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Abstract. A first-principles approach for active chiral hard disks is presented, that

explicitly accounts for steric interactions on the two-body level. We derive an effective

one-body equation for the joint probability distribution of positions and angles of

the particles. By projecting onto the angular modes, we write a hierarchy for the

lowest hydrodynamic modes, i.e. particle density, polarisation, and nematic tensor.

Introducing dimensionless variables in the equations, we highlight the assumptions,

which - though inherent - are often included implicit in typical closure schemes

of the hierarchy. By considering different regimes of the Péclet number, the well-

known models in active matter can be obtained through our consideration. Explicitly,

we derive an effective diffusive description and by going to higher orders in the

closure scheme, we show that this first-principles approach results in the recently

introduced Active Model B +, a natural extension of the Model B for active processes.

Remarkably, here we find that chirality can change the sign of the phenomenological

activity parameters.

Keywords: first-principles approach, active chiral particles, steric interactions, hierarchy

of angular modes, Active Model B+
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1. Introduction

The analytic model of an Active Chiral Particle (ACP) [1–5] represents an extension to

the well-known Active Brownian Particle (ABP) model [6–9] with additional active

chirality. These models have proven very useful as they come as a first step in

generalising equilibrium models to include non-equilibrium, active contributions for

microscopic agents. They constitute a minimalist attempt to describe directed motion on

the microscale and are found to lead to emerging complex structures on the macroscale.

For that reason, they are widely used in the analytic description of non-equilibrium

systems [10–12].

The ABP model describes the overdamped motion of a tagged particle influenced

by two contributions: firstly, equilibrium fluctuations of the surrounding medium, which

give rise to the well-known equilibrium Langevin description. The particle is assumed

to diffuse with a spatial diffusion coefficient DT . Secondly, the particle experiences a

non-equilibrium driving force, that might originate from an internal energy depot or

external energy input [13–15]. In the simplest case, this scenario is modelled as a

self-propulsion with a (constant) velocity v along an orientation vector ê(θ). In the

model of an ABP, the self-propulsion direction gets randomised by assuming that the

orientation vector additionally is performing rotational diffusion on the unit-sphere

with the diffusion coefficient DR. Despite its simplicity, this “toy” ABP model has

proven tremendously successful in analytical analysis and as a simulation model to

describe active matter on a macroscale [16, 17]. Emerging complex macroscopic phases

such as motility-induced phase separations [18–23], (chemo-) tactic behaviour [24, 25],

flocking [26,27], or swarming [28–30] have been reported.

The ABP model has been further developed to include active processes that

explicitly break the spatial symmetry via an effect of active chirality ω [1–4]. This

generalisation in the model allows to describe even more complex emerging phenomena,

such as odd viscosity [31, 32], finite-size rotating clusters [33, 34], hyperuniform

behaviour [35, 36] and edge currents at interfaces [37–39]. This analytical extension

is inspired by experimental observation of bacteria [40–42], sperm cells [43, 44], or

syntactical particles [45, 46] as well as macroscopic chiral robots [47–49], which show

an archetypal chirality in their trajectories on the microscale. Remarkably, already over

a century ago, experimental observations were made in living organisms, which showed

that trajectories of certain microorganisms such as Loxodes and Paramecium break the

spatial symmetry and need an interpretation in terms of chiral self-propulsion [50].

An alternative, more coarse-grained viewpoint for describing the emerging complex

structures in active systems is based on continuum field-theoretical models of active

matter. The starting point is to address the diffusive behaviour of a conserved order

parameter, such as the mean particle probability-density function (PDF) ϱ(x, t), where

ϱ(x, t) dx describes the probability of finding a particle in the interval x and x + dx

at time t, as in the well-known Model B [51]. This model successfully describes the

equilibrium behaviour of matter, and especially the dynamics of phase separation [52].
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An inherent assumption in the derivation of these field-theoretical models is that the

underlying processes follow the detailed-balance dynamics, that is broken in active

systems. It is, therefore, natural that field theories that aim to describe the behaviour

of active matter have to revisit the foundations and need to go beyond the detailed-

balance restrictions. Successive works culminated in the recently introduced, so-called

Active Model B+ (AMB+) [53–55], that attracted a lot of interest lately [56–59].

Continuum approaches, very recently, have also been extended to include active chirality

and specifically account for broken-time reversal symmetries [36, 60,61].

The modelling of inter-particle interactions is crucial for such continuum

approaches. While previous approaches are predominantly focused on interaction

potentials, here we model the interactions via a geometric approach instead. The

approach was originally introduced by Bruna and Chapman in Refs. [62, 63] and

thereafter successfully applied to ABPs already [64]. The basic idea is to include particle

interactions by restricting the domain of definition of the time-evolution equation and

thereby creating forbidden areas, which correspond to situations with a particle overlap.

We apply this idea to the ACP model and derive an effective one-body description

of the full one-particle PDF p(x, θ, t) to find a particle at position x with the self-

propulsion vector of angle θ at time t after starting with the sharp initial conditions

x = x0, θ = θ0, i.e. p(x, θ, t0) = δ(x − x0) δ(θ − θ0) at t = t0. The resulting time-

evolution equation explicitly accounts for two-particle steric interactions and therefore

its validity is restricted to the dilute limit. To arrive at a field-theoretical description

for the mean particle PDF ϱ(x, t), one typically proceeds by integrating out the effect

of the angle [65, 66]. We follow this procedure and arrive at an (infinite) hierarchy

of the hydrodynamic modes of the active particle, of which the mean particle PDF

constitutes the zeroth order mode. This hierarchy is mathematically very similar

to the famed Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy in kinetic

theory [67]. Similar to that hierarchy, in continuous active matter theories one is also

required to close the hierarchy to make analytic progress [68, 69].

We transform the closure problem into a perturbation problem and derive two

field-theoretical descriptions for ACPs, based on the strictness of assumption on the

perturbation parameters. This gives us access to the otherwise phenomenological

coefficients in these models. We show that both an effective diffusive description and

the AMB+ can be obtained within our approach, depending on the order of the closure

scheme. Our work moreover suggests that the AMB+ is a natural generalisation of

equilibrium field theories to describe the continuum behaviour of active matter. We

further have first-principles access to the coefficients in the AMB+ and it turns out,

that, surprisingly, they are altered by active chirality in such a way that they can even

change sign as a function of chirality.

The remainder of this work is organised as follows. In Section 2.1 we introduce the

mathematical model and describe our approach to deal with inter-particle interactions

in the geometric sense. In Section 2.2 we derive in detail the effective one-body time-

evolution equation of the PDF. To our understanding, the physics community is rather
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unaware of this specific method to handle inter-particle interactions, for which we

introduce it in appropriate detail. In Section 2.3 we thereafter derive the hierarchy

of hydrodynamic modes, and in Section 2.4 we introduce the mathematical steps to

close the hierarchy. In Section 2.5 we go one step beyond the simplest closure and find

that the time-evolution of the mean particle PDF equals the form predicted by the

AMB+. In Section 3 we conclude and provide an outlook to further and related works.

2. Theory: From active chiral particles to the Active Model B +

2.1. Model

In this Section, we introduce the model of interacting ACPs as sketched in Fig. 1a

and how to deal with their excluded-volume interactions in a geometric sense, see also

Fig. 1b. We finish by formulating an effective one-body description.

2.1.1. Setup. We consider the dynamics of N interacting ACPs in two dimensions.

The particles centres xi(t) and angular coordinates θi(t), i ∈ {1, . . . , N} move according

to the overdamped Langevin dynamics [5, 70]

∂

∂t
xi = v ê(θi) +

√
2DT ηi(t), (1a)

∂

∂t
θi = ω +

√
2DR ζi(t). (1b)

Here ηi(t) and ζi(t) are independent Gaussian white noises with correlators

⟨ηi,α(t)ηj,β(t′)⟩ = δij δαβ δ(t − t′) and ⟨ζi(t)ζj(t′)⟩ = δij δ(t − t′), where Greek indices

α, β refer to particle coordinates and Latin indices i, j refer to particle labels. v

is the (constant) active self-propulsion velocity, ω the active torque and ê(θi) =

(cos(θi), sin(θi))
T is the unit orientation vector, where (·)T denotes a matrix transpose.

Note that for ω = 0, the model of Eqs. (1a) and (1b) reduces to the well-known

model of ABPs. DT and DR are the translational and rotational diffusion coefficients,

respectively. Note that the diffusion coefficients have different physical units, [DT ] =

m2/s and [DR] = 1/s.

The N identical disk-like particles have a diameter d and are assumed to interact

hard-core with each other. For an illustration of the model system see also Fig. 1a.

The ACPs are modelled to diffuse in a spatially bounded domain xi(t) ∈ Ω ⊂ R2 of

typical size L×L and their angular coordinates are θi(t) ∈ [0, 2π). Using dimensionless

quantities by rescaling with L, the typical size of the domain is set to unity, whereas

the diameter of the particle becomes εd = d/L. We restrict the analysis to a

dilute system, i.e., we assume that Nεd ≪ 1. In contrast to typical approaches

to model the interactions, that is, via an interaction-potential term in the spatial

Langevin equation (1a), we instead restrict the domain of definition of the centre-of-

mass coordinates xi(t). We thereby follow a geometric approach to model particle

interactions as established by Bruna and Chapman [62, 63] that already has proven

successful in various contexts [71–73]. These authors also showed in a recent work [64]
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that within this model they can derive additional nonlinear cross-diffusion terms for

the description of sterically interacting ABPs, compared to more classical treatments of

interacting ABPs [74,75].

The fundamental idea in modelling steric interactions in this geometric sense is

that Eq. (1a) is defined on a restricted (spatial) domain ΩN
εd

= {(x1, . . . ,xN) ∈ ΩN ; ∀i ̸=
j: |xi(t) − xj(t)| ≥ εd} due to the excluded volume. The full model including Eq. (1b)

therefore is defined on ΛN = ΩN
εd
× [0, 2π)N . Note that as the angular coordinate is not

affected by the steric interactions, its domain of definition is not restricted. While for

the angular coordinate we assume periodic boundary conditions, the cost of treating the

particle interactions by restricting the domain of definition is that we have generated an

inner (moving) boundary as apparent from Fig. 1a. At this boundary, particles perform

hard elastic collisions similar to the container walls. Both inner and container-wall

boundaries therefore are treated with reflective boundaries. To simplify this problem,

we observe that for a dilute system finding configurations in the system where three

particles are close, or two particles are close to a container wall is of the order O(ε2dN
2).

Configurations where two particles are close or one particle is close to the wall, in

contrast, are of the order O(εdN) [62, 63]. It is therefore reasonable to assume that in

a dilute system, two-body collisions dominate the interactions and we can safely ignore

higher-order correlations. As we assume that all particles are identical, it is sufficient

to consider a system with N = 2 particles. In the end we will scale the resulting

interaction contribution by the particle number, which is justified as long as we stay

within the dilute limit.

2.1.2. Joint Fokker-Planck equation. The Fokker-Planck equation (FPE) for the two-

body joint PDF P2(t) = P2(x1, θ1,x2, θ2, t), defined on Λ2, reads [76]

∂

∂t
P2(t) = ∇1 ·

[
DT∇1 − vê(θ1)

]
P2(t) +

∂

∂θ1

[
DR

∂

∂θ1
− ω

]
P2(t)

+∇2 ·
[
DT∇2 − vê(θ2)

]
P2(t) +

∂

∂θ2

[
DR

∂

∂θ2
− ω

]
P2(t). (2a)

Here ∇i denotes the partial differential vector operator with respect to the position of

particle i ∈ {1, 2}. The reflective boundary condition reads

n1 ·
[
DT∇1 − vê(θ1)

]
P2(t) + n2 ·

[
DT∇2 − vê(θ2)

]
P2(t) = 0, (2b)

valid on ∂Λ2 = ∂Ω2
εd

= ∂Ω2 ∪ Scoll, where Scoll = {(x1,x2) ∈ Ω2; |x1(t)− x2(t)| = εd} is

the so-called (inner) collision surface. For an illustration see Fig. 1b. ni in Eq. (2b) is the

outward unit normal vector of disk i. Note that ni = 0 for xj ∈ ∂Ω2 for (i, j) = (1, 2)

and (2, 1) due to particle conservation, as well as n1 = −n2 on Scoll, due to elastic

collisions of particles. For the angular coordinate Eq. (2a) is supplemented with the

periodic boundary condition

P2(θi = 0) = P2(θi = 2π). (2c)
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Ω2
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Figure 1: (a) Sketch of the model setup of the ith spherical ACP of diameter d.

The particle is self-propelled by the active speed v whose direction rotates with the

active frequency ω. It is embedded in a thermal bath giving rise to fluctuations

in the spatial and angular coordinates (xi, θi) with respective strengths ∝ √
DT and

∝ √
DR, see Eqs. (1a) and (1b), respectively. (b) The particle coordinates are defined

on Λ2 = Ω2
εd
× [0, 2π)2, where Ω2

εd
= {(x1,x2) ∈ Ω2; |x1(t)− x2(t)| ≥ εd} is the allowed

(rescaled) configuration space within the bounded domain Ω ⊂ R2 and subtracted by

the regions of a particle overlap (white area). This excluded-volume creates a reflecting

boundary on ∂Λ2 = ∂Ω2 ∪ Scoll, made up from the container walls ∂Ω2 and an inner

moving, so-called collision surface Scoll = {(x1,x2) ∈ Ω2; |x1(t) − x2(t)| = εd}. Note

that εd = d/L, where L× L = |Ω| is the typical size of the bounded domain Ω.

It is convenient to use the structural similarities of the spatial and angular

coordinates and write Eq. (2a) in terms of joint variables χi = (xi, θi). The diffusion

coefficients form a diffusion matrix D = diag(DT , DT , DR) and the joint drift reads

f(θi) = (v ê(θi), ω)
T. The FPE (2a) written in the joint variables becomes

∂

∂t
P2(t) = ∇χ1 · [D∇χ1 − f(θ1)]P2(t) +∇χ2 · [D∇χ2 − f(θ2)]P2(t), (3)

valid on Λ2. We here use the joint partial differential operator ∇χi
= (∇i, ∂/∂θi)

T.

We are interested in analytically capturing the effects of particle collisions on the

one-body diffusive behaviour. Therefore, we aim at deriving an effective description for

the full one-body PDF p(x1, θ1, t) = p(χ1, t), which is defined as

p(χ1, t) =

∫
Λ(χ1)

dχ2 P2(t) =

∫ 2π

0

dθ2

∫
Ω\Bεd

(x1)

dx2 P2(t), (4)

where we take particle one to be the test particle of interest. The area Λ(χ1)

of integration is given by all allowed configurations for the second particle to be

placed everywhere apart from the excluded volume created by the first particle, i.e.

Λ(χ1) = Ω \ Bεd(x1)× [0, 2π), where Bεd(x1) is the disk of radius εd centred at x1.
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2.2. Effective one-body description

In this Section, we perform the integration to arrive at an effective one-body description

and encounter that the effect of particle collisions results in a so-called collision integral.

We solve this integral by the method of matched asymptotic expansions and provide

the effective one-body description. This Section follows Ref. [64] and adapts it to ACPs

to review and introduce the geometric method to deal with particle interactions to the

reader.

2.2.1. The collision integral. Integrating Eq. (2a) over the reduced configuration space

Λ(χ1) results in

∂

∂t
p(χ1, t) =

∫
Λ(χ1)

dχ2 ∇χ1 ·
[
D∇χ1 − f(θ1)

]
P2(t)

+

∫
Λ(χ1)

dχ2 ∇χ2 ·
[
D∇χ2 − f(θ2)

]
P2(t). (5)

We can easily evaluate the second integral, in which integration and differentiation are

with respect to the same variable. Using the divergence theorem and applying the

boundary conditions of Eqs. (2b) and (2c), we find∫
Λ(χ1)

dχ2 ∇χ2 ·
[
D∇χ2 − f(θ2)

]
P2(t)

=

∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2 ·
[
DT∇1 − vê(θ1)

]
P2(t), (6)

where dS2 n2 is the outward surface element of x2 and we used that n1 = −n2 on

∂Bεd(x1) and n1 = 0 for x2 ∈ ∂Ω.

The first integral in Eq. (5) cannot be evaluated that simply since integration and

differentiation are with respect to different particle labels. Instead, we have to use the

Reynolds transport theorem extended to spatial variation of integrals [77,78]. Together

with an additional use of the divergence theorem this results in∫
Λ(χ1)

dχ2 ∇χ1 ·
[
D∇χ1 − f(θ1)

]
P2(t) = ∇χ1 · [D∇χ1 − f(θ1)] p(χ1, t)

−
∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2 ·
[
DT (2∇1 +∇2) + vê(θ1)

]
P2(t). (7)

For details of this calculation, see Appendix A. We combine this integral with Eq. (6)

and find the effective equation for the full one-body PDF p(χ1, t) according to Eq. (5)

as
∂

∂t
p(χ1, t) = ∇χ1 · [D∇χ1 − f(θ1)] p(χ1, t)

−DT

∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2 · (∇1 +∇2)P2(χ1, χ2, t). (8)

In analogy to kinetic theory [67], we refer to this integral as the collision integral

and denote it by I(χ1, t). It captures the effect of two-body hard-disk collisions on
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θ
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Figure 2: The description of the problem changes from a particle-focused to a fixed-

particle perspective. The second particle is measured in relative units. Technically we

change from a description of (x1, θ1) for particle one and (x2, θ2) for particle two in (a) to

a description of (x1, θ1) for the effectively fixed particle one and the relative coordinate

(x1 + εdx, θ1 + θ) for particle two in (b). One advantage of this coordinate change is

that the collision surface in the new coordinates is given by the condition |x| = 1.

a probabilistic level. To evaluate this integral, we have to find an expression for the

joint PDF P2(χ1, χ2, t) in terms of the one-body PDF p(χ1, t), similar to the classical

closure problem in kinetic theory, known as the BBGKY hierarchy. This relation will

be specifically relevant in regions where the particles are close, and where evaluating

the collision integral will contribute to the effective description.

2.2.2. Matched asymptotic expansion. We aim at an approximation for P2 via the

method of matched asymptotic expansion [62–64, 71, 79]. We can suppose that

when the particles are far apart they are independent, given the hard-disk nature

of the interaction. In this so-called outer region, we define the outer joint PDF as

P out(χ1, χ2, t) = P2(χ1, χ2, t) and due to the independency argument we find that

P out(χ1, χ2, t) = p(χ1, t) p(χ2, t) + εdP
out
(1) (χ1, χ2, t) +O(ε2d). (9)

Note that P out
(1) is a function denoting the corrections at first order O(εd) to the

independence argument [80].

In contrast, when the two particles are close, the particles are correlated due to

interactions and we perform a variable change in this so-called inner region. We fix

particle one and measure the distance to this particle with respect to εd, see Fig. 2.

The coordinate change reads as (χ1,x2, θ2) 7→ (χ1,x1 + εdx, θ1 + θ). The inner PDF is
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defined as P in(χ1,x, θ, t) = P2(χ1, χ2, t). Rewriting the two-particle problem into inner

coordinates, we find

ε2d
∂

∂t
P in = 2DT ∇2

xP
in + εd∇x ·

[
v (ê(θ1)− ê(θ1 + θ))− 2DT ∇x1

]
P in

+ ε2d∇x · [DT ∇x − v ê(θ1)]P
in

+ ε2d

[
DR

(
∂

∂θ1
− ∂

∂θ

)2

− ω
∂

∂θ1

]
P in. (10a)

The no-flux boundary condition then translates into inner coordinates as

2DT x · ∇xP
in = εdx · [DT ∇x1 − v (ê(θ1)− ê(θ1 + θ))]P in, (10b)

which is valid on the collision surface Scoll defined in inner coordinates by {x ∈ R2; |x| =
1}. When formulating the problem in inner coordinates, we have an additional boundary

condition, which is replacing the otherwise implicit natural boundary condition on P2,

i.e., lim|xi|→∞ P2 = 0, i ∈ {1, 2}. In the framework of the matched asymptotic expansion,

this condition implies that the inner PDF has to match the outer PDF as |x| → ∞. An

expansion of the outer solution in inner coordinates gives

P out(χ1, χ2, t)=p p+ + εd

(
p x · ∇x1p

+ + P out,+
(1)

)
+O(ε2d), (10c)

where we have introduced the shorthand notations p = p(χ1, t), p+ = p(x1, θ1 + θ, t)

and P out,+
(1) = P out

(1) (χ1,x1, θ1 + θ, t) [64]. Expanding the inner solution in powers of εd,

P in=P in
(0) + εdP

in
(1) +O(ε2d), the zeroth-order inner problem becomes

0 = 2DT ∇2
xP

in
(0), (11a)

0 = 2DT x · ∇xP
in
(0), on |x| = 1, (11b)

P in
(0) ∼ pp+, as |x| → ∞, (11c)

with the straight-forward solution

P in
(0) = p p+. (12)

Note here, that P in
(0) is no function of the separation coordinate x.

Before we can write the first-order inner problem, we note from Eq. (10a), that at

order O(εd), we have that

0 = 2DT ∇2
xP

in
(1) + εd∇x ·

[
v (ê(θ1)− ê(θ1 + θ))− 2DT ∇x1

]
P in
(0)

= 2DT ∇2
xP

in
(1), (13)

as P in
(0) is no function of the separation variable x. Taking this into account, the first-

order inner problem reads

0 = 2DT ∇2
xP

in
(1), (14a)

x · ∇xP
in
(1) = x ·A(χ1, θ, t), on |x| = 1, (14b)

P in
(1) ∼ x ·B(χ1, θ, t) + P out,+

(1) , as |x| → ∞, (14c)
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where

A(χ1, θ, t) =
1

2DT

(
DT ∇x1(pp

+)− v(ê(θ1)− ê(θ1 + θ))pp+
)
, (15)

B(χ1, θ, t) = p ∇x1p
+. (16)

The solution can be obtained straightforwardly and is given by [62,63,73,77]

P in
(1) = a+ P out,+

(1) + x ·B− x

|x|2 · (A−B) , (17)

where a is an arbitrary integration constant. According to the expansion ansatz

P in ∼ P in
(0) + εdP

in
(1) +O(ε2d) for the inner PDF, we thus found that

P in = pp+ + εdx · p ∇x1p
+ − εd

x

2|x|2 ·
[
p+ ∇x1p− p ∇x1p

+

− v

DT

(ê(θ1)− ê(θ1 + θ)) pp+
]
+ εd(a+ P out,+

(1) ) +O(ε2d). (18)

2.2.3. Evaluation of the collision integral. We now use this approximate inner solution

to evaluate the collision integral. In inner coordinates, this is given by

I(χ1, t) = εdDT

∫ 2π

0

dθ

∫
|x|=1

dSx x · ∇x1P
in(χ1,x, θ, t), (19)

where we used that nx = −x on the collision surface Scoll. Using the inner solution of

Eq. (18), the collision integral becomes

I(χ1, t) = εdDT

∫ 2π

0

dθ
[
∇x1(pp

+)
]
α

∫
|x|=1

dSx xα (20)

+ ε2dDT

∫ 2π

0

dθ
[
∇x1P

out,+
(1)

]
α

∫
|x|=1

dSx xα

+ ε2dDT

∫ 2π

0

dθ
[
∇x1(p∇x1p

+)α

]
β

∫
|x|=1

dSx xαxβ

− ε2d
DT

2

∫ 2π

0

dθ
[
∇x1(p

+ ∇x1p− p ∇x1p
+)α

]
β

∫
|x|=1

dSx
xαxβ

|x|2

− ε2d
v

2

∫ 2π

0

dθ
[
ê(θ1)− ê(θ1 + θ)

]
α

[
∇x1(pp

+)
]
β

∫
|x|=1

dSx
xαxβ

|x|2 ,

where we introduced the Einstein convention, i.e., that the sum over double indices

is implicit: xαxα =
∑2

α=1 xαxα. There are two types of integrals appearing in

Eq. (20), namely, an integral of an outer unit normal vector over the whole unit sphere:∫
|x|=1

dSx xα = 0, by geometrical insight; and∫
|x|=1

dSx
xαxβ

|x|2 =

∫
|x|=1

dSx xαxβ = π δαβ, (21)

valid in two dimensions.
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As θ1 is independent of θ and kept constant for the variation of θ, we can define

a new variable θ̃ = θ1 + θ and use it to integrate out the θ-dependence in Eq. (20).

Therefore, we define the mean particle PDF

ϱ(x, t) =

∫ 2π

0

dθ̃ p(x, θ̃, t), (22)

and the polarisation

σ(x, t) = 2

∫ 2π

0

dθ̃ p(x, θ̃, t) ê(θ̃), (23)

as the zeroth and first-order moment of the full one-body PDF, respectively. Note the

factor of 2 in the definition of the polarisation, which is necessary for consistency later

on. Thus, the collision integral becomes

I(χ1, t) = ε2d
π

2
∇x1 ·

[
3DTp ∇x1ϱ−DTϱ ∇x1p+ v

(
ê(θ1)ϱ−

σ

2

)
p
]
, (24)

where ϱ = ϱ(x1, t), σ = σ(x1, t), and, as a reminder, p = p(x1, θ1, t).

As expected, the dependence on the separation coordinates x and θ vanished,

since we integrated out the effect of the second particle on the first. Thus, we can

back-transform into the original variables and then drop the index in the notation

(x1, θ1) 7→ (x, θ), similarly for the operator ∇1 7→ ∇. We insert the evaluated collision

integral into Eq. (8) and find the effective time-evolution equation for the full one-body

PDF p. This equation is valid for two hard-interacting particles. As introduced in the

beginning, in the dilute system of N particles, we can safely assume that two-particle

collisions dominate any higher-order correlations. The tagged particle can have (N − 1)

inner regions with each of the remaining particles under this assumption. It is thus

sufficient to multiply the collision integral by the factor of (N − 1) to account for the

interaction effect in the effective, dilute one-body description.

2.2.4. Effective one-body equation. We introduce the dimensionless parameter ϕ =

ε2dπ(N −1)/4, which for large N approximately equals the area fraction of the particles.

We then write the obtained time-evolution equation for the full one-body PDF p =

p(x, θ, t) as

∂

∂t
p = −v ∇ ·

[
(1− 2ϕϱ) ê+ ϕσ

]
p+

∂

∂θ

[
DR

∂

∂θ
− ω

]
p

+DT ∇ ·
[
(1− 2ϕϱ) ∇p+ 6ϕp ∇ϱ

]
, (25)

valid in the dilute limit, i.e., ϕ ≪ 1. Without the effect of chirality (ω = 0) this equation

was recently derived in Ref. [64] for ABPs. This systematic derivation of the one-body

description results in additional cross-diffusion terms (∝ ϱ∇p, ∝ p∇ϱ). These terms

were not reported in literature on phenomenological approaches [74, 75], works relying

on approximations of the pair correlation function [57,81], or classical dynamical density

functional theory [82,83]. These cross-diffusion, however, become specifically important

when dealing with different particle labels, and thus accounting for particle-identity in
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the effective description [62, 73]. Further, recent work shows that for ABPs, Eq. (25)

forms a well-posed problem for which a stationary state exists [84].

In the context of phase-separating active matter, typically effective self-propulsion

velocities v(ϱ) are introduced [18, 85] and constitute an essential theoretical trick to

achieve phase separation in purely repulsive active systems [65]. To the lowest order in

density, they are typically of the form of v(ϱ) = v0(1− aϕϱ) (v0 = const) which was also

derived using linear response theory [86]. The reason is simple: in regions with many

particles, the effective swim speed must be reduced. It is interesting that we naturally

obtain this form in the geometric integration procedure for hard interactions, and we

can constitute that a = 2 for steric interactions.

2.3. Hierarchy of hydrodynamic equations

We now project the time-evolution equation for the full one-body PDF p(x, θ, t) on

its angular modes, where the zeroth-order mode is given by the mean particle PDF

ϱ(x, t). This procedure generates a hierarchy of coupled particle differential equations

for the time evolution of the modes. We analyse these equations to provide a footing to

systematically close the hierarchy in the next Section.

2.3.1. Expansion in harmonic modes. To overcome the angular dependence of the full

one-body PDF, we expand the full one-body PDF in eigenfunctions of the rotation

operator ∂2/∂θ2 in Eq. (25). This results in a Fourier expansion, in which modes of

order n ∈ N0 have eigenvalue −n2 in two dimensions. This expansion can be brought

into the form

p(x, θ, t) =
1

2π

(
ϱ(x, t) + σ(x, t) · ê(θ) +Q(x, t) : ê(θ)⊗ ê(θ) + Υ(θ)

)
,(26)

where Q : ê⊗ê = Qαβ êβ êα denotes the full contraction with the outer product ê⊗ê, and

Υ(θ) refers to higher order modes. Notably, higher order (outer) products of the self-

propulsion vector ê(θ) = (cos(θ), sin(θ))T naturally appear as modes in this expansion.

Therefore, the expansion is also known as a Cartesian multipole expansion [87] and

finds wide use in the theory of liquid crystals [88]. Note that there exists an equivalent

approach, as other works in active matter use an angular multipole expansion at this

stage [25, 65, 89], where the second mode is replaced by (ê(θ) ⊗ ê(θ) − 1/2), where 1

denotes the identity tensor. The two expansions are equivalent, as Q is a traceless

object, see below.

The coefficients of the expansion are given by the mean particle PDF ϱ(x, t) (zeroth-

order mode), as defined above in Eq. (22), the mean polarisation σ(x, t) (first-order

mode), as defined above in Eq. (23), and the mean nematic order tensor (second-order

mode)

Q(x, t) = 4

∫ 2π

0

dθ p(x, θ, t)

(
ê(θ)⊗ ê(θ)− 1

2

)
. (27)
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Note that due to the similarity with hydrodynamic theories, the coefficients are

sometimes referred to as hydrodynamic coefficients, the hierarchy created by them as a

hydrodynamic hierarchy [65, 69].

The inner product on the unit-sphere is defined in the standard way as

⟨f(θ), g(θ)⟩ =
∫ 2π

0

dθ f(θ)g(θ), (28)

for two functions f and g. The modes of the Cartesian multipole expansion, {ên;n ∈
N0}, form an orthogonal basis with respect to this scalar product. Therefore, we can

project the full one-body PDF p(x, θ, t) onto the modes and obtain the hydrodynamic

coefficients

⟨p(x, θ, t), 1⟩ = ϱ(x, t), (29a)

⟨p(x, θ, t), ê(θ)⟩ = 1

2
σ(x, t), (29b)

⟨p(x, θ, t), ê(θ)⊗ ê(θ)⟩ = 1

4
Q(x, t). (29c)

2.3.2. Time-evolution of modes. Using the orthogonality of modes, we can project the

time-evolution equation for the full one-body PDF, Eq. (25), on each mode to obtain

a time-evolution equation for the corresponding hydrodynamic coefficient. Projecting

Eq. (25) on the zeroth-order mode, we obtain a time-evolution equation of the mean

particle PDF ϱ, which is given by

∂

∂t
ϱ(x, t) = DT ∇α

[
(1 + 4ϕ ϱ(x, t))∇αϱ(x, t)

]
− v

2
∇ασα(x, t). (30)

The mean particle PDF therefore obeys a continuity equation. This is expected on

physical grounds as ϱ is a conserved quantity. Specifically, this implies that ϱ is a slow

variable, i.e., a density perturbation of scale λ relaxes on a time scale which diverges

as λ → ∞. This observation will be confronted with the time-evolution equation for

the higher modes below. We further observe that the equation for the mean particle

PDF needs an explicit input from the polarisation σ. This coupling is induced by the

activity v in the model and persist for all modes, which generates a hierarchy. Formally

this hierarchy is similar to the famed BBGKY hierarchy of kinetic theory [67], where

also higher order modes implicitly alter the time-evolution of the mode in focus.

Projecting Eq. (25) onto the first order mode, we obtain a time-evolution equation

for the mean polarisation σ, which is given in component-form by

∂

∂t
σα(x, t) = DT ∇β

[
(1− 2ϕ ϱ(x, t))∇βσα(x, t) + 6ϕ σβ(x, t) ∇αϱ(x, t)

]
−v ∇β

[
(1− 2ϕ ϱ(x, t))

(
Qβα(x, t)

2
+ ϱ(x, t) δβα

)
+ ϕ σβ(x, t)σα(x, t)

]
−DR Γαβσβ(x, t). (31)

Again, we observe that the time-evolution equation for the mean polarisation needs both

input from the mean particle density ϱ as well as from the nematic order tensor Q. We

further observe that in contrast to the time evolution of the mean particle density the



From ACPs to AMB+ 14

structure of this equation is different. While ϱ obeys a continuity equation, Eq. (31)

has a sink term: −DR Γαβσβ(x, t). The polarisation, and as we will see, all higher

modes therefore are not conserved quantities, and their dynamics are governed by the

associated time scale of the sink term. For the mean polarisation, this time scale is

given by τ1 = 1/DR [90, 91].

This fundamental structural difference of the time-evolution equations arises in the

θ-term of the parental equation (25) of the hierarchy. While for the polarisation we

find that ê is the n = 1st-order eigenfunction of the rotation operator with eigenvalue

−n2 = −1, for the zeroth-order mode ϱ, the eigenvalue is zero. For the chirality-induced

term of Eq. (25), we observe a similar phenomenon. In the projection procedure, we

find that 〈
êα, ω

∂

∂θ
p

〉
=

ω

2π

∫ 2π

0

dθ êα(θ)
∂

∂θ
p(x, θ, t) (32a)

=
ω

2π
êα p(x, θ, t)

∣∣∣2π
0

− ω

2π

∫ 2π

0

dθ p(x, θ, t)
∂

∂θ
êα(θ) (32b)

= εαβ
ω

2π

∫ 2π

0

dθ p(x, θ, t) êβ(θ) (32c)

=
ω

2
εαβ σβ(x, t), (32d)

where we used that ∂/∂θ êα(θ) = −εαβ êβ(θ) and ε is the Levi-Civita symbol in two

dimensions, defined by εxx = εyy = 0 and εxy = −εyx = 1. The boundary term in

(32b) vanishes due to periodicity. When we are dealing with the zeroth-order mode, in

contrast, the projection
〈
1, ω ∂

∂θ
p
〉
, reduces to the boundary term and therefore is zero

due to periodicity in θ.

The joint effect of the rotation operator and the active chirality is the origin of

the sink term −DR Γαβσβ(x, t), where Γ = (1 + κε) and κ = ω/DR is the associated

dimensionless parameter accounting for the effect of chirality. In a more general context,

this parameter κ is also referred to as the oddness parameter [60, 92–94], since under a

reversal of the direction of chirality, ω → −ω, κ changes sign and therefore switches the

off-diagonal elements of the tensor Γ → ΓT.

We find the time-evolution equation for the nematic order tensor from projecting

Eq. (25) on the second order mode ê⊗ ê

∂

∂t
Qαβ(x, t) = DT ∇γ

[
(1− 2ϕ ϱ(x, t)) ∇γQαβ(x, t) + 6ϕ Qαβ(x, t) ∇γϱ(x, t))

]
− v ∇γ

[
(1− 2ϕ ϱ(x, t))Aαβγδ σδ(x, t) + ϕ σγ(x, t)Qαβ(x, t) +O(Υ)

]
− 4DR Γ̃αγQγβ(x, t). (33)

Here Aαβγε = (δαγδβε + δαεδβγ − δαβδγε) /2 and Γ̃ = (1+ κ ε/2) again accounts for the

chirality. The structural similarities of this equation to the polarisation equation are

that (i) Eq. (33) couples to neighbouring modes in the hierarchy and to the zeroth order

mode ϱ and (ii) the relaxation dynamics of the nematic tensor is governed by the time

scale τ2 = 1/(4DR) induced by the sink term of Eq. (33). Again we find that Q, as
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all higher-order modes, is not conserved. We observe that the relaxation time scale

originates in the eigenvalues of the rotation operator, i.e., the relaxation time scale of

the nth mode is given by τn = τ/n2 = 1/(n2DR), where we denote τ = τ1 = 1/DR as

the fundamental time scale and n ≥ 1.

In principle, the time-evolution equations for all higher-order modes can be found

by the same projection procedure as presented before. This results in an infinite system

of coupled time-evolution equations. To get an analytical, meaningful result from this

hierarchy, we have to close this hierarchy based on physical arguments about negligible

contributions from higher-order modes.

2.4. Closure of the hierarchy

We proceed to introduce the physical arguments to close the hierarchy by neglecting

higher-order modes. Therefore, this problem naturally amounts to a perturbative

analysis of the hierarchy. As the result of the minimal non-trivial closure scheme, we

find an effective diffusion equation for the mean particle density.

2.4.1. Adiabatic approximation. It would be a formidable task to find a general solution

for the nth order hierarchical equation and plug this into the (n−1)th order equation. By

such a procedure, one aims to identify quasi-irrelevant modes for the effect on the time

evolution of ϱ. But to our best knowledge, such a procedure has never been successfully

applied before for a general order. Instead, it is convenient [5,25,57,66,69,95–97] to take

advantage of the time scale separation in the system. The dynamics of the polarisation

and all higher-order modes are governed by their respective time scale τ = τ1 = 1/DR

induced by rotational diffusion. τ then reasonably can be assumed to be much smaller

than the relaxation time scale of the density, which can be arbitrarily large. Therefore,

formally we will investigate the limit of τ → 0, called adiabatic or quasi-stationarity

approximation, since we adiabatically enslave the behaviour of higher order modes to

the mean particle density and assume an instantaneous response to changes.

In some approaches, the adiabatic approximation is also handled differently.

Especially in the context of phase separations, the nematic order tensor is assumed to

be an adiabatic variable, but the polarisation is treated as a dynamical variable. This

appears in active Brownian systems [69,98,99], but also in active chiral systems [95,100].

As explicitly shown there, such an ansatz can qualitatively improve the agreement of

the analytical prediction with the numerical data, but it can rarely be treated fully

analytically when aiming for the effect of higher-order modes on the relaxation of the

mean particle PDF. In related hierarchy-closure problems, nevertheless, an analytic

treatment of more than one dynamical variable and a shift of the adiabatic assumption

to second order has recently been applied successfully in the framework of dynamical

density functional theory [101, 102]. Here many-body correlation functions form an

analogous hierarchical problem, but the approach is analytically rather involved and it

is not obvious how it can be applied to our situation. We, therefore, restrict our analysis
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to the basic situation and assume all higher-order modes to be adiabatic.

We will demonstrate the adiabatic approximation for the polarisation equation, but

the same arguments hold true for all higher-order modes. Pointing out the essentials,

Eq. (31) can be written as

∂

∂t
σα +

1

τ
Γαβσβ = fα(ϱ,σ,Q), (34)

where f denotes the leftover gradient-structure terms of Eq. (31). We can solve this

equation formally by

σα(x, t) = e−Γαβt/τσβ(x, 0) +

∫ t

0

dt′ e−Γαβ |t−t′|/τfβ(ϱ,σ,Q), (35)

where ϱ,σ and Q have to be evaluated at t′ inside the integral. The integrating factor

e−Γαβt/τ is defined as the usual matrix-exponential and can be reformulated as

e−Γαβt/τ = e−t/τ

(
cos

(
κ

t

τ

)
δαβ − sin

(
κ

t

τ

)
εαβ

)
, (36)

using the anti-symmetry property of Γ. The active chirality (κ ∝ ω) therefore results

in oscillations, which decay exponentially on the typical time scale τ . The exponential

factor further allows us to write
∫∞
0

dt exp(−Γαβt/τ) = τΓ−1
αβ , which together with

limτ→0 exp(−Γαβ|t|/τ) = 0αβ for |t| > 0 results in limτ→0 Γαγ exp(−Γγβ|t|/τ) =

2τ δαβδ(t). Here the factor 2 originates from the integrals taken to be for positive

times only. The formal solution of Eq. (35) evaluated in the limit of τ → 0 thus reads

lim
τ→0

σα(x, t) = τΓ−1
αβ fβ(ϱ,σ,Q), (37)

where now ϱ,σ and Q are functions of t. The corresponding adiabatic approximation

for the nematic order tensor similarly reads

lim
τ→0

Qαβ(x, t) = 4τ Γ̃−1
αγ gγβ(ϱ,σ,Q,Υ), (38)

where g accounts for the leftover terms of Eq. (33) and the modes again are evaluated

at t.

2.4.2. Closure of the hierarchy via perturbation approach. The adiabatic approximation

as such does not suffice to close the hierarchy. The coupling to higher order

modes in the hierarchy for each mode enters via the activity-induced term −v ∇ ·
[(1− 2ϕ ϱ) êp+ 2ϕ σp] from the parental equation (25). This coupling already takes

place in interaction-free considerations (ϕ = 0), as it specifically arises due to the

appearance of the self-propulsion vector and first-order mode ê. To effectively close

the hierarchy we therefore have to argue that higher-order modes can be neglected as

compared to lower ones. This consequently turns the closure of the hierarchy into a

perturbation problem.

We introduce a dimensionless time via the natural time scale of the system τ

and dimensionless space via the mean-particle distance ldist = L
√
ϕ. The two natural

physical length scales in the system are the persistence length lpers = v/DR induced by
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activity and the diffusion length scale ldiff =
√
DT/DR induced by thermal equilibrium

fluctuations [64]. We denote the parameters, which arise when comparing the physical

length scales with the dimensionless length scale ldist as εp and εD and observe the

following relation between them:

εp =
lpers
ldist

, εD =
ldiff
ldist

, and
εp
εD

=
lpers
ldiff

=
v√

DTDR

= Pe. (39)

Here Pe stands for the Péclet number, which measures the relation of activity-induced

self-propulsion versus thermally induced displacement.

Here we take εp and εD to be two independent perturbation parameters. We

show that depending on their relation to the Péclet number, different field theoretic

descriptions can be obtained. The adiabatic assumption thereby justifies independent

small active and passive length scales, since both lpers ∝ τ and ldiff ∝ τ . This treatment

is in contrast to previous work, where this subtle point of taking both parameters small

and not only their ratio (the Péclet number) was often left implicit or was overlooked.

εp and εD compare the active and passive physical length scales in the system to

the dimensionless length scale, which we choose as the mean particle-particle distance.

This is a careful choice, since the other natural length scales in the system, the particle

diameter d (which also equals the interaction length scale for hard systems) and the

typical box size L were too small and too big, respectively, and already form the small

parameter ϕ ∝ (d/L)2. Together with the assumption of a dilute system, the mean

particle-particle distance appears as the correct length scale interpolating between a

too-narrow or too-coarse-grained view on the dynamics.

The aforementioned analysis reveals that the coupling to higher-order modes takes

place in the activity-induced term at each order. To close the hierarchy, we therefore

need to decide up to which order we consider the parameter εp. For this work, and

referring to what is typical in the literature [25, 57, 66, 69, 95–97], we truncate the

hierarchy at order O(ε3p). We thus ignore contributions from higher modes such as

Υ in the nematic equation. Together with the adiabatic assumption Eq. (33) for the

nematic tensor thus becomes

Qαβ(x, t) =
εD
4
Γ̃−1
αδ∇γ

[
(1− 2ϕ ϱ(x, t)) ∇γQδβ(x, t)

+ 6ϕ Qδβ(x, t) ∇γϱ(x, t))
]
. (40)

Eq. (40) constitutes a fixed-point problem for Q. We observe that Eq. (40) has no

sink term and therefore has a definite, perturbation-free solution given by Q = 0. This

is a generic observation: closing the hierarchy at order O(εnp ) results in the fixed-point

problem for the (n− 1)th order mode to only have the trivial solution.

2.4.3. Effective diffusion equation. In the following, we investigate the resulting time-

evolution equations for the density for different orders of truncation in the polarisation

equation. We start with the first non-trivial case by allowing for terms of order O(ε1p)
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for the polarisation. Here, the adiabatic polarisation reads

σα = −εp Γ−1
αβ

[
(1− 4ϕ ϱ)∇βϱ

]
. (41)

Note that since the diffusive parameter εD originates from a Laplace operator it only

appears at even powers. Thus, there is no term at order O(εpεD) that could be included

at this closure of the polarisation. The mean particle density from Eq. (30) at this order

becomes

∂

∂t
ϱ(x, t) = ε2D ∇α

[
(1 + 4ϕ ϱ(x, t)) ∇αϱ(x, t)

]
+

ε2p
2

1

1 + κ2
∇α

[
(1− 4ϕ ϱ(x, t)) ∇αϱ(x, t)

]
. (42)

As apparent, the chosen closure scheme results in a time-evolution equation of the

mean particle density at order O(ε2p) and O(ε2D). Now, by comparing the terms under

consideration with the truncated terms we can learn about the regime of validity of

Eq. (42). This gives us that (i) ε2p ≫ ε3p, which is consistent with our perturbative

assumption of εp ≪ 1, but we also find that (ii) ε2D ≫ ε3p, which tells us that Eq. (42)

is valid in the regime of Pe ≪ 1/ε
1/2
p . Together (i) and (ii) do not form a precise upper

bound to the Péclet number, in fact it can be arbitrarily large and therefore an analysis

of the microscopic parameters is essential when using this field-theoretical description.

Eq. (42) is written in dimensionless form. Thus we can reintroduce the units of

space and time, i.e., τ for time and ldist for space, compare also relation (39). The

time-evolution equation for the mean density becomes

∂

∂t
ϱ(x, t) = ∇ ·

[ (
Deff

T (ϱ) +Deff
A (ϱ)

)
∇ϱ(x, t)

]
. (43)

The time evolution of ϱ at this order thus follows an effective diffusion equation [65,

74, 103], where Deff
T + Deff

A form the interaction-corrected diffusion coefficients due to

thermal and active motion, respectively, and are given by

Deff
T (ϱ) = DT (1 + 4ϕ ϱ(x, t)) , (44a)

Deff
A (ϱ) = Dω

A (1− 4ϕ ϱ(x, t)) . (44b)

Here DT stands for the thermal (equilibrium) diffusion coefficient, as introduced in the

microscopic Langevin description (1a). Dω
A = D0

A/(1 + κ2) = v2/(2DR(1 + κ2)) is the

chirality-affected active diffusion coefficient, which describes the ballistic motion. D0
A is

thereby a characteristic of a purely active particle and relates it to the randomisation of

the self-propulsion vector due to rotational diffusion. In accordance with observations

in the literature [103–106], active chirality ω rescales the active diffusion D0
A, as D

ω
A can

also be written as Dω
A = v2DR/(2(ω

2 +D2
R)). Remember that κ = ω/DR.

Relations (44a) and (44b) state that hard-core interactions on the one hand enhance

the thermal diffusion and on the other hand reduce the active diffusion. For the passive

motion, this is in accordance with the observation that the collective diffusion, in what

sense Deff
T (ϱ) also can be interpreted, gets enhanced by steric interactions [73, 77, 107].

For the active motion similarly the interaction-reduction of the associated diffusion
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coefficient Deff
A is no surprise. It rather can be regarded as an analytic necessity for

the strong theory-, simulation-, and experiment-supported existence of motility-induced

phase separations [19, 20, 108–110], i.e., the phenomenon that purely repulsive active

systems can phase-separate as a function of particle density. This phenomenon is only

possible if the associated diffusion process becomes unstable, i.e., the effective diffusion

coefficient can formally turn negative.

2.5. Active Model B +

In this Section, we go one step beyond the simplest non-trivial closure approximation by

considering mixed terms of the perturbation parameters. This amounts to a much richer

field-theoretical description but for the price of a much narrower regime of validity. We

find that the dynamics of the mean particle PDF follow the recently introduced AMB+,

to which we, therefore have first-principles access for the parameters. Surprisingly

here we find that the characteristic AMB+ parameters all change sign as a function

of chirality.

2.5.1. Effect of mixed perturbation parameters. In this work, we treat both the activity

as well as the thermal diffusion-induced length scales as small compared to the inter-

particle distance. This is justified by the assumption of a dilute system. We are thus

formally dealing with a two-parameter perturbation theory. It is therefore natural that

besides arguing for the smallness of each of the parameters εD ≪ 1 and εp ≪ 1, we also

have to specify their relative size. This is only possible by making a third assumption

about the Péclet number, the natural scale relating the active and passive motion of a

tracer.

We already observed from Eq. (41) that the diffusion length-scale parameter εD
only appears in even powers (due to its origin in the second order Laplace operator).

Therefore, we can go a step further in the truncation scheme, by considering the

polarisation up to order O(ε1pε
2
D). The adiabatic polarisation can self-consistently be

obtained from Eq. (31) at the desired order to be

σα = −εp Γ
−1
αβ

[
(1− 4ϕ ϱ) ∇βϱ

]
− εpε

2
D

(
Γ−1

)2
αβ

[
∇2

γ − 2ϕ
(
3ϱ ∇2

γ − (∇2
γϱ) + 2(∇γϱ) ∇γ

) ]
∇βϱ. (45)

We observe here that the higher-order gradient terms of the mean particle density arise

together with a matrix product of the chiral matrix Γ. For an arbitrary vector a, the

contraction of the relevant matrices contributes

aα Γ−1
αβ aβ =

1

1 + κ2
aαaα, (46a)

aα
(
Γ−1

)2
αβ

aβ =
1− κ2

(1 + κ2)2
aαaα, (46b)

where due to the antisymmetric structure of Γ−1 = (1−κε)/(1+κ2) only the respective

diagonal elements are relevant in the full contraction.
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Inserting this expression for the polarisation into Eq. (30) for the time-evolution of

the mean particle density ϱ, we obtain

∂

∂t
ϱ(x, t) = ε2D∇α

[
(1 + 4ϕ ϱ)∇αϱ

]
+

ε2p
2

1

1 + κ2
∇α

[
(1− 4ϕ ϱ)∇αϱ

]
+
ε2pε

2
D

2

1− κ2

(1 + κ2)2
∇α

[
∇2

γ − 2ϕ
(
3ϱ∇2

γ − (∇2
γϱ) + 2(∇γϱ)∇γ

) ]
∇αϱ. (47)

It is now obvious that, to obtain this field-theoretical description for the density

compared to Eq. (42), we further encounter the mixed term of order O(ε2pε
2
D), which is

only possible if this term is assumed to be much greater then the disregarded terme, e.g.

that of order O(ε3p). An easy algebraic analysis shows that this is only possible when

Pe ≪ εD ≪ 1 due to the perturbative closure scheme.

2.5.2. Active Model B +. If we reintroduce physical units for space and time, i.e., τ

for the time ldist for the space, compare also relation (39), we can arrange Eq. (47) in

the form

∂

∂t
ϱ(x, t) = a∇2ϱ+ b∇2(ϱ2)− k0∇4ϱ− k1

[
∇2(∇ϱ)2 + 2∇2(ϱ∇2ϱ)

]
+ λ∇2 (∇ϱ)2 − ξ∇ · (∇ϱ)(∇2ϱ), (48)

where

a = DT +Dω
A, (49a)

b = 2ϕ (DT −Dω
A) , (49b)

λ = ϕDω
ADT

1− κ2

1 + κ2
, (49c)

ξ = −8ϕDω
ADT

1− κ2

1 + κ2
, (49d)

k[ϱ] = Dω
ADT

1− κ2

1 + κ2
(−1 + 6ϕ ϱ(x, t)) , (49e)

and k[ϱ] = k0+2k1 ϱ(x, t). Eq. (48) is known as the (deterministic) AMB+ [53–55,111],

and can be rearranged into the form

∂

∂t
ϱ(x, t) = −∇ ·

[
−∇

(
δF
δϱ

+ λ(∇ϱ)2
)
+ ξ(∇ϱ)(∇2ϱ)

]
, (50a)

where

F [ϱ] =

∫
dr

(
f0[ϱ] +

k[ϱ]

2
(∇ϱ)2

)
(50b)

is the free-energy functional and f0[ϱ] = a/2 ϱ2+ b/3 ϱ3 is the bulk free-energy density.

Note that typically ϱ′ = ϱ − ϱMF is taken to be the order parameter, where ϱMF is

the mean-field critical value of the density. If one does so, a term ∝ ϱ3 is forbidden

by symmetry in f0, but we instead work with the density ϱ itself. Note that Eq. (50)

was first written down based on phenomenologically accounting for systems with broken

detailed-balance to lowest order terms in Refs. [53,55].
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2.5.3. First-principles expressions for field-theoretical parameters. The parameter k[ϱ]

in the free energy is known as the Cahn-Hilliard parameter [112]. When first introduced,

this parameter was the minimal attempt in an equilibrium model to extend the bulk

free energy F to further include density-gradient-induced inhomogeneities into the

description. Via this very successful approach, field theories could nicely capture

phase-separation dynamics in equilibrium models [52, 113]. In the general formulation,

k[ϱ] is density-dependent, and a Taylor expansion to lowest order in the density gives

k[ϱ] = k0 + 2k1ϱ. The coefficients k0 and k1 are found in our model by comparing the

first-principles time-evolution equation (47) with the phenomenological equation of the

AMB+ (48). From an equilibrium perspective, it might appear surprising that from

Eq. (49e) we find that k0 < 0 for a non-chiral system (κ = 0) and thus also k[ϱ] < 0 to

lowest order. In an equilibrium field theory, this would lead to an unbounded free energy

and the non-physical possibility of a system minimising its free energy by creating more

and more interfaces due to phase separation. But for an active field theory such as the

AMB+, the time evolution is not solely governed by a free-energy structure. Further

terms ∝ λ, ξ balance the free-energy governed evolution, and thus equilibrium intuition

can fail. Note also that in our first-principles derivation for active systems k[ϱ] ∝ Dω
A,

and therefore this quantity vanishes as the model is approaching an equilibrium situation

(Dω
A → 0). Finally, the observation of k0 < 0 is consistent with other works on the

AMB+ [53, 57], but (active) chirality adds a new perspective, since here k0 and k1
change sign as κ > 1.

The observation, that the coefficients which are induced by activity and interactions

(λ, ξ, k[ϱ] ∝ ϕDω
A) can change their sign as a function of chirality is rather surprising.

From the Langevin dynamics and the integration procedures, we would have not

expected that chirality and interactions could interplay such, that they lead to physical

consequences. In the hard-core interacting scenario the angular coordinate is not altered

by the excluded-volume interaction of the spatial coordinate, and therefore chirality does

not affect the time-evolution of the full one-body PDF beyond the (trivial) interaction-

free terms, as can be seen from Eq. (25). Any interplay of spatial and angular coordinates

is only introduced in the projection on the hydrodynamic modes. We can nevertheless

qualitatively justify why the change in the behaviour happens at κ = 1. Similar

to the rotational diffusion coefficient, which introduces a time scale in the system

τ = τdiff = 1/DR, the active chirality introduces a time scale as well, namely, τact = 1/ω.

These time scales represent the noise and the deterministic circular contribution to the

active motion of the particle, respectively. Hence the parameter κ = ω/DR = τdiff/τact
measures which contribution is dominating the motion of a particle, similar to what was

recently reported in Ref. [105,114]. That means that κ < 1 corresponds to a system, in

which the diffusive motion dominates the active particle, whereas κ > 1 corresponds to

a deterministic-circular-motion determined motion, see also Fig. 3. Interestingly, when

both effects are of equal magnitude, λ, ξ, k[ϱ] = 0, the system again behaves as described

by the effective diffusion dynamics of Eq. (43).

The phenomenological parameters λ and ξ represent the active generalisations of
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Figure 3: For ACPs one can define the parameter κ = ω/DR, which is a measure of

active chirality ω versus rotational diffusion DR of the particle. In a related context,

this parameter is known as the oddness parameter [77, 89, 92, 94]. The characteristic

parameters of the AMB+, λ,−ξ and k[ϱ] all scale ∝ (1−κ2)/(1+κ2), see also Eqs. (49c)

to (49e). Thus, they are positive as long as |ω| < DR, i.e., the circular motion is

dominated by diffusion, and are negative for |ω| > DR, i.e., the motion is dominated by

activity. Note that the sign of ω accounts for the clockwise or counterclockwise direction

of the active chirality.

equilibrium Model B [51] (∂ϱ/∂t = −∇Jeq = ∇(δF [ϱ]/δϱ), where ϱ is the conserved

order parameter, Jeq the equilibrium (deterministic) current and F is the equilibrium

free energy). Since this model was constructed on the basic principle of the system to

obey detailed-balance, to describe active matter, this restriction had to be overcome.

A first step in the development of active field theories was the so-called Active Model

B (AMB) [85, 115], where λ ̸= 0 but ξ = 0. This model still attracts interest as it

represents the first step towards an active field theory [116,117], but it was shown that

even though quantitatively the coexisting liquid and vapour densities are changed, the

AMB cannot report any quantitative changes in the coarsening dynamics as compared

to the known dynamics found by phenomenologically introducing activity in the Model

B [115]. Note that Eq. (43) as the lower order result of the closure scheme, has such a

Model B structure with coefficients altered by activity.

The sought qualitative changes in the phase-separation dynamics of active matter

could thereafter be found by the generalised AMB+ where λ ̸= 0 and additionally

ξ ̸= 0. Similarly to the AMB, the AMB+ as the most general isotropic model at this

order goes beyond the typical free-energy structure of Model B (λ ̸= 0). For the AMB,
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the λ-term defines a (local) non-equilibrium chemical potential µneq = δF/δϱ+λ(∇ϱ)2,

since the current is still of a gradient form. For the AMB+ instead the ξ-induced current

cannot be put into a gradient structure anymore and therefore allows for circulating real-

space currents ∇ ∧ Jneq ∝ ξ. Further, as a result of the non-gradient structure of the

current, the non-equilibrium chemical potential becomes non-local [53,54] and therefore

amounts to fundamental differences of AMB and AMB+. As these studies suggest,

this non-locality seems to be a necessary ingredient to describe the behaviour of active

matter from a field theoretical perspective.

Finally, it is interesting to note that as a result of our first principles approach, the

AMB+ appears as the most natural choice of an active field theory which relies on an

expansion in terms of density gradients. We observe from Eqs. (49c) and (49d) that

λ = −8ξ. Thus, it is not reasonable to include one but leave out the other parameter

in the field- theoretical description, similarly to what was pointed out recently [59].

We further observe that, as argued phenomenologically, both λ, ξ ∝ DTD
ω
A, such that

the AMB+ reduces to an interaction-corrected, passive diffusion equation for Dω
A → 0.

Interestingly, it also reduces to the non-equilibrium effective diffusion equation (43) as

DT → 0, i.e., when the thermal motion becomes negligible compared to the activity.

Lastly, as expected, λ and ξ are only present in an interacting system (λ, ξ ∝ ϕ), since

they are known to alter the phase-separation dynamics.

3. Conclusion

We here extended a geometric approach [62–64, 73, 77] to deal with particle-particle

interactions by restricting the domain of definition of their diffusing centrers. Forbidden

overlaps of the particles correspond to forbidden areas in the domain, creating a

configuration space with inner moving boundaries. Based on that we derived an effective

time-evolution equation for the full one-body PDF. We proceeded by projecting the

full one-body PDF onto its angular modes, which resulted in a coupled hierarchy of

hydrodynamic modes. By scrutinising the underlying assumptions we turned the closure

scheme into a perturbation problem and found effective time-evolution equations (field-

theories) for the mean particle density.

One major result of our work is the following. We observed that this procedure

provides us with first-principles access to the otherwise phenomenological parameters

of field-theoretical descriptions of active matter. We find that, beyond an effective

diffusive description, the microscopically best justified theory of a continuous model is

the AMB+ [53,55]. This was also reported in another recent first-principles derivation

of the AMB+ for non-chiral ABPs [57]. From a technical point of view, our work

unravels the theoretical necessities of the regimes of validity to obtain such a coarse-

grained model for the description of active matter. Specifically, we find that when

neglecting the time evolution of higher modes such as polarisation or nematic order,

in the so-called adiabatic limit, the AMB+ model is microscopically justified only in

the limit of low Péclet numbers, i.e., when thermal diffusion dominates active motion.
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Figure 4: We numerically solve the AMB+ dynamics of Eq. (50) with the coefficients

given by Eq. (49) for different times on a periodic two-dimensional lattice [118].

We chose the system parameters for the passive and active diffusivity as DT/D0 =

1, D0
A/D0 = 0.05 rescaled by some reference diffusivity D0, and the volume fraction

as ϕ = 0.1. With this choice of parameters we stay within the regime of validity of

our derived AMB+ dynamics, i.e., Pe =
√
2D0

A/DT ≪ 1 and ϕ ≪ 1. Starting from a

random initial distribution, the density quickly relaxes to a homogeneous steady state

ϱ(x, t) = ϱ0 = 0.5, where the white arrows indicate the direction of the normalised

diffusive flux (note the different magnitudes of the density variation at different times).

Different regions of active chirality κ = ω/DR only affect the density relaxation at

later times (t = 40, 400), as only higher-order density gradient terms of the AMB+

are affected by the sign-change of the coefficients. In the plots, time is rescaled by the

natural time scale τ = 1/DR and space is measured in units of
√
D0τ .

Whether the microscopic justification for the AMB+ model can be extended to regimes

of higher activity is a subject of future research.

The main prediction of this work is that active chirality has a non-trivial influence

on the dynamics of the mean particle PDF ϱ(x, t). Even though in the simplest version

of the ACP model chirality is not altered by particle interactions (see again the Langevin

description in Eq. (1)) and hence its effect on the full one-body level is rather superficial,

it becomes most prominent when integrating out the angular dependence of the full one-

body PDF p(x, θ, t). We find that an odd tensor [73,94] Γ−1 ∼ (1−κε) emerges, where

chirality defines the off-diagonal elements κ = ω/DR. Powers of that tensor, and hence

chirality, eventually, can change the sign of all activity-induced coefficients of the AMB+,
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λ, and ξ, as well as the Cahn-Hilliard coefficient k[ϱ]. Restricted to the effective diffusion

dynamics similar to Eq. (43) the alternative approach of Ref. [103] did not report this

phenomenon, as their method to incorporate interactions assumes translational and

rotational invariance and therefore can only treat chirality pertubatively. Whether

the sign-change of the coefficients has implications for the phase-transition dynamics,

however, cannot be addressed within our model due to its restricted validity to regimes

away from phase transitions for particles with repulsive interactions. In the regime of

validity of our AMB+ model, numerical solutions of Eq. (50) with the parameters of

Eqs. (49) only admit a homogeneous phase, see Fig. 4.

The systematic analysis presented in this work allows us to further include the

effect of nematic order on the time-evolution of the mean particle PDF, but it would

amount to a field-theoretical description at an even higher order than the AMB+ (which

is already at fourth order in density gradients). The AMB+ was recently shown to be

deducible from such a (stable) higher-order model [119], where it was shown that the

AMB+ itself is unstable for sufficiently high order parameters. We suspect a similar

behaviour if one performed the corresponding closure scheme on the level of the nematic

order in our theory, which we leave for future work.

Inspired by a rich behaviour of complex macroscopic phenomena in active matter,

an additional step would be to directly couple the chirality to the spatial interaction

of the particles [120, 121]. Motivated from an orientation-dependent potential of

the form ê(θi) · ê(θj) for the propulsion vectors of particles i and j [122], we could

consider additional aligning interactions together with active chirality from an analytic

perspective on the restricted domain resembling steric interactions. A recent work

considered the numerical effects of such alignment for phenomena like motility-induced

phase separation and the flocking of active chiral particles [95].
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Appendix A. Evaluation of integral (7)

In the main text, in Eq. (7) we are left with evaluating a boundary integral, in which

integration and differentiation are with respect to different particle labels. Hence a use

of the Gaussian divergence theorem is not possible straightforwardly. Instead, we use

an extended version of the Reynolds transport theorem, which usually allows for the

time-differentiation of an integral quantity, where the integration volume V itself is time-

dependent V = V (t). For an arbitrary space- and time-dependent function f = f(x, t),
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the theorem in this context reads

∂

∂t

∫
V (t)

dx f =

∫
V (t)

dx
∂f

∂t
+

∫
∂V (t)

dSx

(
n · v∂V (t)

)
f, (A.1)

where v∂V (t) = v∂V (t)(x, t) is the velocity of an element of the moving boundary ∂V (t)

and dSx n is the outward area element of the boundary at time t.

This theorem can be extended to cases, in which the integration volume V is space-

dependent (V = V (x), but of a constant shape) and we are interested in taking the

divergence of the integral with respect to that coordinate x. For a vector-valued function

f = f(x,y, t), the extended transport theorem reads

∇x ·
∫
V (x)

dy f =

∫
V (x)

dy ∇x · f +
∫
∂V (x)

dSy ny · f . (A.2)

The proof of this relation can be found in Ref. [77]. We will apply this theorem

to the reduced configuration space Λ(χ1) = Ω \ Bεd(x1) × [0, 2π), where the space-

dependence is on Bεd(x1), the disk of radius εd centred at x1. Therefore, only ∂Bεd(x1)

contributes a moving boundary, and hence a boundary integral in Eq. (A.2). We now

apply the extended Reynolds transport theorem to evaluate Eq. (7). Note here that

P2(t) = P2(χ1, χ2, t) for a shortness of notation. We find the result∫
Λ(χ1)

dχ2 ∇χ1 ·
[
D∇χ1 − f(θ1)

]
P2(t)

= ∇χ1 ·
∫
Λ(χ1)

dχ2

[
D∇χ1 − f(θ1)

]
P2(t)

−
∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2 ·
[
DT∇1 − vê(θ1)

]
P2(t). (A.3)

The moving boundary only arises in the spatial part of χ1 = (x1, θ1), and thus we are

only left with the spatial part of the diffusion matrix D = diag(DT , DT , DR) and drift

term f(θ1) = (vê(θ1), ω)
T. We again apply the extended theorem for the first term in

the evaluated integral

∇χ1 ·
∫
Λ(χ1)

dχ2

[
D∇χ1P2(t)

]
= ∇χ1 ·D∇χ1

∫
Λ(χ1)

dχ2 P2(t)

−∇1 ·
∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2

[
DT P2(t)

]
. (A.4)

We are left with evaluating the originating boundary integral combined with the

boundary integral of Eq. (A.3). Therefore we jointly use the divergence theorem and the

transport theorem, paying respect to the specific integration volumes in the following

steps. First we apply the divergence theorem on the volume Ω \ Bεd(x1) “backwards”,

−∇1 ·
∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2

[
DT P2(t)

]
= −DT∇1 ·

∫
Λ(χ1)

dχ2 ∇2P2(t)

+DT∇1 ·
∫ 2π

0

dθ2

∫
∂Ω

dS2 n2P2(t). (A.5)
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Using the generalised transport theorem, the first integral on the right-hand side of

Eq. (A.5) can be rewritten as

−DT∇1 ·
∫
Λ(χ1)

dχ2 ∇2P2(t) = −DT

∫
Λ(χ1)

dχ2 ∇1 · ∇2P2(t)

−DT

∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2 · ∇2P2(t). (A.6)

Note again here that only Bεd(x1) is space-dependent and thus contributes a boundary

term in the generalised transport theorem. Since integration and differentiation are with

respect to the same particle label in the first integral on the right-hand side of Eq. (A.6),

we can apply the divergence theorem “forwards”

−DT

∫
Λ(χ1)

dχ2 ∇1 · ∇2P2(t) = −DT

∫ 2π

0

dθ2

∫
∂Ω

dS2 n2 · ∇1P2(t)

−DT

∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2 · ∇1P2(t). (A.7)

Note here that when applying the divergence theorem the box-boundary ∂Ω contributes

a surface integral. As the box-boundary does not explicitly depend on x1, the partial

differential operator ∇1 can be moved outside the integral (without creating another

boundary term) and we observe that it cancels with the second integral on the right-

hand side of Eq. (A.5). We are thus left with the two integrals on the inner boundary

∂Bεd(x1) and find that

−∇1 ·
∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2

[
DT P2(t)

]
= −DT

∫ 2π

0

dθ2

∫
∂Bεd

(x1)

dS2 n2 · (∇1 +∇2)P2(t). (A.8)

The rewriting of the boundary term of Eq. (A.4) finally enables us to combine

the result with the term in Eq. (A.3). Using the definition of the full one-body PDF

p(χ1, t) =
∫
Λ(χ1)

dχ2 P2(χ1, χ2, t), Eq. (A.3) thus becomes∫
Λ(χ1)

dχ2 ∇χ1 ·
[
D∇χ1 − f(θ1)

]
P2(t) = ∇χ1 ·

[
D∇χ1 − f(θ1)

]
p(χ1, t)

−
∫
∂Bεd

(x1)

dS2 n2

[
DT (2∇1 −∇2) + vê(θ1)

]
P2(t), (A.9)

which constitutes the result of Eq. (7) in the main text.
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Review Research 4 033230

[50] Jennings H S 1901 The American Naturalist 35 369–378

[51] Hohenberg P C and Halperin B I 1977 Reviews of Modern Physics 49 435–479

[52] Bray A J 2002 Advances in Physics 51 481–587

[53] Tjhung E, Nardini C and Cates M E 2018 Physical Review X 8 031080

[54] Cates M E and Nardini C 2023 Physical Review Letters 130 098203
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