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Abstract

Vision Transformer (ViT) architectures represent
images as collections of high-dimensional vector-
ized tokens, each corresponding to a rectangular
non-overlapping patch. This representation trades
spatial granularity for embedding dimensional-
ity, and results in semantically rich but spatially
coarsely quantized feature maps. In order to re-
trieve spatial details beneficial to fine-grained in-
ference tasks we propose a training-free method
inspired by “stochastic resonance.” Specifically,
we perform sub-token spatial transformations to
the input data, and aggregate the resulting ViT
features after applying the inverse transforma-
tion. The resulting “Stochastic Resonance Trans-
former” (SRT) retains the rich semantic informa-
tion of the original representation, but grounds
it on a finer-scale spatial domain, partly miti-
gating the coarse effect of spatial tokenization.
SRT is applicable across any layer of any ViT
architecture, consistently boosting performance
on several tasks including segmentation, classi-
fication, depth estimation, and others by up to
14.9% without the need for any fine-tuning. Code:
https://github.com/donglao/srt.

1. Introduction

The Transformer architecture (Vaswani et al., 2017), orig-
inally designed for modeling language which is naturally
quantized into discrete objects (sub-word “tokens”), is a
poor fit for vision tasks due to the lack of a natural scale
for spatial discretization: The same object can disappear
within a pixel or fill the entire image plane depending on
its distance from the camera. In theory, one could create to-
kens for patches of all sizes and positions, but at significant
computational expense due to the complexity of transform-
ers, which is quadratic in the number of tokens. Despite
the counter-intuitive nature of spatial quantization, Vision
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Transformers (ViTs) (Dosovitskiy et al., 2020) achieve state-
of-the-art performance in many vision tasks. So we focus on
developing methods to harness pre-trained ViTs and over-
come their limitations in representing spatial details at fine
granularity due to the fixed spatial quantization of tokens.

The standard remedy for quantization artifacts is anti-
aliasing. In one-dimensional digitized signals such as audio,
anti-aliasing refers to weighted averaging of nearby samples
in the discrete topology, or equivalently averaging versions
of the signal translated by integer multiples of the original
sampling interval. For images, in addition to sampling the
translation group, one also has to sample the scale group,
so as to capture the varying size of the projection of ob-
jects onto the image plane. Various network architectures
comprise spatial average pooling, which is translational anti-
aliasing, whereas the notion of domain-size pooling and anti-
aliasing has been championed by (Dong & Soatto, 2015).
Anti-aliasing is typically performed by convolving the dis-
crete signal with a generic (not data-dependent) kernel. The
optimal kernel is unbounded, so any finite implementation is
necessarily lossy and cannot “recreate information” lost in
the sampling process. Similarly, super-resolution algorithms
hallucinate missing details either using generic priors or data
other than the signal in question (Buades et al., 2005).

“Stochastic Resonance” (Benzi et al., 1981) is a qualitatively
different process whereby the limitations imposed by a fixed
quantization threshold can be overcome simply by shifting
the signal by sub-threshold additive perturbations. This
results in sampling beyond the Nyquist limit otherwise im-
posed by the quantizer. We extend this process, originally
employed in cochlear implants, to translation not of the
value of the signal (additive perturbations) but its domain
(translation). The same process can also be applied to do-
main size (scale). Stochastic resonance can be thought of as
a form of data augmentation or adaptive quantization. We
further simplify it by choosing deterministic, rather than
randomly sampled, perturbations. The perturbed token em-
beddings are aggregated statistically to first-order (mean or
median) to yield a sub-token embedding. First-order statis-
tics can be used for visual tasks, for instance unsupervised
object segmentation, and second-order statistics as a weight
for adaptive regularization.

This simple approach is well suited to pre-trained trans-


https://github.com/donglao/srt

Sub-token ViT Embedding via Stochastic Resonance Transformers

formers since it only requires acting on inputs and outputs
without modifying (or even knowing) the weights or the
forward pass of the model. We call the resulting method
“Stochastic Resonance Transformer” although we do not
modify the transformer nor do we use artificial noise, to
reflect closer proximity of our method to Stochastic Reso-
nance than to traditional super-resolution or anti-aliasing
methods. The simplicity of the method allows us to leverage
ViTs, pre-trained on large datasets, such as CLIP and DINO,
to improve their handling of spatial quantization. This may
help attenuate some of the biases of these datasets, for in-
stance, the object-centric nature of DINO, which biases the
representation towards centered objects that occupy a large
portion of the visual field. Stochastic Resonance can be
used as a form of sub-token ensembling, to enhanced fea-
ture maps in ViTs and reveal some of the local fine-grained
underlying structure. SRT can be applied to any ViT layer,
on any task, without altering network architecture or pre-
trained network weights. We can use SRT to visualize fine-
grained features, or optionally map them back to the original
ViT feature scale by pooling to be used for inference, where
we notice performance increases on a wide range of vi-
sion tasks. Additionally, fine-tuning pre-trained ViTs by
distillation from ensembled features maintains their origi-
nal inference time and cost. To the best of our knowledge,
SRT is the first approach to recoup spatial granularity from
embedding dimension in ViT feature maps. Unlike conven-
tional ensemble methods that augment model inputs and
combine outputs, SRT operates at the feature level, allowing
seamless integration into any ViT pipelines, including for
tasks that demand intermediate features or attention maps.
Our contributions are summarized as follows:

* We introduce a novel technique, namely the Stochas-
tic Resonance Transformer (SRT), that computes fine-
grained ViT embeddings at test time without additional
training or modifications to the ViT’s forward pass.

* SRT can be seamlessly integrated into any task that uti-
lizes ViT as a feature extractor, serving as a test-time
augmentation and ensemble method.

* We provide an efficient implementation SRT, including
parallelization and recursive aggregation, which reduces
computational and memory requirements.

* We showcase the effectiveness of SRT by consistent im-
provement on a range of diverse vision tasks. Notably, it
demonstrates significant enhancements on dense predic-
tion tasks, of up to 14.9% on depth prediction.

* SRT also yields a versatile visualization tool that can be
applied to any layer of any pre-trained ViT model, offering
valuable insights into ViT model characteristics.

2. Stochastic Resonance Transformer
2.1. Method

Given an image « with N x M resolution, a Vision Trans-
former (ViT) divides it into tokens, where each token rep-
resents a n X m rectangular patch. While tokens can
technically overlap, practical ViT models often use non-
overlapping tokens for efficiency due to the quadratic com-
plexity of transformers with respect to the number of tokens.
Consequently, in a certain layer of ViT, this approach yields
a feature map with dimensions % X % x C, where C'is the
size of the feature vector determined by architecture, down-
sampled from the original image and subsequently losing
sub-token spatial information.

Given a trained ViT model, we aim to obtain features in
a higher resolution that preserves the spatial information
on a pixel level, ideally matching with the original image
input. Fig. 1 illustrates our proposed pipeline of SRT. To
enhance the features, we introduce sub-token perturbation
to the input, i.e. transforming the coordinates of the input
and resampling onto a new image plane, and extract embed-
dings from the resulting perturbed image. Note that, any
group transformation (translation, rotation, flipping, etc.)
and a combination of them (e.g. (Wu et al., 2023)) can be
chosen as the perturbation, provided that its inverse trans-
formation is available. However, our specific interest lies
in introducing perturbation through translation. This prefer-
ence arises from several factors: 1) translation preserves the
object’s scale, unlike zooming; 2) translation can be applied
at the pixel level grid, eliminating interpolation artifacts,
as opposed to rotation; 3) translation allows an efficient
implementation of SRT (Sect. 2.3).

We then upsample the resulting low-resolution embeddings
back to the original image resolution N x M and apply an
inverse of the perturbation to the spatial coordinates of the
embeddings, and through an inverse warp, align it with the
original input image. By repeating this process on different
sub-token perturbations for ¢ times, we generate a collection
of embeddings, denoted by N x M x C' x t, that are spatially
aligned to the input frame of reference. We can then com-
pute statistics, e.g. mean or median, along the ¢ dimension.
Consequently, we obtain a feature field NV x M x C, with
the same spatial resolution as the original image. As show-
cased in Fig. 2, the embeddings are enhanced to sub-token
resolution. This process is similar to Stochastic Resonance,
where introducing white noise to the input signal enhances
a signal beyond the native resolution. These embeddings
offer promising downstream applications, as in Sect. 3.

For any task that utilizes ViT as a feature extractor, we can
take an additional step by applying average pooling to again
tokenize this high-resolution feature, to map it to % X % xC.
It’s important to note that this feature differs from the one
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Figure 1. Schematic for SRT. SRT applies controlled perturbations to input images, extracting features through Vision Transformers
(ViTs). These features are then upsampled to higher resolution and aligned using the inverse of the applied perturbations. Statistical
aggregation, including mean and median, along the perturbation dimension, produces fine-grained feature representations. These features
find utility in visualization and can also be seamlessly integrated back into the network for enhanced performance in downstream tasks.

obtained from one single forward pass of ViT, as it is an
aggregate of multiple perturbed inputs. This process can be
viewed as test-time augmentation and ensemble. Since this
feature is compatible with the original ViT architecture, it
can be seamlessly integrated back into the layer from which
we perturbed the features, and is applicable to any model
at any layer, regardless of pre-training, without requiring
additional learned modules or altering the forward pass.
Such a pipeline improves performance on diverse computer
vision tasks, as validated by Sect. 3. Next, we formalize the
aforementioned pipeline.

2.2. Formalization

x € RVXMXK jg 4 K-channel signal (e.g., K = 3 for a
colorimage.) Let 7 : RVXM 5 R"X™. 2 1 2 a projection
(subsampling, n < N, m < M), with the corresponding
inverse (interpolation) map 771 : R?*™ — RNXM. 5 o
be piecewise constant. This is a trivial form of subsampling
and interpolation with a constant kernel.

Now, let ¢ : RVMK _ R"™C 3 trained model with C
channels of feature maps, typically C' > K. Finally, let
T : RNXM _y RNXM. o s T a compact and invertible
transformation, for instance, edge-padded shift by a number
of pixels smaller than (N — n)/n x (M — m)/m. We
consider uniform random padded shifts (translation) and
consider the following measurement process:

yr = o(Tix) ()

for all random transformations 7;. We wish to enhance the
output of ¢ fromn x m to N x M. We call this process
immersion since each point x maps to z = ¢(x) but z #
T~1¢(Tx). In other words, x is mapped injectively but not
bijectively, since there are as many (vector)-values as the
sampled value of 7. We do so iteratively by averaging (or
by a linear transformation K;) with respect to the innovation

process:
€& =T (Tt_lw_lyt) —Kio(x) 2)

Dt
now the fine-grained features which we call z; are obtained

by an observer architecture, which implements a closed-loop
dynamical system of the form:

ye = ¢(Trz) @
This is just a moving average in higher resolution, whereby
the variance of 2 will decrease to a steady state (by Cen-
tral Limit Theorem), following the practice of stochastic
resonance. It is a mixture of upsampling/interpolation and
inference-time data augmentation, or ensembling. '

{jt-i-l = JACt + Tt_lﬂ'ilyt fo = 0,

2.3. Efficient Implementation

In theory, there is no limitation on the types of sub-token
transformations that can be employed. We opt for a straight-
forward approach by applying translations (with padding)
and this practice demonstrates effective results. We sample
translations at the pixel level, avoiding the need for sub-pixel
interpolation, which could introduce unwanted artifacts.

For a ViT utilizing token sizes of m x n, we impose a con-
straint on the maximum magnitude of translation, limiting
it to 3 x 5. This constraint allows the model to explore
all possible token selections within the image. It is worth
noting that excessive translation can be counterproductive
when applied to downstream vision tasks, as it can result
in information loss at the image boundaries. A detailed
discussion can be found in Sect. 3.2, where we study the

relation between perturbation level and model performance.

While naive implementation can lead to significant compu-
tational drawbacks, running inference on each augmented

'A detailed formalization of the image quantization artifacts is
deferred to Appendix D.
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Figure 2. High-resolution ViT features computed by stochastic resonance. Stochastic Resonance enables enhancing tokenized ViT
features during inference without the need for additional training or modifying ViT forward pass. Here we present enhanced features
from different pre-trained ViT models, visualized via Principal Component Analysis: CLIP (Radford et al., 2021) captures major image
components. Interestingly, although Supervised (Dosovitskiy et al., 2020) and DINO (Caron et al., 2021) are trained by different pipelines
and training loss, they prioritize similar regions. This may be due to they are trained on the same dataset and thus capture similar inductive
bias. In contrast, SAM (Kirillov et al., 2023) and MAE (He et al., 2022) capture local features over high-level semantics.

image can be trivially parallelized. Greater implementation
speed-ups can also be achieved by bypassing the upsam-
pling step (which is computationally expensive), since the
aggregated result can be deterministically computed from
the original feature maps of each augmented image when
average pooling is used. With ViT-16/S architecture, on
DAVIS-2017 (Pont-Tuset et al., 2017) our implementation
of SRT runs at 1.0 seconds per image on a Nvidia 3090
GPU using a perturbation level of 3 pixels. To further speed
up, one may optionally fine-tune the ViT model by distilling
utilizing SRT, so that the inference time and cost remain, as
demonstrated in Sect. 3.2. We include the demo code in the
supplementary material and will make it publicly available.

3. Experiments
3.1. Visualization of SRT Features

SRT demonstrates significant promise in visualizing fea-
tures of ViT models. It achieves this without necessitating
modifications to the ViT’s forward pass. In Fig. 2, we
present visualizations of the final layer features from five
popular ViT models, all employing the ViT-B/16 architec-
ture. Notably, all visualizations are computed by a standard
consumer laptop. We employ SRT with a turbulence level

of 7 pixels to traverse non-overlapping augmented tokens
extensively. The resultant high-dimensional features then
go through Principal Component Analysis (PCA), with the
top three components mapped to RGB channels to facilitate
effective visualization. Despite sharing the same architec-
ture, the five models exhibit distinct characteristics owing
to variations in their pre-training supervision. For instance,
CLIP (Radford et al., 2021) is trained through contrastive
visual-language pre-training and captures major image com-
ponents in the displayed examples. The Supervised model
(Dosovitskiy et al., 2020) is trained for ImageNet classifica-
tion, while DINO (Caron et al., 2021) undergoes contrastive
learning. Interestingly, despite their diverse training regimes,
both models prioritize similar image regions, potentially
due to their shared dataset and resulting common inductive
bias. In contrast, SAM (Kirillov et al., 2023) is trained
on massive segmentation masks without semantic labels or
object-centric priors, and MAE (He et al., 2022) is trained
through inpainting of randomly masked image regions. Both
methods emphasize local image features over high-level se-
mantics. Our versatile visualization tool provides valuable
insights into the characteristics of ViT models, offering sub-
stantial potential for practical applications.

In Appendix E we offer additional visualization of ensem-
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Figure 3. Relative improvement on DAVIS-2017 dataset vs dif-
ferent noise levels. There exists an inherent trade-off between
perturbation level and performance gain. Smaller perturbation
ranges result in weaker improvements from the baseline model due
to lower input diversity, while larger perturbations are susceptible
to greater information loss. 3 pixels is found to be the optimal
perturbation level on both ViT-S/16 and Vit-B/16.

bled SRT features across various network layers. The visu-
alization indicates a noticeable trend: deeper layers reveal
clearer high-level semantic boundaries, while shallower lay-
ers highlight more local features than deeper ones.

3.2. Semi-supervised Video Object Segmentation

We apply SRT to evaluate its performance using the DAVIS-
2017 video instance segmentation benchmark (Pont-Tuset
et al.,, 2017). We adhere to the experimental methodol-
ogy established in (Jabri et al., 2020), which employs a
”semi-supervised” video object segmentation approach on
the original 480p resolution. Provided with the initial anno-
tation of the objects of interest in the first frame, this method
subsequently propagates the segmentation between consec-
utive frames. Notably, the method utilizes the last layer
feature of the Vision Transformer (ViT) to guide this seg-
mentation propagation process. Consequently, the quality
of the ViT features directly impacts the final segmentation
results. For optimal outcomes, these features must possess
discriminative and semantically meaningful characteristics
to effectively support this segmentation task.

In our study, we evaluate various Vision Transformer (ViT)
models pre-trained using the DINO (Caron et al., 2021)
contrastive scheme. We adopt three different architectures,
specifically ViT-S/16, ViT-B/16, and ViT-S/8, each varying
in their spatial patch size (16x16 pixels and 8x8 pixels). Our
results in Tab. 1 indicate that, on average, SRT enhances the
original baseline models by a relative 2.4% in terms of the
F&J score. The most significant improvement is observed
with ViT-S/16, where we achieve 4.1%. Importantly, these
enhancements are achieved without any modifications to
the model or pre-trained weights. However, we address a
potential criticism of our approach, which could be seen as
trivial test-time augmentation combined with feature-level
ensemble. To counter this concern, we perform a heuristic
by naively augmenting images by color jitter and performing

Method F&J |J-mean | J-recall | F-mean | F-recall
DINO-ViT-S/16 0.617] 0.602 | 0.740 | 0.634 | 0.764
+ SRT 0.642| 0.632 | 0.783 | 0.653 | 0.819
Distill by SRT 0.625] 0.609 | 0.745 | 0.642 | 0.780
+ Overlapping tokens | 0.591 | 0.577 | 0.706 | 0.605 | 0.741
+ Naive ensemble [0.477| 0.455 | 0.468 | 0.500 | 0.542
DINO-ViT-B/16 0.622] 0.608 | 0.748 | 0.637 | 0.760
+ SRT 0.630| 0.623 | 0.766 | 0.637 | 0.795
DINO-ViT-S/8 0.706| 0.675 | 0.815 | 0.737 | 0.846
+ SRT 0.720| 0.688 | 0.827 | 0.752 | 0.868

Table 1. Results on DAVIS-2017 video object segmentation. Ap-
plying SRT improves over the baseline models uniformly over all
metrics, as measured across 3 variants of ViTs trained using the
DINO (Caron et al., 2021) contrastive learning objective. SRT
yields significant improvements even for ViT-S/8 trained with finer
patch sizes (8x8). One may optionally fine-tune the original ViT
model by distilling by SRT, which increases performance while
inference time and cost remain one single forward pass.

feature-level ensemble (1, Naive ensemble), and we find that
this method is, in fact, detrimental to performance. We also
reproduce the approach proposed by (Amir et al., 2021) that
uses overlapping tokens at inference time, which negatively
impacts the results. We investigate whether inference costs
induced by SRT can potentially be mitigated via distillation.
To this end, we attempt to learn the ensembled SRT repre-
sentations using the following self-distillation objective:

min Z | () — SRT (2, wo)||, 4)

z€D

where ¢ and (wg) w are the ViT and its (original) parameters,
and z the image in the target dataset. Our preliminary
results on DINO-ViT/16 improve from the baseline by 1.3%
after the self-distillation step. Note that Eq. (4) is task
agnostic and requires no label, thus effectively adapts pre-
trained ViT features to any given target dataset. We leave
the investigation of this to future work.

Fig. 3.2 illustrates the relative improvement across different
perturbation levels of SRT applied to ViT-S/16 and ViT-B/16.
While higher perturbation levels offer greater input diversity,
they are also susceptible to information loss. We anticipate
a trade-off between perturbation level and performance gain
and empirically identify a perturbation level of 3 pixels as
the optimal point for both.

3.3. Monocular Depth Prediction

We extend the application of SRT to monocular depth es-
timation, a task that leverages ViT features from multiple
ViT layers, in contrast to video object segmentation which
primarily utilizes the last layer features. This choice of
task highlights the versatility of SRT, showcasing its seam-
less compatibility with various ViT layers and architectures.
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Backbone \Head \Method \RMSE\RMSE,log\AbsRel\SqRel\ al \ a2 \ a3
Baseline [ 0.396 | 0.135 0.100 [0.061]0.90310.98310.996

Linear | +OE 0.376 | 0.121 0.093 [0.059(0.918]0.984|0.997

i +SRT | 0349 | 0.108 | 0.087 |0.052|0.930|0.990 | 0.998
DINOV2-VIT-B/14 Baseline | 0.323 | 0.109 0.074 [0.044]0.941]0.987/0.996
DPT |+OE 0314 | 0.101 0.073 | 0.043 | 0.944|0.988 | 0.997

+SRT | 0.305 | 0.096 | 0.073 | 0.043|0.945|0.989 | 0.997

Baseline| 0.471 [ 0.162 0.125 10.0840.853]0.972[0.994

Linear | +OE 0.486 | 0.153 0.126 |0.095|0.858|0.974|0.994

i +SRT | 0.457 | 0.140 | 0.118 | 0.085 |0.876|0.980 | 0.996
DINOV2-VIT-5/14 Baseline | 0.336 | 0.114 0.080 |0.048[0.93310.986{0.996
DPT |+OE 0.347 | 0.114 | 0.080 |0.053]0.932(0.985|0.996

+SRT | 0.334 | 0.104 | 0.080 |0.051|0.935|0.988|0.996

Baseline [ 0.373 | 0.127 0.093 [0.054]0.916[0.985[0.996

Linear | +OE 0.401 | 0.131 0.097 |0.062|0.908|0.982|0.996

) +SRT | 0.365 | 0.113 0.090 | 0.053|0.924|0.989 | 0.998
DINOV2-VIT-L/14 Baseline| 0.311 | 0.105 0.070 [ 0.042]0.946]0.988[0.997
DPT |+OE 0317 | 0.103 0.072 |0.044 |0.94210.987|0.996

+SRT | 0297 | 0.092 | 0.070 | 0.041|0.947|0.991|0.997

Table 2. Results on NYU-V2 depth prediction. Our method can be extended without modification to improve intermediate features
to yield improved performance on the downstream depth prediction tasks. While ensembling of outputs (OE) can often be detrimental
to performance, applying SRT on the features from pre-trained backbones (inputs to prediction heads) can improve performance over
baselines by 4.7% and 14.9% on RMSE and RMSE _log, using the linear prediction head and by 3.6% and 11.0% using the DPT head.

Specifically, we evaluate three ViT architectures: ViT-S/14,
ViT-B/14, and ViT-L/14, each equipped with two prediction
heads (linear and DPT (Ranftl et al., 2021)). We adopt the
experimental settings provided by DINOV2, which offers
pre-trained backbones and corresponding prediction heads.
Our assessment utilizes the NYU-V2 dataset (Nathan Silber-
man & Fergus, 2012) under its original 640 x 480 resolution.

Tab. 2 presents the results, demonstrating consistent im-
provements over baseline methods. The most significant
enhancements are observed in the RMSE and RMSE _log
metrics, where we achieve relative improvements of 4.7%
and 14.9% with linear heads, and 3.6% and 11.0% with DPT
heads, respectively. Notably, these metrics are sensitive to
outliers, highlighting the effectiveness of SRT in mitigating
instability in ViT features and enhancing robustness.

For ablation, we compare our method with output-space
ensemble (marked as "OE”), which employs the same per-
turbations as SRT, but aggregates the model output instead
of intermediate features. We find no significant improve-
ments, and in some cases, this method is even detrimental.
This underscores the robustness of SRT’s ensemble scheme
that operates on the feature level instead of the output.

3.4. Unsupervised Salient Region Segmentation

We employ SRT in conjunction with TokenCut (Wang et al.,
2022) for unsupervised salient region segmentation tasks.

TokenCut is a graph-based approach that applies the Normal-
ized Cut algorithm to partition ViT tokens into two distinct
clusters, representing the salient foreground and the back-
ground respectively. The key challenge is to ensure that
the features are not only discriminative across clusters but
also consistent within clusters. We adopt three datasets:
ECSSD (Shi et al., 2015), DUTS (Wang et al., 2017), and
DUT-OMRON (Yang et al., 2013), following the TokenCut.

In Tab. 3, we report results both before and after post-
processing (bilateral solver) to assess both the raw quality
of ViT embeddings and final segmentation accuracy. Under
both settings, SRT improves the original ViTs pre-trained by
DINO, with an average increase in the maxF metric of 1.8%.
Notably, this improvement is constrained by the architec-
ture of TokenCaut, as it operates at the coarse segmentation
level of ViT tokens. Directly applying TokenCut to the en-
hanced feature map is computationally impractical due to its
O(n?) complexity in constructing a fully connected graph
for graphcut. Given SRT’s capability to provide fine-grained
features, we anticipate future research on the effective lever-
age of SRT’s high-resolution embeddings.

3.5. Sanity Check: Image Retrieval and Unsupervised
Object Detection

Incorporating SRT into vision tasks involves updating ViT
features based on fine-tuned high-resolution features. How-
ever, questions remain regarding whether the observed en-
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Datasets | ECSSD |  DUTS | DUTS-OMRON |
Feature Extractor maxF IoU Acc.|maxF IoU Acc.|maxF IoU Acc.
DINO ViT-S/16 80.3 71.2 91.8| 67.2 57.6 90.3| 60.0 53.3 88.0
+SRT 824 71.7 92.1| 68.8 58.5 90.7 | 61.0 54.0 88.2
DINO ViT-S/16 w/ bilateral solver | 87.4 77.2 934|755 62.4 91.4| 69.7 61.8 89.7
+SRT 88.4 77.0 93.6| 76.5 62.4 91.7| 70.6 62.4 89.9
DINO ViT-B/16 80.3 71.0 91.5| 66.4 56.7 89.5| 56.7 50.5 854
+ SRT 81.8 72.6 92.2| 68.8 58.3 90.6 | 58.0 51.6 86.1
DINO ViT-B/16 w/ bilateral solver| 86.8 76.6 93.0| 74.1 60.9 90.6| 65.6 58.4 87.1
+ SRT 88.2 78.0 93.7| 68.8 58.3 90.6 | 67.2 59.7 87.8

Table 3. Results on unsupervised salient region segmentation. Despite architectural constraints, our method yields consistent improve-

ment on all three datasets, with an average increase of 1.8% in the maxF metric.

hancements in dense prediction tasks are solely due to in-
creased awareness of semantic boundaries in images and
whether this method extends to non-dense prediction tasks.
To address these concerns, we conducted a sanity check us-
ing image retrieval and unsupervised object detection tasks.

For image retrieval, we applied a nearest-neighbor protocol
following DINO, using the Oxford image retrieval datasets
(Radenovi¢ et al., 2018) and ViT-S/16 trained on ImageNet.
Notably, our base model’s pre-training poses a substantial
domain gap to the target datasets. Note that, we do not
naively average the class tokens from augmented images,
but ensemble the features by SRT prior to the attention
mechanism in the last layer. In this way, the final class token
is computed from the ensemble SRT feature. Although
image retrieval primarily requires distinctive image-level
features (rather than pixel-level), aiming to match images to
queries at a higher level, SRT exhibited effective adaptation,
resulting in a notable 2.6% relative improvement.

Regarding unsupervised object detection, we utilized To-
kenCut and the VOCO07 dataset (Everingham et al., 2010).
Unsupervised object detection focuses on region-level dis-
criminative features, utilizing bounding boxes instead of
segmentation masks for object shapes. Despite this, we
observed a 1.0% relative improvement in the detection rate,
reaffirming that SRT does not compromise the information
within the original ViT embeddings. These results serve as
a critical validation of SRT’s capacity to obtain fine-grained
ViT features without distorting their original information.

4. Related Work

Stochastic Resonance was proposed by (Benzi et al., 1981)
and first applied in climate dynamics (Benzi et al., 1982)
and later in signal processing (Wellens et al., 2003; Kosko
& Mitaim, 2001; Chen et al., 2007) and acoustics (Shu-Yao
et al., 2016; Wang et al., 2014). It is used to enhance a
signal beyond the native resolution of the sensor by adding
white noise. We use the same principle to adapt generic ViT

image features for dense prediction downstream tasks. By
randomly translating the images, (i.e. introducing noise in
the spatial dimension), we can enhance ViT features to be
smoother and better suited for dense prediction tasks. We
leave extensions to other groups or semi-groups of transfor-
mations (e.g., scale or domain size) to future work.

Test-time data augmentation involves aggregating model
predictions from augmented test input to a final prediction.
Applying such a technique increases the robustness of pre-
dictions (Prakash et al., 2018; Song et al., 2017; Cohen
et al., 2019) and prediction accuracy (Krizhevsky et al.,
2012; Szegedy et al., 2015; Simonyan & Zisserman, 2014;
Jin et al., 2018; Matsunaga et al., 2017) in a variety of
tasks. It can also used to estimate the uncertainty of the
model (Matsunaga et al., 2017; Smith & Gal, 2018; Ayhan
& Berens, 2022; Wang et al., 2019). Different transforma-
tions are used to target different potential tasks: (Pang et al.,
2019) linearly combines the testing input and a randomly
sampled clean image to generate classification prediction.
(Isensee et al., 2018) performs flipping and rotation to the
test input image to generate 64 different inputs and finally
aggregates the outputs to perform medical image segmenta-
tion. (Krizhevsky et al., 2012) crops the images into smaller
patches and ensemble the results for classification. Self-
ensembling (Bousselham et al., 2021) is also closely related
to our work. (Bousselham et al., 2021) leverages multi-scale
features fed into multiple independent decoders to create an
ensemble within a single model. (Liu et al., 2018) ensem-
bles outputs from networks augmented with random noise
layers to improve model robustness. SRT aggregates infor-
mation via adding spatial translations as noise and can be
considered a general case of test-time augmentation, where
ensembling is performed at the feature level at intermediate
layers of a ViT, instead of the output level, which is novel.

Knowledge distillation aims to transfer the knowledge
from stronger teacher models to weaker student models
to improve their performance. (Hinton et al., 2015) trains
a student model to mimic the soft output distribution of
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Task Metric Baseline | d=1 | d=2 | d=3 | d=4 | d=5 | d=6
Image Retrieval mAP (Medium) | 34.6 |34.8(35.1]35.2(35.3|35.3|35.5

mAP (Hard) 13.0 |13.1|13.2]13.1]13.2|13.2|13.1
Object Discovery | Detection Rate | 68.7 |68.9]68.9(69.2|69.4|69.3|69.2

Table 4. Results on Image Retrieval and Object Discovery. SRT generalizes to non-dense prediction tasks operating on higher-level
region/image features to yield equal or better performance compared to the standard inference baseline. On the Oxford image retrieval
task, SRT on the DINO-ViT-S/16 model yields up to 2.6% relative improvement from the baseline model. On the unsupervised object
detection task, SRT improves the detection rate by up to 1.0%. d: translation in pixels when ensembling with SRT. d: perturbation level.

the teacher model. (Romero et al., 2014) extends this idea
to distill the intermediate features learned by the teacher
models. We consider a form of self-distillation (Zhang et al.,
2019), in which the student itself is used as the teacher to
improve learned representations.

Dense ViT feature extractor. Our work is closely related
to (Amir et al., 2021),which employs ViT for generating
dense visual descriptors. To extract these fine-grained fea-
tures, (Amir et al., 2021) reduce the stride allowing for
overlapping tokens and performing a single forward pass
with ViT. In SRT, instead of a single pass, we conduct multi-
ple passes using perturbed inputs. This modification reduces
the computational complexity from quadratic to linear.

Properties discovered by SRT. Additionally, our findings
underscore the segmentation capabilities of ViT embed-
dings, aligning with recent claims in the field (Caron et al.,
2021; Yu et al., 2023). Enhanced features exhibit sharp,
fine-grained semantically relevant boundaries. Furthermore,
our method leverages the convexity properties (Park & Kim,
2022) of ViT embeddings, enabling convex combinations
(average pooling as a special case) during inference, result-
ing in improvements across various tasks.

5. Discussion

Ensemble vs super-resolution. Although both increase
the spatial resolution, SRT achieves it by ensemble, which
differs from super-resolution: Given a signal x that is sub-
sampled to Z, super-resolution aims to retrieve an approxi-
mation Z of x given Z. Since information is lost in the sam-
pling, the reconstruction depends crucially on the choice of
prior. In this sense, super-resolution is a form of hallucina-
tion: Attribute details to Z that are not in &, in the hope that
they will somehow match those in z. This requires strong
faith in prior knowledge about x, P(x).

Given the same signal z, one could instead generate
multiple samples z;, each with a different kernel, and
then reconstruct a single estimate from the samples & =
F(Z1,...,Zn). Now, the estimator F' has more informa-
tion available about z than in super-resolution: The sigma-
algebra spanned by the random variables Z; is a superset of
the (trivial) sigma algebra spanned by the single sample

in super-resolution.

In other words, SRT which aggregates different samples
from a process contains more information than any single
sample about the process. We provide further ablation stud-
ies and discussions on comparing with enhancing the fea-
tures by spatial interpolation and smoothing in Appendix C.

Limitations.  SRT has several limitations. The basic
embodiment increases inference cost and latency, as each
perturbed image necessitates a ViT forward pass. To ad-
dress this, one viable approach is knowledge distillation,
which involves fine-tuning the network to mimic the feature-
level output of SRT. We illustrate this process using the
DAVIS-2017 training dataset with DINO-ViT-S/16, achiev-
ing improved results (F&J-score 0.617 = 0.625) without
the use of labels or operations on the validation set. This
establishes a label-free, task-free transductive fine-tuning
scheme that adapts pre-trained ViT features to new target
datasets. Future directions may involve refining the distilla-
tion process on different layers and exploring the integration
of Stochastic Resonance directly into ViT architectures.

Conclusions. SRT offers a versatile feature-level ensemble
method that applies to any layer within any architecture
that utilizes ViT as a feature extractor, eliminating the need
for modifications to the forward pass, in contrast to most
test-time augmentation and ensemble methods that oper-
ate at the output level that require task-specific designs.
Compared with increasing token numbers, SRT avoids the
quadratic complexity related to the number of ViT tokens,
and is amenable to parallelization through batching, en-
suring computational efficiency. Furthermore, the method
allows ensembling without memory-intensive resizing of all
embeddings to full resolution, which can be executed recur-
sively, as described in Sect. 2.3. Practical implementations
demonstrate efficient execution on even laptop GPUs.

It is worth noting that stochastic resonance is not limited to
ViT architectures, as demonstrated in Appendix A, where
we apply the mechanism to ResNet on the image classifica-
tion task, and on average reduce error by a relative 5.87%.
Stochastic resonance also applies to other forms of quanti-
zation, such as sale or domain size. However, our emphasis
in this paper is on ViTs that mostly use non-overlapping
tokens, making them particularly suited to our approach.
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6. Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Results on CNNs and Classification

Architecture ResNet20 | ResNet32 | ResNet56
Accuracy 91.95 92.68 93.50
Accuracy w/ SRT 92.41 93.14 93.87
Relative error reduced | 5.6% 6.3% 5.7%

Table 5. Results on Cifar-10 classification with ResNet. Stochastic resonance consistently improves classification accuracy by an
average of 5.87% and as much as 6.3% on ResNet32, without additional training.

As mentioned in the paper, Stochastic Resonance is not confined to Vision Transformer architectures. We specifically opted
for ViT and zero-shot methods to effectively showcase its benefits. In this context, we present additional results involving
Convolutional Neural Networks (CNNs) and supervised image classification. We test ResNet (He et al., 2016) on the CIFAR
dataset, and report the results in Tab. 5. Through the application of stochastic resonance, we employ ensembling at the final
layer before the prediction head. Across ResNet20, ResNet32, and ResNet56, we consistently observe improvements, with
the prediction error reduced at inference time by an average of average of 5.87% and as much as 6.3%, all without the need
for additional training.

B. Results on Semantic Segmentation

Method head | baseline | d=1 d=2 d=3

DINOV2 ViT-S/14 | linear | 44.24 44.44 | 44.57 | 44.64
DINOV2 ViT-B/14 | linear | 47.28 47.63 | 47.85 | 47.98
DINOV2 ViT-L/14 | linear | 47.79 48.18 | 48.44 | 48.62

Table 6. Results on Semantic Segmentation on ADE20K in mIOU Experiments run with evaluation pipeline from InternImage (Wang
et al., 2023) and DINOV?2 (Oquab et al., 2023). d denotes the translation in pixels, ranging from -d to d with respect to a coordinate
location across horizontal and vertical directions, when ensembling with SRT. As the size of the ensemble grows, the segmentation mIOU
increases.

We show results on combining semantic segmentation with SRT. We employ the protocol from DINOV2 (Oquab et al.,
2023) and ADE20K dataset (Zhou et al., 2017). The results are presented in Tab. 6. SRT consistently improves mloU on all
three pre-trained ViTs, by as much as 1.7% in relative improvement. In comparison, results on depth prediction show a
more significant improvement (14.9%). We conjecture that depth prediction benefits more from SRT as it is a geometry
task and SRT leverages a geometric augmentation. Nevertheless, the gain in semantic segmentation is obtained without any
further fine-tuning.

C. Discussion: Comparison with Feature Interpolation

One might speculate that the performance improvement of SRT arises from a fine-grained feature map, which may be
advantageous for dense prediction tasks. We conduct a sanity check in Sect. 3.5 in the main paper, and here we further
compare SRT with resizing the feature field through interpolation. We adopt the depth prediction task using NYU-V2,
consistent with the main paper, and the results are presented in Tab. 7. Somewhat surprisingly, the simple approach
of interpolating the feature map leads to a performance decrease. Two possible explanations are considered. First, the
architecture and training loss lack an explicit constraint on the smoothness of features, making spatial interpolation
problematic. Second, while interpolation increases feature resolution, it does not introduce new information, whereas
ensembling effectively samples the input signal (augmented image) multiple times, which contains more information than
any single sample.

Considering the ensembled features represent a ’denoised” signal, we can measure the noise distribution in the features by
the L2 difference between the ensembled features and the feature from a single forward pass, aggregated as a histogram.
Fig. 4 visualizes this noise distribution. It is easy to notice that, the noise is mostly aligned to the semantic boundaries
where image patches do not align with object shape due to quantization. In comparison, we also visualize the difference
between the resized features (by interpolation) and the single-forward-pass feature. The resulting noise map is a less
meaningful grid-like structure due to the image quantization and interpolation artifacts. Note that the center of each patch of
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Ensemble Feature
difference Image

Inpterpolate Feature
difference

Figure 4. Noise distribution in the features by SRT. Considering the ensembled features represent a “denoised” signal, we visualize noise
distribution, which aligns to semantic boundaries (2nd row) where image patches do not align with object shape due to quantization. For
reference, we also show the difference between resized features (by interpolation) to the original feature, which shows a less meaningful
grid pattern.

the difference maps of the interpolated features is “dark” meaning there is no information introduced. On the contrary, the
difference maps of SRT is “bright”, which comes from the noise introduced by Stochastic Resonance to enhance the signal.

D. Formal relation between SRT-induced representations and explicit models of image formation

Stochastic Resonance is a phenomenon whereby “increases in levels of unpredictable fluctuations — e.g., random noise
— cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease ’
(McDonnell & Abbott, 2009) The phenomenon was first analyzed in reference to bi-stable systems of stochastic differential
equations, where the variance of the observations decreased after injecting noise into the system (Benzi et al., 1981).
Subsequently, the idea was applied to quantized systems, where each level ' € X = {z!,...2"V} of a quantization
operator f : R — X C R replaced the role of each stable attractor in the original formulation, and stochastic resonance
resorted to averaging noisy qantized versions of the original signal z,

s

&= /f(ar: +n)dP(n) %)

resulting in smaller noise variance E(|# — |?) (or higher signal-to-noise ratio) than the original measured signal without
added noise, E(|x — f(z)|?) where Z = f(x), all assuming sufficiently small perturbations n ~ dP from a chosen
distribution P (a design choice). This method was successfully used in cochlear signal processing where f is a coarse
quantizer implemented using low-power electronics.

Now consider the more general case where x is not just a real number but an image (irradiance function) defined on a
compact planar domain, z : D C R? — R; (u,v) — z(u,v); f is a complex operator that, in addition to quantizing
the planar domain D with a function 7 : D — A, where A is a discrete lattice, also maps each cell in the lattice in a
K-dimensional vector ¢({z(u,v), (u,v) € D;}) € RE, where D is a cell in the lattice, so that f : D — R¥; 2z +— f(x)
with

f(x) = é(r(x)) (6)

where 7 denotes the restriction to the lattice. Now, instead of considering an additive perturbation that acts on the range
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Backbone | Head | Method |RMSE |RMSE_log | AbsRel |SqRel| al | a2 | a3

Baseline | 0.336 0.114 0.080 |0.048 {0.933]0.986|0.996
DINOV2-ViT-S/14 | DPT |Bilinear | 0.573 0.178 0.146 | 0.125| 0.8 |0.964|0.995
Bicubic | 0.572 0.124 0.146 | 0.178 |0.801{0.964 | 0.995
Baseline | 0.323 0.109 0.074 |0.044 {0.941]0.987|0.996
DINOV2-ViT-B/14 | DPT | Bilinear | 0.568 0.185 0.146 | 0.120{0.792| 0.96 |0.992
Bicubic | 0.579 0.188 0.149 |0.124 |10.787|0.959 0.991
Baseline | 0.311 0.105 0.070 |0.042|0.946|0.988|0.997
DINOV2-ViT-L/14 | DPT |Bilinear | 0.732 0.246 0.183 | 0.195|0.695| 0.91 |0.973
Bicubic | 0.720 0.241 0.181 |0.188|0.701|0.916|0.975

Table 7. Results on NYU-V2 depth prediction using interpolated features For the interpolation method, we bilinearly or bicubically
interpolate the DINOV?2 feature up to the image dimension and perform an average pooling to return the feature to the original dimension.
The results are much worse than the baseline method, which uses the original DINOV?2 features without ensembling.

space of z, x — x + n, we consider a more general perturbation operator 7' that can act on either the domain D or the range
2, which we indicate with T'z. This can be a trivial additive perturbation, T'(n)x = x + n for some scalar n, or it can be a
planar translation T'(n)x(u,v) = x(n + n,, v + n,), where n = (n,,n,) is a translational offset, or it can be an affine,
projective, diffeomorphic or homeomorphic deformation of both the domain and the range of x. In this paper, we restrict
ourselves to planar translation but the concepts extend to any invertible operator 7. We write this formally as

&= / F(T(u, v))dP(T(u, v))

which boils down to spatial averaging if we choose dP to be constant (P uniform). One can also consider scale averaging,
which gives rise to so-called domain-size pooling (Dong & Soatto, 2015). In a discrete setting, the perturbation can be
quantized and averaged

B=> or(w)

which can done sequentially as a moving average. Our model includes a slightly more sophisticated (forward-backward)
projection operator 7, that allows us to express the averaging in terms of the measured signal rather than the (unknown)
original analog signal, since the latter is unknown.

Now, in addition to reducing the variance of the reconstruction error, what are the specific artifacts that arise in the presence
of spatial quantization that we wish to recuperate by the use of perturbation-averaging?

Consider an elementary image-formation model where a physical scene is composed of piecewise smooth multiply-connected
surfaces, S C R?, each supporting a piecewise smooth radiance function (“texture” or albedo) p : S — R, imaged through a
pinhole (central) projection 7 : R? — R2, where the projection operator also includes spatial quantization into the lattice.
Now, we have:

o) = [ o | Buo = w5 = o)aBlu, ) (i) = w(p), e S

where (3 is a bi-directional reflectance distribution function (whose integral over a unit solid angle around (u, v) at each point
p yields the diffuse albedo p) and the integral over the light source L extends to the pre-image under 7 of the quantization
cell around (@, ¥) (this is the intersection of the cone subtending a patch centered at (u, ©) with reflective surfaces in the
scene). Notice the inverse projection in the domain of integration and the forward projection in the selection of the projection
point, corresponding to a cell in the lattice.

One should also notice that the representation ¢(x) computed at location (i, ) does not just use the pixel at that location, nor
does it simply average pixels in its neighborhood, but rather aggregates information from all pixels in the patch. Nonetheless,
the information about the scene that is being aggregated changes with the distance of the scene, and translating the patch
(e.g., computing the representation at an adjacent patch, even if overlapping) mixes the contribution of different connected
components of the underlying surface S, and corresponding segments of the albedo p. Therefore, even if vectorial, the
representation ¢ is subject to quantization artifacts when viewed as a representation of the scene, rather than of the given
patch, which causes artifacts such as the loss of details at occluding boundaries and albedo boundaries. By aggregating
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SRT feature Image

Resized feature

Figure 5. Comparing SRT features and resized single-forward-pass features. SRT features respect the semantic boundaries better
than resized features (The edge of the bird and pedals in column one and wheels of the bicycle in column five). Resized features contain
quantization artifacts where edges are vertical and horizontal lines corners are right angle corners. Our feature can represent much more
detailed object contours.

multiple samples at different values of the transformation 7", we can recouperate some of those details, up to the quantization
limits of the sampling of the transformation (as opposed to the quantization limits of the patch-based tokenization).

Generally, the quantized signal z is piecewise constant, but the discontinuities correspond to the lattice cell boundaries, and
have nothing to do with either the geometric discontinuities due to the piecewise smooth nature of S, or the photometric
discontinuities due to albedo boundaries in 3 or the corresponding p. As a result, object boundaries (which correspond
either to occlusion/geometric boundaries, or material/albedo boundaries) are not visible in the quantized signal and generally
can appear and disappear even at constant quantization levels simply by moving farther and closer to the camera due to the
varying size of the intersection of the cone 7~ (D;) N S. This gives rise to genetic effects of the kind familiar in scale space
theory (Lindeberg, 2013).

While it would be ideal to be able to prove analytically that discontinuities due to material and illumination boundaries that
are washed out by spatial quantization are recovered by stochastic resonance, even the simplistic image formation model
above is way beyond the complexity that is amenable for direct analysis. For this reason, in the paper we resort to empirical
tests, either qualitative by direct visualization, or qualitative by using the averaged feature % instead of the original feature z,
in downstream inference tasks.

E. Additional Visualization

We offer additional visualization of ensembled SRT features across various network layers in Fig. 6, using CLIP and DINO
for illustration. Our visualization indicates a noticeable trend: deeper layers reveal clearer high-level semantic boundaries,
while shallower layers highlight more local features compared to high-level ones.
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CLIP DINO
layer5 ~ layer 9 layer 1 layer5 layer 9

Figure 6. Visualization of ensembled SRT features in different ViT layers. Architecture: ViT-S/16.
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