time t0,
where the system is assumed to reach a steady state.
Brackets ⟨·⟩ represent average over times and ensembles.
An ensemble is the collection of 5000 sets of {σi(t)}
recorded every 2 seconds after t0=2500 seconds. De-
pending on system size, we consider several ensembles
with random initial conditions. For 1d (N=200) the
number of ensembles is 100 and for 2d (N=1600), it lies
between 5 to 10.
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FIG. 3. Effect of viscosity and beating amplitude on
metachronal waves in 1d (N=200). Correlation function
C(x=mℓ) as a function of the distance between rowers, for
three different A values (for η=6 mPa.s) (A) and for three
different η values (for A=0.8 µm) (B). The wavelengths λ
are plotted against A (C), and η (D), together with the cor-
responding beating frequency ν. Propagation velocity V is
plotted againstA (E), and η (F). In (B), the different symbols
are not distinctively visible as the three curves completely
overlap.

B. Wave properties in one dimension

Fig. 2B shows the variation of C(x) = C(x, y = 0)
in one dimension. For odd and even m values, two os-
cillating curves decay to zero as the distance between
rowers x = mℓ increases. While the oscillations indi-
cate the wave nature of the collective beating, the loss of
correlations at larger x suggest a damping in the coor-
dination on a characteristic length scale ld. C(x) can be
fitted with the simple function ±e−x/ld cos(2πx/λ), the
+ (−) sign being for even (odd)m. This fit estimates the
wavelength λ and decay length ld. For Fig. 2, λ ≃ 13.7ℓ
and ld ≃ 9.0ℓ. In a recent work, wavelength, and decay
length were measured experimentally for metachronal
waves on the human bronchial epithelium, and these
two lengthscale values are comparable [37]. Our re-
sults are consistent with the experiment. The ensemble
and spatial average of the beating frequency was com-
puted: ν ≃ 3.4 Hz and combined with λ to infer the
metachronal wave velocity V = νλ ≃ 370 µm.s−1. These
values are consistent with estimates that can be inferred
directly from the slopes in the kymograph Fig. 2C.

We then investigate the effect of viscosity of the fluid
medium and activity of the cilia on the metachronal
waves quantities: λ, ld, ν, and V=νλ, by computing
C(x) for various η and A. The plot of C(x) for differ-
ent A values shows that both λ and ld increase with A
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FIG. 4. Effect of viscosity and beating amplitude on
metachronal waves in 2d (N=L2=1600). Correlation func-
tion along beating direction C(x=0, y=nℓ) as a function of
the distance between rowers, for three different values of A
(for η=6 mPa.s) (A) and for three different η values (for
A=0.8 µm) (B). The wavelengths λ are plotted against A
(C), and η (D), together with the corresponding beating fre-
quency ν. Propagation velocity V is plotted as a function
of A (E), and η (F). In (B), the different symbols are not
distinctively visible as the three curves completely overlap.

(Fig. 3A and C), whereas ν decreases with A, keeping V
almost constant (Fig. 3C and E). As ν0, the frequency of
a rower, decreases with A, the decrease of ν is expected.
On the same line, increasing A, which is a characteristic
length of the problem, may naturally increase the length
scale of the emerging collective dynamics. Thus the re-
spective variation of ν and λ can be generally expected.
What is remarkable though is that they compensate to
result in an almost constant wave velocity. Interestingly,
C(x) does not depend on the values of η (see Fig. 3B),
meaning λ and ld are independent of η and implying that
the spatial behavior of emergent waves does not depend
on the fluid viscosity and are only determined by cilia
activity parameters, in agreement with experimental ob-
servations [30, 33]. Finally, the frequency ν decreases as
a function of η and so does V , as measured experimen-
tally in [30, 33].

C. Wave properties in two dimensions

On a square lattice, we find that the metachronal wave
propagates along the beating direction y whereas no
wave is obtained in the perpendicular direction (Fig. 5),
suggesting longitudinal waves. In Fig. 4A and B, we plot
the correlation function along y-direction C(0, y = nℓ)
against n for various values of A and η. Similar to 1d,
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FIG. 5. Effect of viscosity and beating amplitude on corre-
lations along the direction perpendicular to the beating di-
rection C(x=mℓ, y=0). A. C(x=mℓ, y=0) for three different
A for a fixed η=6mPa·s (A), and for three values of η for a
given A=0.69µm (B).

two spatial waves can be seen for even and odd values of
n for a given parameter set. For a fixed η, λ increases
and ν decreases with A, keeping the wave velocity V
almost constant (Fig. 4C and E). On the contrary, λ
remains constant and ν decreases with η, leading to a
decrease in V with η (Fig. 4D and F). We further note
that although the qualitative behavior of metachronal
waves in 1d and 2d are similar, the values of λ and V
are relatively larger in 1d. This result raises interesting
questions on the implications of the geometry of realistic
ciliated tissues, which are mostly organized in 2d groups
of cilia bundles.

In the direction perpendicular to beating, no oscilla-
tion is obtained (Fig. 5). C(x, 0) either monotonically
decays to zero as for large A or shows a negative cor-
relation for small y = mℓ with odd m that eventually
approaches zero for large m. For a given A, C(x, 0) does
not depend on η (Fig. 5B), although odd and even m
can follow different curves, reminiscent of C(0, y). We
compare the decay lengths of correlations along x and y
directions ld,x and ld,y. The decay length for the damped
oscillations along y, ld,y, can be estimated from the fit-
ting method discussed above. The decay length ld,x is
estimated from the exponential fit of the C(x = mℓ, 0)
for even m values. The ratio ld,y/ld,x is plotted in the
insets, one notes that ld,y/ld,x ≳ 2. For a fixed A, it
remains unchanged with η. However, for a given η, the
ratio increases with cilia activity A, which implies an
enhancement of coherence along the beating direction
compared the perpendicular one. This anisotropic re-
sponse may be related to the anisotropy of the interac-
tion strength. Indeed, considering the same rij value,
O(i, j) is two times larger along the y-axis than along
the x-axis.
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IV. WHY SPATIAL WAVE PROPERTIES ARE
INDEPENDENT OF VISCOUS MEDIA

The fact that we obtain metachronal waves with spa-
tial properties unaffected by viscosity has not been em-
phasized by previous studies, to our knowledge. Nev-
ertheless, this remarkable numerical observation is ro-
bust on an order of magnitude of η obtained with both
1d and 2d simulations. To rationalize this result, one
needs to look into the details of characteristic length,
and timescales of the system set by the activity and
the surrounding viscous medium. The relaxation time
τd = 6πηa/k for the bead motion in the viscous medium
under a harmonic driving potential, which also deter-
mines the natural frequency ν0, is a crucial timescale in
our problem. In the rower model, there are two lengths
scales, A, and µ (Fig. 1). Since we only vary A, we chose
it as the typical length scale. We note that our conclu-
sion below, however, does not depend on the choice of
the length scale. Multiplying both sides of Eq. 2 by τd/A
leads to an adimensional equation for the collective beat-
ing dynamics:

dy′i
dt′

= f ′
i +

∑
i ̸=j

3 a

4rij

(
1 + (yij/rij)

2
)
f ′
j + ζi(t

′), (4)

where t′ and y′ are dimensionless time t′ = t/τd and
displacement y′ = y/A, f ′

j = −(y′j − µσj/(2A)) is the
dimensionless force acting on rower j, and ⟨ζ(t′1)ζ(t′2)⟩ =
2kBT/(kA2)δ(t′1 − t′2) is the adimensional noise correla-
tion. As activity parameters A, k, and µ are constant,
Eq. 4 is η independent. The latter means that the spa-
tial properties are independent of η. However, as τd is
affected by η, it impacts the dynamical properties of the
system. If any parameter A, k, and µ are influenced by
the medium, then our observation will break down.

Above, we have studied the rower model, a minimal
model for the active beating of cilia. The hydrodynamic
interaction between cilia is implemented via Oseen cou-
pling, assuming the beating amplitude is very small com-
pared to intercellular distance and ignoring the surface
effect and correlation in noise between two cilia. We
also assumed that cilia are arranged in particular ways
in space and beat in a specific direction. Here, we argue
that the invariance of spatial properties of metachronal
waves in various viscous media is more general and not
dependent on the model chosen for cilia beating, nor on
the cilia mutual interaction in the viscous fluid, nor on
the cilia spatial arrangement. Indeed, for a more realis-
tic cilia model, one may choose a complex force profile
for active beating having more parameters fi [15, 19].
For the hydrodynamic coupling, the presence of the sur-
face, can be captured by the Blake tensor in the far field
limit [38]. At low Reynolds number, the hydrodynamic
coupling tensor have the following properties: it has a
multiplicative scalar factor that is inversely proportional

to the drag coefficient γ, and the tensorial part depends
on the position of the active forces.

For a generic hydrodynamic coupling G(ri, rj) and
correlated noise between cilia, the equation of motion
for the position of the active beating forces is given by:

dri
dt

=

N∑
j=1

G(ri, rj)
(
fj + frj (t)

)
, (5)

where the random force (noise) fri obeys ⟨fri (t1)frj (t2)⟩ =
2kBTG

−1(ri, rj)δ(t1 − t2) [25, 39, 40]. As we discussed
above, the coupling tensor can be written as G(ri, rj) =

G̃(ri, rj))/γ, with G̃ being dimensionless and indepen-
dent of viscosity. We note that the latter may not hold
true for the viscoelastic or other complex fluids, which
is not scope of this paper. As the movement of a cil-
ium is localized around an fixed position, for realistic
cilia, there may at least exist an effective force constant
keff and a beating amplitude Aeff . Therefore relevant
lengthscale and timescale could respectively be written
as Aeff and τd = γ/keff , respectively. The important
assumption here is that these activity parameters keff ,
and Aeff are independent of fluid viscosity. Now, the
dimensionless dynamical equation for cilia i is given by:

dr′i
dt′

=

N∑
j=1

G̃(ri, rj)
(
f ′j + fr,′j (t′)

)
(6)

where f ′j=fj/(k
effAeff ), is the dimensionless active

force on cilia j. For the dimensionless random forces,
it can be shown that they obey the following relation:
⟨fr,′i (t′1)f

r,′
j (t′2)⟩=2kBT/(k

eff (Aeff )2)G̃−1(ri, rj)δ(t
′
1 −

t′2). Therefore, for a general model for cilia with
hydrodynamic coupling, the equation can be written in
dimensionless form as in Eq. 6. Thus, in the steady-
state, the spatial properties of the emergent waves will
be independent of viscosity, meaning that dissipation
only affects temporal parameters.

V. DISCUSSION AND CONCLUSION

Although the dimensional analysis cannot predict the
occurrence or nature of emergent behavior, it is remark-
able in predicting that the wavelength or other spatial
properties will be viscosity-independent in general. This
property of hydrodynamically coupled oscillators could
be used as a simple framework to understand the ori-
gin of metachronal waves in biological systems. The
breakdown of such invariance can indicate the complex-
ity of living systems. We discuss three following sce-
narios where our prediction regarding independence of
spatial wave properties with viscosity may fail.

• For real cilia, the viscosity of the medium may influ-
ence the activity parameters, and then our observation
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FIG. 6. Effect of viscosity in presence of athermal noise in 1d
(N=L=200). Correlation function C(x=mℓ) as a function of
the distance between rowers for three different η values (for
A=0.8 µm) (B). The wavelength λ (in units of ℓ) is plotted
against η. (C) Decay length ld (in units of ℓ) is plotted against
η. Unlike thermal noise where diffusivity is D = kBT/γ, in
this athermal case, the diffusivity D is kept constant to a
value (=0.01µm2s−1) while we vary η.

can break down. As we discussed above, in this sce-
nario the right hand side of the equation Eq.4, will
be dependent of viscosity. Therefore, we may not ex-
pect invariance of spatial properties of emergent waves.
Experimental results [31, 41] seem to indicate a small
dependency of cilia beating amplitude with the liquid
medium. Increased viscosity can also alter the beating
orientation [30, 33], amplify the asymmetry between
stroke and anti-stroke [41], and change other details of
the beating pattern [42]. These can cause changes in
the metachronal wave characteristics and in particular
in the direction of propagation. These experimental re-
sults indicate that the beating machinery could adapt
to the viscous load.

• The fluctuations in our study are thermal, where an ef-
fective fluctuation-dissipation theorem is expected to
hold. However, some experiments point out that in
real cilia and flagella, the fluctuations are mostly dom-
inated by those that have an athermal origin [43–47].
To understand how this athermal noise affects spatial
properties of metachronal waves, we numerically stud-
ied the model in presence of noise with a strength kept
constant against viscosity. We numerically solve Eq. 2
for different values of η, with a constant noise strength
D. The results are plotted in Fig. 6. There is thus no
thermal noise in this simulation and we expected spa-
tial properties then to depend on the viscosity as Eq. 4,
will be dependent of viscosity. We indeed observe that
the correlation length scale ld decays with viscosity,
while the wavelength remains almost constant. This
is in contrast with the previous (thermal) case where
ld was constant as the viscosity was varied. It also
means that the wavelength is not much influenced by
dissipation.

• Another source of non-invariance of spatial properties

could be the viscoelastic nature of the fluid. For the
viscoelastic fluids, the timescales could be nonlinear
as a function of viscosity. The above dimensional ar-
gument will not hold, and we believe that the invari-
ance of spatial properties will not be true in such a
case. Experimentally, the wavelength seems to be al-
most constant within a wide range of fluid viscosities
[30, 33], while the frequency ν and V decrease as a
function of η. We note that in [34], the viscosity is
varied on a very large range. For viscosity larger than
20mPa·s, we suspect that the liquid is no more new-
tonian and probably viscoelastic given the high molec-
ular weight polymers used for the viscous solutions.
For these higher viscosities, another lower plateau in
wavelength is found: the wavelength seems to show
a sudden change after a critical viscosity value [34],
after which the wavelength reaches a lower value and
remains constant.

In a recent work by Ringers et al. [48], an increase in
spatial correlation length (ld) is observed with viscosity,
where methycellulose concentration is varied to increase
medium viscosity. Why this coherence length scale in-
creases with viscosity is not clear. This result cannot be
explained by our model neither in the presence of ather-
mal noise (Fig. 6) nor thermal noise. It is known that a
higher methylcellulose concentration not only increases
viscosity but also makes the fluid viscoelastic. Whether
viscoelasticity plays role to increase the spatial coher-
ence needs further investigations which is not scope of
this paper.

In conclusion, using a simple rower model of cou-
pled oscillators, we have studied the influence of activ-
ity and dissipation on the spatial and temporal synchro-
nization properties of cilia assemblies. Enhancement of
cilia activity increases the wavelength and beating pe-
riod, keeping the wave velocity almost unchanged. Re-
markably, the viscosity does not affect spatial patterns
of metachronal waves. Using dimensional analysis, we
demonstrate that this result is robust against complexity
of cilia model and hydrodynamic coupling due to viscous
media. On the contrary, the beating frequency and the
wave velocity indeed decrease with viscosity. The devi-
ation from such a behaviour may indicate influence of
medium on cilia activity, the presence of athermal fluc-
tuations, or viscoelastic nature of the medium. Our find-
ings could pave the way in understanding the emergence
of specific functions of cilia in pathological contexts, for
example [23].
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