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THE EDGE RINGS OF COMPACT GRAPHS

ZEXIN WANG AND DANCHENG LU

Abstract. We define a simple graph as compact if it lacks even cycles and sat-
isfies the odd-cycle condition. Our focus is on classifying all compact graphs and
examining the characteristics of their edge rings. Let G be a compact graph and
K[G] be its edge ring. Specifically, we demonstrate that the Cohen-Macaulay type
and the projective dimension of K[G] are both equal to the number of induced
cycles of G minus one and that the regularity of K[G] is equal to the matching
number of G0. Here, G0 is a graph obtained from G by removing the vertices of
degree one successively, such that every vertex in G0 has a degree greater than 1.

Introduction

Recently, many authors have investigated the algebraic properties of edge rings of
simple graphs. Consider a simple graph G = (V,E) with vertex set V = {x1, . . . , xn}
and edge set E = {e1, . . . , er}. The edge ring K[G] is defined to be the toric
ring K[xe : e ∈ E(G)] ⊂ K[x1, . . . , xn], where xe =

∏

xi∈e xi for all e ∈ E(G).
Let K[E(G)] (or K[E] for short) denote the polynomial ring K[e1, . . . , er] in vari-
ables e1, . . . , er. Then, there is exactly one ring homomorphism φ : K[E(G)] →
K[V ] such that ei 7→ xei

i = 1, . . . , r. The kernel of the homomorphism map φ is
called the toric ideal or the defining ideal of K[G] or G, which is denoted by IG. It
follows that K[G] ∼= K[E(G)]/IG. The main focus of these studies is to establish
connections between the combinatorial properties of simple graphs and the algebraic
properties of their edge rings, see e.g. [2, 3, 7, 8, 9, 10, 14, 15] for some developments
in this area.

In 1999, Ohsugi and Hibi demonstrated in [15] that K[G] is a normal domain if
and only if G satisfies the odd-cycle condition. Recall a simple graph is said to
satisfy the odd-cycle condition if, for every pair of cycles C1 and C2, either C1 and
C2 have at least one vertex in common or there is an edge that connects a vertex of
C1 to a vertex of C2. We call a simple graph to be compact if it not only satisfies
the odd-cycle condition but also contains no even cycles. In this paper, we devote
to investigating the properties of the edge rings of compact graphs.

Let G be a compact graph. The main results of this paper can be summarized as
follows. Firstly, we demonstrate that the projective dimension and Cohen-Macaulay
type of K[G] are both equal to the number of the induced cycles of G minus one.
Additionally, we show that the regularity of K[G] coincides with the matching num-
ber of G0. Here, G0 refers to the graph derived from G by successively removing all
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vertices of degree one. This finding serves as an interesting complement to the result
presented in [12, Theorem 1 (a)], which states if G is a non-bipartite graph satis-
fying the odd-cycle condition, the regularity of K[G] does not exceed the matching
number of G. Finally, we determine the top graded Betti numbers of K[G]. Here,
for a simple graph G, a matching of G is a subset M ⊂ E(G) where e ∩ e′ = ∅ for
any distinct edges e, e′ ∈ M , and the matching number of G, denoted by mat(G), is
the maximal cardinality of matchings of G.

The paper is organized as follows. Let G be a compact graph. Section 1 provides
a brief overview of toric ideals of graphs and canonical modules. Section 2 classifies
the compact graphs up to the (essentially) same edge rings. In Section 3 we compute
the universal Gröbner bases for the toric ideals of compact graphs and then obtain
their initial ideals with respect to some suitable monomial order. In Section 4, we
show that all initial ideals obtained in Section 3 possess a “good” E-K splitting,
enabling us to present a simple formula for the total Betti numbers of such ideals.
Consequently, the regularity, projection dimension, and an upper bound for the
Cohen-Macaulay type of K[G] are derived. Section 5 provides the top graded Betti
numbers for K[G] by computing the minimal generators of its canonical module. In
Section 6, a question regarding the Betti numbers for K[G] is posed.

1. Preliminaries

In this section, we keep the notions given in Introduction and provide a brief
review of the notation and fundamental facts that will be utilized later on.

1.1. Betti numbers and Canonical modules. Let R := K[x1, . . . , xn] be the
polynomial ring in variables x1, . . . , xn, which is standard graded. For a finitely
generated graded R−module M , there exists the minimal graded free resolution of
M that has the form:

(§) 0 →
⊕

j∈Z

R[−j]βp,j(M) → · · · →
⊕

j∈Z

R[−j]β1,j(M) →
⊕

j∈Z

R[−j]β0,j(M) → M → 0.

Here, R[−j] is the cyclic freeR-module generated in degree j. The number βi,j(M) :=

dimKTorR
i (M,K)j is called the (i, j)-th graded Betti number of M and βi(M) :=

∑

j∈Z βi,j is called the i-th total Betti number of M . Many homological invariants of
M can be defined in terms of its minimal graded free resolution. The Castelnuovo-

Mumford regularity and projective dimension of M are defined to be

reg (M) := max {j − i | βi, j(M) 6= 0}

and
pdim (M) := max {i | βi, j(M) 6= 0 for some j}.

Denote pdim (M) by p. Then, βp(M) and βp,j(M), j ∈ Z are referred to as the top

total Betti number and the top graded Betti numbers of M , respectively.
By applying the functor HomR(−, R[−n]) to the sequence (§), we obtain the

following complex:

0 → HomR(F0, R[−n]) → HomR(F1, R[−n]) → · · ·

→ HomR(Fp, R[−n]) → Extp
R(M,R[−n]) → 0.
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Here, Fi denotes the free module
⊕

j∈Z

R[−j]βi,j(M). Assume further that M is Cohen-

Macaulay. Then, it follows from the local duality (see [1]) that the above complex
is exact and so it is a minimal free resolution of Extp

R(M,R[−n]). The module
Extp

R(M,R[−n]), also denoted by ωM , is called the canonical module of M . Note
that

HomR(Fi, R[−n]) =
⊕

j∈Z

HomR(R[−j]βi,j(M), R[−n]) =
⊕

j∈Z

R[−n + j]βi,j(M).

Based on these discussions, we can derive the following well-known result.

Lemma 1.1. Let M be a Cohen-Macaulay graded R = K[x1, . . . , xn]-module, and

ωM its canonical module. Assume p = pdim(M). Then βi,j(ωM) = βp−i,n−j(M) for

all i, j.

The Cohen-Macaulay type of a finitely generated Cohen-Macaulay R-module M
is defined to be the number

type(M) := βp(M) = β0(ωM),

where p is the projective dimension of M . In the following, we will consider the case
when M = K[G] as a K[E(G)]-module.

1.2. Toric ideals of graphs. Let G be a simple graph, i.e., a finite graph without
loops and multiple edges, with vertex set V (G) and edge set E(G). A matching

of G is a subset M ⊂ E(G) for which e ∩ e′ = ∅ for e 6= e′ belonging to M . The
matching number, denoted by mat(G), is the maximal cardinality of matchings of
G. Recall that a walk of G of length q is a subgraph W of G such that E(W ) =
{{v0, v1}, {v1, v2}, . . . , {vq−1, vq}}, where v0, v1, . . . , vq are vertices of G. A walk W
of G is even if q is even, and it is closed if v0 = vq. A cycle is a special closed walk
with edge set {{v0, v1}, {v1, v2}, {vq−1, vq = v0}} such that v1, . . . , vq are pairwise
distinct and q ≥ 3. A cycle is called even (resp. odd) if q is even (resp. odd). For
a subset W of V (G), the induced subgraph GW is the graph with vertex set W and
for every pair x, y ∈ W , they are adjacent in GW if and only if they are adjacent in
G. An induced cycle of G is a cycle C where no two non-consecutive vertices of C
are adjacent in G.

The generators of the toric ideal of IG are binomials which are tightly related to
even closed walks in G. Given an even closed walk W of G with

E(W ) = {{v0, v1}, {v1, v2}, . . . , {v2q−2, v2q−1}, {v2q−1, v0}},

we associate W with the binomial defined by

fW :=
q
∏

j=1

e2j−1 −
q
∏

j=1

e2j ,

where ej = {vj−1, vj} for 1 ≤ j ≤ 2q − 1 and e2q = {v2q−1, v0}. A binomial
f = u− v ∈ IG is called a primitive binomial if there is no binomial g = u′ − v′ ∈ IG

such that u′|u and v′|v. An even closed walk W of G is a primitive even closed walk

if its associated binomial fW is a primitive binomial in IG. It is known that the set

{fW : W is a primitive even closed walks of G}
3



is the universal Gröbner base of IG by e.g. [17, Proposition 10.1.10] or [5, Proposi-
tion 5.19]. In particular, it is a Gröbner base of IG with respect to any monomial
order. The set of primitive even walks of a graph G was described in [13] explicitly.

Lemma 1.2. [13, Lemma 5.11] A primitive even closed walk Γ of G is one of the

following:

(i) Γ is an even cycle of G;

(ii) Γ = (C1, C2), where each of C1 and C2 is an odd cycle of G having exactly

one common vertex;

(iii) Γ = (C1,Γ1, C2,Γ2), where each of C1 and C2 is an odd cycle of G with

V (C1) ∩ V (C2) = ∅ and where Γ1 and Γ2 are walks of G of the forms Γ1 =
(ei1

, . . . , eir
) and Γ1 = (e

i
′

1

, . . . , e
i
′

r
′

) such that Γ1 combines j ∈ ei1
∩ e

i
′

r
′

∩

V (C1) with j
′

∈ eir
∩ e

i
′

1

∩ V (C2) and Γ2 combines j
′

with j. Furthermore,

none of the vertices belonging to V (C1) ∪ V (C2) appears in each of ei1
\{j},

ei2
,. . .,eir−1

, eir
\{j

′

}, ei
′

1

\{j}, ei
′

2

,. . . ,ei
′

r−1

,ei
′

r
′

\{j
′

}.

We would like to note that in (iii) the sum of lengths of Γ1 and Γ2 must be even
in order to ensure it is indeed an even closed walk.

1.3. Edge Cones and Canonical modules. Let G be a simple graph with vertex
set V (G) = {1, . . . , n} and edge set E(G). For any f = {i, j} ∈ E(G) denote
vf = ei + ej, where ei is the ith unit vector of Rn. The edge cone of G, denoted
by R+(G), is defined to be the cone of Rn generated by {vf | f ∈ E(G)}. In other
words,

R+(G) = {
∑

f∈E(G)

afvf | af ∈ R+ for all f ∈ E(G)}.

If G satisfies the odd-cycle condition, then the edge ring K[G] is normal, see [15],
and particularly, K[G] is Cohen-Macaulay, see [1, Theorem 6.3.5]. It follows that
the ideal of K[G] generated all the monomials xα with α ∈ Z

n ∩ relint(R+(G)) is the
canonical module of K[G], see e.g. [1, section 6.3] for the details.

Let us describe the cone R+(G) in terms of linear inequalities. For the description,
we need to introduce some more notions on graphs.

• For a subset W ⊂ V (G), let G \ W be the subgraph induced on V (G) \ W .
If W = {k}, then we write G \ k instead of G \ {k}.

• For j ∈ V (G), let NG(j) = {i ∈ V (G) | {i, j} ∈ E(G)}, and for any subset
W ⊂ V (G), let NG(W ) =

⋃

k∈W
NG(k).

• A non-empty subset T ⊂ V (G) is called an independent set if {j, k} 6∈ E(G)
for any j, k ∈ T .

• We call a vertex j of G regular if each connected component of G\j contains
an odd cycle.

• We say that an independent set T of V (G) is a fundamental set if
– the bipartite graph on the vertex set T∪NG(T ) with the edge set E(G)∩

{{j, k} | j ∈ T, k ∈ NG(T )} is connected, and
4



– either T ∪ NG(T ) = V (G) or each of the connected components of the
graph G \ (T ∪NG(T )) contains an odd cycle.

It follows from [16, Theorem 3.2] or ([15, Theorem 1.7 (a)]) that R+(G) consists
of the elements (x1, . . . , xn) ∈ R

n satisfying all the following inequalities:

xu ≥ 0 for any regular vertex u;
∑

v∈NG(T )

xv ≥
∑

u∈T

xu for any fundamental set T.(∆)

1.4. E-K splitting. Based on the approach in [6], Eliahou and Kervaire introduced
the notion of splitting a monomial ideal.

Definition 1.3. Let I, J and K be monomial ideals such that G(I), the unique set
of minimal generators of I, is the disjoint union of G(J) and G(K). Then I = J+K
is an Eliahou-Kervaire splitting (abbreviated as “E-K splitting”) if there exists
a splitting function

G(J ∩K) → G(J) ×G(K)

sending w 7→ (φ(w), ψ(w)) such that

(1) w = lcm(φ(w), ψ(w)) for all w ∈ G(J ∩K), and
(2) for every subset ∅ 6= S ⊂ G(J ∩K), lcm(φ(S)) and lcm(ψ(S)) strictly divide

lcm(S).

Lemma 1.4. [6, Proposition 3.1] Let I = J +K be an E-K splitting. Then, for all

i ≥ 0,

(∗) βi(I) = βi(J)+βi(K)+βi−1(J∩K), βi,j(I) = βi,j(J)+βi,j(K)+βi−1,j(J∩K),

where β−1,j(J ∩K) = 0 for all j by convention.

2. A classification of compact graphs

In this section, we aim to classify all the compact graphs up to the essentially
same edge rings. We start by presenting the following straightforward observation,
which we will not provide a proof for.

Lemma 2.1. Let x1 be a vertex of degree one in a simple graph G and let G′ be

the graph obtained from G by removing x1. Then IG and IG′ have the same set of

minimal binomial generators. More precisely, if G has edge set {e1, . . . , er} with

x1 ∈ er, then IG = IG′ · K[e1, . . . , er] and K[G] ∼= K[G′] ⊗K K[er]. Here, both

K[e1, . . . , er] and K[er] are polynomial rings by definitions.

This observation indicates that the removal of vertices with a degree of one does
not essentially alter the edge ring. Given a simple graph G, by iteratively removing
all vertices of degree one, we obtain a new graph, denoted as G0, where every re-
maining vertex has a degree greater than one. It is evident that G and G0 essentially
share the same edge ring by Lemma 2.1. From this point forward, we will solely
focus on simple graphs in which every vertex has a degree greater than one.

5



Definition 2.2. Let G be a connected simple graph where every vertex has a degree
greater than one. We call G to be a compact graph if it does not contain any even
cycles and satisfies the odd-cycle condition.

To give a complete classification of compact graphs we need a series of lemmas,
in which the graph G is always a compact graph.

Lemma 2.3. Every cycle of G is an induced cycle.

Proof. Let C be a cycle of G that is not induced. We may label the vertices of C as
v1 −v2 −· · ·−v2s+1 −v1 in such a way there exists an index i /∈ {2, 2s+ 1} for which
v1 is adjacent to vi. Consequently, we obtain two distinct cycles: v1 −v2 −· · ·−vi−v1

and vi − vi+1 − · · · − v2s+1 − v1 − vi. These cycles have lengths i and 2s + 3 − i
respectively, and by virtue of this, precisely one of them must be an even cycle. This
is impossible by our assumption. �

Lemma 2.4. For any distinct cycles C1 and C2 of G, one has |V (C1)∩V (C2)| ≤ 1.

Proof. On the contrary, let us assume the existence of two distinct cycles, C1 :
v1 −v2 −· · ·−v2s+1 −v1 and C2 : u1 −u2 −· · ·−u2t+1 −u1, such that the intersection
of their vertex sets has at least two elements. Without loss of generality, we may
assume u1 = v1.

Now, define i1 as the smallest integer i ≥ 2 such that vi belongs to the vertex
set of C2. We assert that i1 = 2. To see this, suppose i1 ≥ 3. Then, since
vi1

= uj1
for some j1 6= 1, we can construct two cycles: u1 = v1 − v2 − · · · − vi1

=
uj1

−uj1+1 −· · ·−u2t+1 −u1 and u1 = v1 −v2 −· · ·−vi1
= uj1

−uj1−1 −· · ·−u2 −u1.
However, this is impossible because exactly one of these cycles is even, contradicting
our assumption. Therefore, i1 = 2, which means v2 is a vertex of C2. Since C2 is
an induced cycle, v2 must be either u2 or u2t+1. By relabeling the vertices of C2 if
necessary, we can assume v2 = u2.

If |V (C1) ∩ V (C2)| = 2, i.e., V (C1) ∩ V (C2) = {v1, v2}, then an even cycle can be
constructed:

u1 = v1 − v2s+1 − v2s − · · · − v2 = u2 − u3 − · · · − u2t+1 − u1 = v1.

This contradicts our assumption, indicating that the |V (C1) ∩ V (C2)| ≥ 3.
Next, let i2 be the smallest integer i ≥ 3 such that vi belongs to the vertex set of

C2. We assert that i2 = 3. If i2 is greater than 3, then two cycles are formed:

u2 = v2 − v3 − · · · − vi2
= uj2

− uj2+1 − · · · − u2t+1 − u2

and

u2 = v2 − v3 − · · · − vi2
= uj2

− uj2−1 − · · · − u3 − u2,

where j2 satisfies vi2
= uj2

. However, one of these cycles must be even, creating a
contradiction.

Therefore, i2 is indeed 3, implying that v3 is a vertex of C2. Since C2 is an induced
cycle, v3 must be u3.

Continuing this process, we ultimately arrive at the conclusion that C1 and C2

are identical, which is a contradiction. �
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Lemma 2.5. Every vertex of G belongs to at least one cycle.

Proof. Assume on the contrary that there exists a vertex v in G that does not belong
to any cycle. We first establish the claim that for any u ∈ NG(v), there exists a
path v − u− u1 − · · · − us such that us belongs to at least one cycle in G, whereas
each one of vertices u, u1, . . . , us−1 does not belong to any cycle in G.

Let u ∈ NG(v). If u belongs to at least one cycle in G, we are done. (In this
case, s = 0). If u does not belong to any cycle in G, then, since deg(u) ≥ 2, there
exists a vertex u1 such that u1 ∈ NG(u) \ {v}. If u1 belongs to a cycle, we are done.
Otherwise, if u1 does not belong to any cycle, we select u2 ∈ NG(u1)\{u}. If u2 = v,
then v belongs to the cycle v−u−u1 −u2 = v, contradicting our initial assumption.

Therefore, v − u − u1 − u2 is a path. If u2 belongs to a cycle, we are done. If
not, we continue this process, selecting u3 ∈ NG(u2) \ {u1} and so on. Since G is a
finite graph, there exists an integer s ≥ 0 such that v − u− u1 − · · · − us is a path
satisfying the condition required, thereby proving our claim.

Now, since deg(v) ≥ 2, we can select distinct vertices u and w in NG(v). By
applying the previous claim, there exist paths v−u−u1 −· · ·−us and v−w−w1 −
· · · − wt, where each vertex in {v, u, w, u1, . . . , us−1, w1, . . . , wt−1} does not belong
to any cycle, but us and wt belong to cycles C1 and C2 respectively. Clearly, C1

and C2 must be disjoint, as otherwise v would belong to a cycle, contradicting our
assumption.

However, this implies that there is an edge connecting C1 and C2, due to the
odd-cycle condition in G. This is again a contradiction, and hence we conclude that
every vertex in G must belong to at least one cycle. �

Lemma 2.6. If v belong to the vertex set of a cycle C with deg(v) ≥ 3, then for

any u ∈ NG(v) \ V (C) and for any cycle C1 passing through u, one has either

V (C1) ∩ V (C) = ∅ or V (C1) ∩ V (C) = {v}.

Proof. If the intersection of the vertex sets V (C1) and V (C) is neither empty nor
equal to {v}, then by Lemma 2.4, it must be {w} for some vertex w distinct from
u. Since u and w both belong to V (C1), there exists a path u− u1 − · · · − us − w,
with each vertex along this path belonging to V (C1). Similarly, as v and w both
belong to V (C), there exists a path w−w1 − · · · −wt − v, where each vertex in this
path is an element of V (C). Consequently, we can construct a cycle u− u1 − · · · −
us −w−w1 − · · · −wt − v − u that necessarily intersects C at at least two vertices:
v and w. This is impossible by Lemma 2.4. �

We now study what happens if a cycle contain two vertices of degree at least 3.
In the proof of the following lemma, we use notation u− −C − −v to represent any
of two paths from u to v within the cycle C unless otherwise specified.

Lemma 2.7. Let v1 and v2 be distinct vertices of degree at least 3 that belong to the

vertex set of a cycle C. Then v1 is adjacent to v2. Furthermore, for each i = 1, 2,

if Ci is a cycle that passes through a vertex, say ui, in NG(vi) \ V (C), then Ci must

passes through vi. Moreover, V (C1) ∩ V (C2) = ∅.
7



Proof. It is evident that u1 6= u2, for otherwise, a cycle v1 −−C −−v2 −u2 = u1 −v1

would be formed. This cycle would intersect C at least at two vertices, v1 and v2,
which is impossible according to Lemma 2.4.

We next show V (C1) ∩ V (C2) = ∅. If not, we may assume V (C1) ∩ V (C2) = {x}.
There exists a least one path from x to u1 within C1 that does does not pass through
v1, and we denote it by x−−C1

−−u1. Additionally, let u2 −−C2
−−x denote a path

within C2 that does not pass through v2. Then, since V (C) ∩ V (C1) ⊆ {v1}, every
vertex in the path x− −C1

− −u1 does not belong to V (C). Similarly, every vertex
in the path u2 − −C2

− −x does not belong to V (C). If x /∈ {u1, u2}, then we obtain
the cycle: x− −C1

− −u1 − v1 − −C − −v2 − u2 − − −C2
−x. It’s impossible because

this cycle intersects with C at least at two vertices, v1 and v2. Either the case x = u1

or the x = u2 leads to a similar contradiction. Hence, V (C1) ∩ V (C2) = ∅.
Next, we demonstrate that C1 necessarily passes through v1. If not, then by

Lemma 2.6, V (C1) ∩ V (C) = ∅. Since V (C1) ∩ V (C2) = ∅, there exists an edge
{x1, x2} such that xi ∈ V (Ci) for i = 1, 2. Assuming V (C2) ∩ V (C) 6= ∅, it implies
V (C2) ∩ V (C) = {v2}.

Considering various possibilities, we have:
1. If x1 6= u1 and x2 6= v2, we arrive at the cycle: x1 − −C1

− −u1 − v1 − −C −
−v2 − −C2

− −x2 − x1.
2. If x1 = u1 and x2 6= v2, the cycle is: x1 = u1 −v1 −−C −−v2 −−C2

−−x2 −x1.
3. If x1 = u1 and x2 = v2, the cycle becomes: x1 = u1 − v1 − −C − −v2 = x2 −x1.
4. If x1 6= u1 and x2 = v2, the cycle is: x1 −−C1

−−u1 −v1 −−C −−v2 = x2 −−x1.
However, all these scenarios are impossible due to Lemma 2.4. This proves

V (C2) ∩ V (C) = ∅. However, we can prove this is also impossible analogously.
This establishes that C1 must pass through v1. Similarly, we can also demonstrate
that C2 necessarily passes through v2.

Finally, we show that v1 is adjacent to v2. Suppose that v1 is not adjacent to
v2. Since V (C1) ∩ V (C2) = ∅, there is an edge {x1, x2} such that xi ∈ V (Ci) for
i = 1, 2. Note that either x1 6= v1 or x2 6= v2. We may assume x1 6= v1. Then we
obtain a cycle: either x1 − −C1

− −v1 − −C − −v2 − −C1
− −x2 − x1 if x2 6= v2, or

x1 − −C1
− −v1 − − − v2 = x2 − x1 if v2 = x2. This is again a contradiction. �

A cycle is isolated if each of its vertices has a degree of 2. For convenience, we
say a cycle of G to be almost-isolated if it has exactly one vertex of degree ≥ 3.

Lemma 2.8. If v1 is a vertex with deg(v1) ≥ 3, then v1 belongs to at least one

almost-isolated cycle C.

Proof. By Lemma 2.5 we may let C be a cycle passing v1. If C is almost-isolated,
our proof is complete. If C is not almost-isolated, we let v2 be a vertex in V (C)
other than v1 with degree at least 3.

For each i = 1, 2, we let ui ∈ NG(vi) \ V (C) and let Ci be a cycle passing
through ui. Then, according to Lemma 2.7, we have Ci passes vi for i = 1, 2 and
V (C1) ∩ V (C2) = ∅. Moreover, v1 is adjacent to v2.

It remains to show that C1 is a almost-isolated cycle. Suppose on the contrary
that there is a vertex v1 6= v3 ∈ V (C1) with a degree at least 3. Then v1 and v3

8



are vertices of degree at least 3 that belong to C1. Note that C2 passes through the
vertex v2, which belongs to NG(v1) \ V (C1). It follows that C2 passes through v1

by Lemma 2.7. However, this is contradicted to the fact that V (C1) ∩ V (C2) = ∅,
completing the proof. �

Lemma 2.9. If v1 and v2 are distinct vertices with a degree of at least 3, then v1 is

adjacent to v2.

Proof. By Lemma 2.8, there exist almost-isolated cycles C1 and C2 such that vi

belongs to Ci for i = 1, 2. It is clear that V (C1) ∩ V (C2) = ∅. According to the
odd-cycle condition, there exists an edge {u, w} connecting a vertex u from V (C1)
to a vertex w from V (C2). This implies both u and w have a degree of at least 3.
Since all vertices of C1 apart from v1 have a degree of 2, it follows that u must be v1.
By a similar argument, we conclude that w is v2. Hence, v1 is adjacent to v2. �

Lemma 2.10. There are no more than three vertices with a degree of at least 3.

Proof. Let v1, . . . , vk be all the vertices with a degree of at least 3. By Lemma 2.9,
the induced subgraph on {v1, . . . , vk} forms a complete graph. However, if k were
to exceed 3 (i.e., k ≥ 4), this induced subgraph would contain a 4-cycle, which is a
contradiction. �

We are now ready to present a complete classification for compact graphs.

Definition 2.11. A vertex in a compact graph is referred as a big vertex if its
degree exceeds 2. A compact graph is classified as type i if it possesses exactly i big
vertices, where i ranges from 0 to 3.

Theorem 2.12. Every compact graph falls into type i for some i ∈ {0, 1, 2, 3}.

Furthermore, the four distinct categories of compact graphs can be characterized as

follows:

(1) A compact graph of type 0 is simply an odd cycle.

(2) A compact graph of type 1 is a finite collection of odd cycles that share a

common vertex.

(3) A compact graph of type 2 consists of two disjoint compact graphs of type 1,

where the two big vertices are connected either by an edge or by an edge as

well as a path of even length.

(4) A compact graph of type 3 consists of three disjoint compact graphs of type

1, where every pair of big vertices is connected by an edge.

Proof. The first statement follows from Lemma 2.10.
The proofs of (1) and (2) are straightforward.
(3) Let G be a compact graph of type 2 and let u and v denote its big vertices.

Then u is adjacent to v by Lemma 2.9. Consider all the almost-isolated cycles
passing through u and all the almost-isolated cycles passing through v. Let V1

denote the set of all the vertices of these cycles. If V1 = V (G), then G consists of
two disjoint compact graphs of type 1 where the two big vertices forms an edge.

Suppose that V1 6= V (G). Then we define V2 = V (G)\V1. Fix an arbitrary vertex
x ∈ V2. By Lemma 2.5, there exists a cycle C in G such that x belongs to the vertex
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set of C. Since C is neither isolated nor almost-isolated, it is straightforward to
deduce that u and v must also belong to the vertex set of C. By Lemma 2.3, C is
an induced cycle, meaning that no two non-consecutive vertices of C are adjacent
in G. Hence, C may be written as u − x1 − · · · − x2k−1 − v − u, where k ≥ 1 and
x1, . . . , x2k−1 are distinct vertices in V2.

Now, consider any other vertex y ∈ V2. Then y also belongs to the vertex set of
a cycle that contains both u and v. By Lemma 2.4, this cycle must be C. Conse-
quently, y ∈ {x1, . . . , x2k−1} and it follows that V2 = {x1, . . . , x2k−1}. Therefore, G
consists of two disjoint compact graphs of type 1, where the two big vertices u and v
are connected not only by an edge but also by a path given by u−x1 −· · ·−x2k−1 −v.

(3) Let G be a compact graph of type 3, with u, v and w denoting its big vertices.
It suffices to show that the set of vertices of almost-isolated cycles must be V (G).
Suppose on the contrary that there exists a vertex x that does not belong to the
vertex set of any almost-isolated cycle of G. Then x must be a vertex of a cycle that
contains at least two big vertices. However, the only such cycle in G is u−v−w−u.
It follows that x must be one of u, v, w, a contradiction. �

We introduce some more notation for the later use. Suppose p = (p1, . . . , pm),
q = (q1, . . . , qn) and r = (r1, . . . , rk) are positive integral vectors with dimensions
m,n and k respectively. We denote a compact graph of type 1, where the odd cycles
have lengths 2p1 + 1, . . . 2pm + 1 respectively, as Ap or Ap1,...,pm

.

u

Figure 1. The graph A(1,2,1)

By B0
p:q we mean a compact graph of type 2 where the two disjoint compact

graphs of type 1 that compose it are Ap and Aq and where the two big vertices are
connected by an edge. Furthermore, if s > 0 is an even number, then Bs

p;q represents

the graph obtained by appending a path of length s connecting two big vertices to
B0

p:q.

A compact graph of type 3 is denoted by Cp:q:r if the three disjoint compact graphs
of type 1 that make up it are Ap, Aq and Ar respectively.

3. Universal gröbner bases and initial ideals

In this section, we will discuss the universal Gröbner bases and initial ideals of
toric ideals of compact graphs, with respect to a specific monomial order. The main

10



u v

Figure 2. The graph B2
(2,1):(2,1)

u v

w

Figure 3. The graph C(2,1):(1,1):(2,1)

objective of this section is to identify suitable monomial orders that yield initial
ideals with a favorable E-K splitting, as demonstrated in the subsequent section.

3.1. Compact graphs of type 1. Given positive integers m ≥ 2 and p1, . . . , pm,
we use A to denote the graph Ap1,...,pm

for short. Thus A has vertex set

V (A) = {u} ∪ {ui,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 2pi}

and edge set

E(A) = {{ui,j, ui,j+1} | 1 ≤ i ≤ m, 1 ≤ j ≤ 2pi − 1}

∪ {{u, ui,1}, {u, ui,2pi
} | 1 ≤ i ≤ m}.

We label the edges of A as follows. For i ∈ {1, . . . , m}, we let ei,1 = {u, ui,1}
and ei,2pi+1 = {u, ui,2pi

}. For i ∈ {1, . . . , m} and j ∈ {1, . . . , 2pi − 1} let ei,j+1 =
{ui,j, ui,j+1}. For 1 ≤ i, j ≤ m, we put

e′
i = ei,1ei,3 · · · ei,2pi+1 and e′′

j = ej,2ej,4 · · · ej,2pj
.

Lemma 3.1. For any integers m ≥ 2 and positive integers p1, . . . , pm, the universal

Gröbner basis for the toric ideal IA is given by

G = {e′
ie

′′
j − e′′

i e
′
j | 1 ≤ i < j ≤ m}.
11



Proof. It follows from [15, Lemma 3.2] together with [16, Proposition 10.1.10]. �

Going forward, we work in the standard graded polynomial ring

K[E(A)] = K[e1,1, . . . , e1,2p1+1, . . . . . . , em,1, . . . , em,2pm+1].

Let < denote the lexicographic monomial order on K[E(A)] satisfying

e1,1 < · · · < e1,2p1+1 < · · · · · · < em,1 < · · · < em,2pm+1,

and let JA denote the initial ideal of IA with respect to the monomial order <.

Proposition 3.2. The minimal set of monomial generators of JA is given by

M =
{

e′′
i e

′
j | 1 ≤ i < j ≤ m

}

.

Proof. Note that e′
ie

′′
j < e′′

i e
′
j for 1 ≤ i < j ≤ m, we can deduce from Lemma 3.1

that JA is generated by M. The minimality of M can be checked directly. �

3.2. Compact graphs of type 2. Assume that n,m and p1, . . . , pm, q1, . . . , qn are
given positive integers. Let s ≥ 0 be an even number. We use B denote the graph
Bs

p1,...,pm:q1,...,qn
for short. Then, we may assume that B has vertex set

V (B) = {u, v} ∪ {w1, . . . , ws−1}

∪{ui,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 2pi} ∪ {vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 2qi}

and edge set

E(B) = {{ui,j, ui,j+1} | 1 ≤ i ≤ m, 1 ≤ j ≤ 2pi − 1}

∪ {{u, ui,1}, {u, ui,2pi
} | 1 ≤ i ≤ m}

∪ {{u, v}, {u, w1}, {v, ws−1}} ∪ {{wi, wi+1} | 1 ≤ i ≤ s− 2}

∪ {{vi,j, vi,j+1} | 1 ≤ i ≤ n, 1 ≤ j ≤ 2qi − 1}

∪ {{v, vi,1}, {v, vi,2qi
} | 1 ≤ i ≤ n}.

The edges of B are labeled as follows. For i ∈ {1, . . . , m} let ei,1 = {u, ui,1}
and ei,2pi+1 = {u, ui,2pi

}. For i ∈ {1, . . . , m} and j ∈ {1, . . . , 2pi − 1} let ei,j+1 =
{ui,j, ui,j+1} . Let x = {u, v}, x1 = {u, w1} and xs = {v, ws−1}. For i ∈ {1, . . . , s− 2}
let xi+1 = {wi, wi+1}. For i ∈ {1, . . . , n} let fi,1 = {v, vi,1} and fi,2qi+1 = {v, vi,2qi+1}.
For i ∈ {1, . . . , n} and j ∈ {1, . . . , 2qi − 1} let fi,j+1 = {vi,j, vi,j+1}.

We put
e′

i = ei,1ei,3 · · · ei,2pi+1 and e′′
i = ei,2ei,4 · · · ei,2pi

,

f ′
i = fi,1fi,3 · · ·fi,2qi+1 and f ′′

i = fi,2fi,4 · · · fi,2qi
,

and put
x′ = x1x3 · · ·xs−1, and x′′ = x2x4 · · ·xs.

Note that if s = 0 then both x′ and x′′ vanish.

Lemma 3.3. For any positive integers m,n and p1, . . . , pm, q1, . . . , qn and an integer

s ≥ 0, the universal Gröbner basis of IB is given by G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6,

where

(i) G1 = {e′
ie

′′
j − e′′

i e
′
j | 1 ≤ i < j ≤ m},
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(ii) G2 = {f ′
if

′′
j − f ′′

i f
′
j | 1 ≤ i < j ≤ n},

(iii) G3 = {e′
if

′
j − e′′

i x
2f ′′

j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

(iv) G4 = {e′
ix

′′2f ′′
j − e′′

i x
′2f ′

j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

(v) G5 = {e′
ix

′′ − e′′
i x

′x | 1 ≤ i ≤ m},and

(vi) G6 = {f ′
ix

′ − f ′′
i x

′′x | 1 ≤ i ≤ n}.

It should be noted that G4,G5 and G6 vanish if s = 0.

Proof. By [13, Lemma 5.11], every primitive even closed walk of B is one of the
followings:

• (ei,1, . . . , ei,2pi+1, ej,1, . . . , ej,2pj+1), where 1 ≤ i < j ≤ m,
• (fi,1, . . . , fi,2qi+1, fj,1, . . . , fj,2qj+1), where 1 ≤ i < j ≤ n,
• (ei,1, . . . , ei,2pi+1, x, fj,1, . . . , fj,2qj+1, x), where 1 ≤ i ≤ m, 1 ≤ j ≤ n,
• (ei,1, . . . , ei,2pi+1, x1, . . . , xs, fj,1, . . . , fj,2qj+1, xs, . . . , x1), where 1 ≤ i ≤ m, 1 ≤
j ≤ n,

• (ei,1, . . . , ei,2pi+1, x1, . . . , xs, x), where 1 ≤ i ≤ m, and
• (fi,1, . . . , fi,2qi+1, x, x1, . . . , xs), where 1 ≤ i ≤ n.

The result now follows from [16, Proposition 10.1.10]. �

Let< denote the lexicographic monomial ordering on the polynomial ring K[E(B)]
satisfying

e1,1 < · · · < e1,2p1+1 < · · · · · · < em,1 < · · · em,2pm+1 < x < x1 < · · · < xs

< f1,1 < · · · < f1,2q1+1 < · · · · · · < fn,1 < · · · < fn,2qn+1.

and let JB be the initial ideal of IB with respect to this order.

Proposition 3.4. The minimal set of monomial generators of JB is given by M =
M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5, where

(i) M1 =
{

e′′
i e

′
j | 1 ≤ i < j ≤ m

}

,

(ii) M2 =
{

f ′′
i f

′
j | 1 ≤ i < j ≤ n

}

,

(iii) M3 =
{

e′
if

′
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

,

(iv) M4 = {e′
ix

′′ | 1 ≤ i ≤ m}, and

(v) M5 = {f ′
ix

′ | 1 ≤ i ≤ n}.

It should be noted that M4 and M5 vanish if s = 0.

Proof. That M is a generating set with respect to the given order follows from
Lemma 3.3. That it is minimal follows from the fact that none of the monomials
are divided by any of the others. �

3.3. Compact graphs of type 3. Given positive integers m,n, k, as well as the
tuples p = (p1, . . . , pm), q = (q1, . . . , qn) and r = (r1, . . . , rk), we denote the graph
Cp:q:r as C for brevity. Here, pi, qi, ri are all positive integers. By definition, we may
assume C has vertex set

V (C) ={{u, v, w} ∪ {ui,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 2pi}

∪ {vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 2qi} ∪ {wi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ 2ri},
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and edge set

E(C) ={{ui,j, ui,j+1} | 1 ≤ i ≤ m, 1 ≤ j ≤ 2pi − 1}

∪ {{u, ui,1}, {u, ui,2pi
} | 1 ≤ i ≤ m}

∪ {{vi,j, vi,j+1} | 1 ≤ i ≤ n, 1 ≤ j ≤ 2qi − 1}

∪ {{v, vi,1}, {v, vi,2qi
} | 1 ≤ i ≤ n}

∪ {{wi,j, wi,j+1} | 1 ≤ i ≤ k, 1 ≤ j ≤ 2ri − 1}

∪ {{w,wi,1}, {w,wi,2ri
} | 1 ≤ i ≤ k}

∪ {{u, v}, {v, w}, {w, u}}.

We assign labels to the edges of C as follows: For i ∈ {1, . . . , m}, let ei,1 =
{u, ui,1} and ei,2pi+1 = {u, ui,2pi+1}. For i ∈ {1, . . . , m} and j ∈ {1, . . . , 2pi − 1}, let
ei,j+1 = {ui,j, ui,j+1}.

For i ∈ {1, . . . , n}, let fi,1 = {v, vi,1} and fi,2qi+1 = {v, vi,2qi+1}. For i ∈ {1, . . . , n}
and j ∈ {1, . . . , 2qi − 1}, let fi,j+1 = {vi,j, vi,j+1}.

For i ∈ {1, . . . , k}, let gi,1 = {w,wi,1} and gi,2ri+1 = {w,wi,2ri+1}. For i ∈
{1, . . . , k} and j ∈ {1, . . . , 2ri − 1}, let gi,j+1 = {wi,j, wi,j+1}.

Furthermore, we define x = {u, v}, y = {v, w}, and z = {w, u}.

Lemma 3.5. For any integers m,n, k and p1, . . . , pm, q1, . . . , qn, r1, . . . , rk, the uni-

versal Gröbner basis of IC is given by in G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6 ∪ G7 ∪ G8 ∪
G9 ∪ G10 ∪ G11 ∪ G12, where

(i) G1 = {e′
ie

′′
j − e′′

i e
′
j | 1 ≤ i < j ≤ m},

(ii) G2 = {f ′
if

′′
j − f ′′

i f
′
j | 1 ≤ i < j ≤ n},

(iii) G3 = {g′
ig

′′
j − g′′

i g
′
j | 1 ≤ i < j ≤ k},

(iv) G4 = {e′
if

′
j − e′′

i x
2f ′′

j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

(v) G5 = {f ′
ig

′
j − f ′′

i y
2g′′

j | 1 ≤ i ≤ n, 1 ≤ j ≤ k},

(vi) G6 = {g′
ie

′
j − g′′

i z
2e′′

j | 1 ≤ i ≤ k, 1 ≤ j ≤ m},

(vii) G7 = {e′
iy

2f ′′
j − e′′

i z
2f ′

j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

(viii) G8 = {f ′
iz

2g′′
j − f ′′

i x
2g′

j | 1 ≤ i ≤ n, 1 ≤ j ≤ k},

(ix) G9 = {g′
ix

2e′′
j − g′′

i y
2e′

j | 1 ≤ i ≤ k, 1 ≤ j ≤ m},

(x) G10 = {e′
iy − e′′

i zx | 1 ≤ i ≤ m},

(xi) G11 = {f ′
iz − f ′′

i xy | 1 ≤ i ≤ n}, and

(xii) G12 = {g′
ix− g′′

i yz | 1 ≤ i ≤ k}.

Proof. In view of [13, Lemma 5.11], every primitive even closed walk of C is one of
the followings:

• (ei,1, . . . , ei,2pi+1, ej,1, . . . , ej,2pj+1), where 1 ≤ i < j ≤ m,
• (fi,1, . . . , fi,2qi+1, fj,1, . . . , fj,2qj+1), where 1 ≤ i < j ≤ n,
• (gi,1, . . . , gi,2ri+1, gj,1, . . . , gj,2rj+1), where 1 ≤ i < j ≤ k,
• (ei,1, . . . , ei,2pi+1, x, fj,1, . . . , fj,2qj+1, x), where 1 ≤ i ≤ m, 1 ≤ j ≤ n,
• (fi,1, . . . , fi,2qi+1, y, gj,1, . . . , gj,2rj+1, y), where 1 ≤ i ≤ n, 1 ≤ j ≤ k,
• (gi,1, . . . , gi,2ri+1, z, ej,1, . . . , ej,2pj+1, z), where 1 ≤ i ≤ k, 1 ≤ j ≤ m,
• (ei,1, . . . , ei,2pi+1, z, y, fj,1, . . . , fj,2qj+1, y, z), where 1 ≤ i ≤ m, 1 ≤ j ≤ n,
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• (fi,1, . . . , fi,2qi+1, x, z, gj,1, . . . , gj,2rj+1, z, x), where 1 ≤ i ≤ n, 1 ≤ j ≤ k,
• (gi,1, . . . , gi,2ri+1, z, x, ej,1, . . . , ej,2pj+1, x, y), where 1 ≤ i ≤ k, 1 ≤ j ≤ m,
• (ei,1, . . . , ei,2pi+1, z, y, x), where 1 ≤ i ≤ m,
• (fi,1, . . . , fi,2qi+1, x, z, y), where 1 ≤ i ≤ n, and
• (gi,1, . . . , gi,2ri+1, y, x, z), where 1 ≤ i ≤ k.

Now the result follows from [16, Proposition 10.1.10]. �

Going forward, we work in the standard graded polynomial ring K[E(C)], where
the variables (i.e., the edges of C) is ordered as follows:

e1,1 < · · · < e1,2p1+1 < · · · · · · < em,1 < · · · em,2pm+1 < x < z < y

< f1,1 < · · · < f1,2q1+1 < · · · · · · < fn,1 < · · · fn,2qn+1 < g1,1 < · · ·

< g1,2r1+1 < · · · · · · < gk,1 < · · · < gk,2rk+1.

Let JC denote the initial ideal of IC with respect to the lexicographic monomial
ordering < on K[E(C)] induced by the above order of variables.

By putting:
e′

i = ei,1ei,3 · · · ei,2pi+1 and e′′
i = ei,2ei,4 · · · ei,2pi

,

f ′
j = fj,1fj,3 · · · fj,2qj+1 and f ′′

j = fj,2fj,4 · · · fj,2qj
,

and
g′

ℓ = gℓ,1gℓ,3 · · · gℓ,2rℓ+1 and g′′
ℓ = gℓ,2gℓ,4 · · · gℓ,2rℓ

,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ ℓ ≤ k, we obtain the following result.

Proposition 3.6. The minimal set of monomial generators of JC is given by M =
M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 ∪ M6 ∪ M7 ∪ M8 ∪ M9, where

(i) M1 =
{

e′′
i e

′
j | 1 ≤ i < j ≤ m

}

,

(ii) M2 =
{

f ′′
i f

′
j | 1 ≤ i < j ≤ n

}

,

(iii) M3 =
{

g′′
i g

′
j | 1 ≤ i < j ≤ k

}

,

(iv) M4 =
{

e′
if

′
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

,

(v) M5 =
{

f ′
ig

′
j | 1 ≤ i ≤ n, 1 ≤ j ≤ k

}

,

(vi) M6 =
{

g′
ie

′
j | 1 ≤ i ≤ k, 1 ≤ j ≤ m

}

,

(vii) M7 = {e′
iy | 1 ≤ i ≤ m},

(viii) M8 = {f ′
iz | 1 ≤ i ≤ n}, and

(ix) M9 = {g′
ix | 1 ≤ i ≤ k}.

Proof. That M is a generating set with respect to the given order follows from
Lemma 3.5. That it is minimal follows from the fact that none of the monomials
are divided by any of the others. �

4. Projective dimension and regularity

In this section, we aim to establish the following results. For convenience, we
denote by t(G) the number of induced cycles of G.

Theorem 4.1. Let G be a compact graph. Then there is a monomial order < such

that
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(1) βi(in<(IG)) = (i+ 1)
(
t(G)
i+2

)

for all i ≥ 0;

(2) pdim(K[E(G)]/in<(IG)) = t(G) − 1;

(3) K[E(G)]/in<(IG) is a Cohen-Macaulay ring;

(4) reg(K[E(G)]/in<(IG)) = mat(G).

Corollary 4.2. Let Let G be a compact graph. Then

(1) pdim(K[G]) = t(G) − 1;

(2) reg(K[G]) = mat(G).

It is known that if I is a graded ideal of a polynomial ring R such that R/in<(I)
is Cohen-Macaulay for some monomial order <, then R/I is also Cohen-Macaulay.
Furthermore, we have reg(R/I) = reg(R/in<(I)) and pdim(R/I) = pdim(R/in<(I)).
Based on these facts we could see that Corollary 4.2 follows immediately from The-
orem 4.1. Regarding the proof of Theorem 4.1, we will provide it at the end of this
section.

Assume through this section thatm,n, k are positive integers and p = (p1, . . . , pm),
q = (q1, . . . , qn) and r = (r1, . . . , rk) are integral tuples with positive entries. Also,
we write p′ = (p1, . . . , pm−1), q

′ = (q1, . . . , qn−1), and r′ = (r1, . . . , rk−1).

4.1. type one. In this subsection, we always use the monomial order given in Sub-
section 3.1, and denote the toric ideal of Ap and its initial ideal as Im and Jm,
respectively. Similarly, Im−1 and Jm−1 represent the toric ideal of Ap′ and its initial

ideal respectively. Recall from Subsection 3.1 that G(Jm) =
{

e′′
i e

′
j | 1 ≤ i < j ≤ m

}

.

Proposition 4.3. Denote by Hm the monomial ideal (e′′
1, . . . , e

′′
m−1). Then Jm =

Jm−1 + e′
mHm is an E-K splitting. Furthermore Jm−1 ∩ e′

mHm = e′
mJm−1.

Proof. First of all, it is easy to see that G(Jm) = G(Jm−1) ⊔G(e′
mHm). Let us check

Jm−1 ∩ e′
mHm = e′

mJm−1. Take any e′′
i e

′
j ∈ G(Jm−1), since 1 ≤ i < j ≤ m − 1,

we have e′
me

′′
i e

′
j ∈ e′

mHm ∩ Jm−1. For the converse, take e′
me

′′
i1

∈ G(e′
mHm) and

e′′
i2
e′

j ∈ G(Jm−1). Here, 1 ≤ i1 ≤ m− 1 and 1 ≤ i2 < j ≤ m− 1. Then,

lcm(e′
me

′′
i1
, e′′

i2
e′

j) ∈ (e′
me

′′
i2
e′

j) ⊆ e′
mJm−1.

This shows Jm−1 ∩ e′
mHm = e′

mJm−1.
Next, we define functions φ and ψ as follows:

φ : G(e′
mJm−1) → G(Jm−1), e′

me
′′
i e

′
j 7→ e′′

i e
′
j , 1 ≤ i < j ≤ m− 1,

ψ : G(e′
mJm−1) → G(e′

mHm), e′
me

′′
i e

′
j 7→ e′

me
′′
i , 1 ≤ i < j ≤ m− 1.

(1) Let u be a minimal generator of e′
mJm−1. Then u = e′

me
′′
i e

′
j for some 1 ≤ i <

j ≤ m− 1. It follows that

lcm(φ(u), ψ(u)) = lcm(e′′
i e

′
j , e

′
me

′′
i ) = e′

me
′′
i e

′
j = u.

(2) Let C = e′
m(e′′

i1
e′

j1
, . . . , e′′

ik
e′

jk
) be a non-empty subset of G(e′

mJm−1), where
1 ≤ iq < jq ≤ m− 1 for q = 1, . . . , k. Then

φ(C) = (e′′
i1
e′

j1
, . . . , e′′

ik
e′

jk
) and ψ(C) = e′

m(e′′
i1
, . . . , e′′

ik
).
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Since e′′
i and e′

j are co-prime for all 1 ≤ i, j ≤ m, we have

lcm(C) = e′
mlcm(φ(C)) and lcm(C) = lcm(ψ(C))lcm(e′

j1
, . . . , e′

jk
).

This completes the proof. �

In the following, we will utilize the following formula without explicitly referencing
it: For a finitely generated graded module M over a standard graded polynomial
ring, one has

max{j− i | βi−a,j−b(M) 6= 0} = max{ℓ+b−(k+a) | βk,ℓ(M) 6= 0} = reg(M)+b−a.

Proposition 4.4. Let m ≥ 2. Then reg(Jm) = mat(Ap) + 1.

Proof. It is easy to check that mat(Ap) =
m∑

i=1
pi. We proceed with the induction on

m. If m = 2, since J2 is generated by a single monomial of degree p1 + p2 + 1, we
obtain reg(J2) = p1 + p2 + 1.

Suppose that m > 2. Then, by Lemma 4.3, we have

(♣) βi,j(Jm) = βi,j(Jm−1) + βi,j−pm−1(Hm) + βi−1,j−pm−1(Jm−1).

It follows that

reg(Jm) = max{j − i | βi,j(Jm−1) + βi−1,j−pm−1(Jm−1) + βi,j−pm−1(Hm) 6= 0}

= max{reg(Jm−1), reg(Jm−1) + pm, reg(Hm) + pm + 1}.

Note that Hm is generated by a regular sequence of degrees p1, . . . , pm−1. By using

the Koszul theory, we obtain reg(Hm) =
m−1∑

i=1
pi −m+ 2. Hence,

reg(Jm) = max{
m∑

i=1

pi + 1,
m∑

i=1

pi −m+ 3}

=
m∑

i=1

pi + 1,

as desired. �

Proposition 4.5. Let m ≥ 2. Then βi(Jm) = (i + 1)
(

m

i+2

)

for all i ≥ 0. In

particular, pdim(Jm) = m− 2.

Proof. We also employ the induction on m. The case that m = 2 or i = 0 is

straightforward. If m ≥ 3 and i ≥ 1, then, by noting that the formula
(

m

i

)

=
(

m−1
i−1

)

+
(

m−1
i

)

holds for all m ≥ 1 and i ≥ 1, we have

βi(Jm) = βi(Jm−1) + βi(Hm) + βi−1(Jm−1)

= (i+ 1)

(

m− 1

i+ 2

)

+

(

m− 1

i+ 1

)

+ i

(

m− 1

i+ 1

)

= (i+ 1)

(

m

i+ 2

)

,

as desired. �
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We may compute the graded Betti numbers of Jm in a special case.

Proposition 4.6. If p1 = · · · = pm = p, then for all i ≥ 0, we have

βi,j(Jm) =

{ (
m

i+2

)

, j = (i+ 2)p+ ℓ, ℓ = 1, . . . , i+ 1;

0, otherwise.

Proof. We use the induction on m. The case that m = 2 or i = 0 are obvious. So
we suppose m ≥ 3 and i ≥ 1. By the induction hypothesis we have

βi,j(Jm−1) =

{ (
m−1
i+2

)

, j = (i+ 2)p+ ℓ, ℓ = 1, . . . , i+ 1;

0, otherwise

and so

βi−1,j−p−1(Jm−1) =

{ (
m−1
i+1

)

, j = (i+ 2)p+ ℓ+ 1, ℓ = 1, . . . , i;

0, otherwise.

On the other hand, by the theory of Koszul complex, we have

βi,j−p−1(Hm) =

{ (
m−1
i+1

)

, j = (i+ 2)p+ 1;

0, otherwise.

Now, the result follows by applying the equality (♣). �

4.2. Type two. In this subsection, we denote the toric ideal of Bs
p:q and its initial

ideal as Is
m:n and Js

m:n respectively. Similarly, Is
m:n−1 and Js

m:n−1 represent the toric
ideal and its initial ideal of Bs

p:q′ respectively. Here, we use the monomial order given

in Subsection 3.2. The distinction between the case when s > 0 and the case when
s = 0 is significant. Let us first consider the case when s > 0. Recall from Subsec-

tion 3.2 that G(Js
m:n) is the set

{

e′′
i e

′
j | 1 ≤ i < j ≤ m

}

⊔
{

f ′′
i f

′
j | 1 ≤ i < j ≤ n

}

⊔
{

e′
if

′
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

⊔ {e′
ix

′′ | 1 ≤ i ≤ m} ⊔ {f ′
ix

′ | 1 ≤ i ≤ n} .

Proposition 4.7. Denote by Hs
m:n the monomial ideal (e′

1, . . . , e
′
m, f

′′
1 , . . . , f

′′
n−1, x

′).
Then Js

m:n = Js
m:n−1 + f ′

nH
s
m:n is an E-K splitting. Furthermore, Js

m:n−1 ∩ f ′
nH

s
m:n =

f ′
nJ

s
m:n−1.

Proof. First of all, it is routine to see that G(Js
m:n) = G(Js

m:n−1)
⊔
G(f ′

nH
s
m:n) and

Js
m:n−1 ∩ f ′

nH
s
m:n = f ′

nJ
s
m:n−1.

Let us define a function φ : G(f ′
nJ

s
m:n−1) → G(Js

m:n−1) that sends f ′
nu to u for all

u ∈ G(Js
m:n−1).

Similarly, we define a function ψ : G(f ′
nJ

s
m:n−1) → G(f ′

nH
s
m:n) using the following

rules:

• f ′
ne

′′
i e

′
j 7→ f ′

ne
′
j for all 1 ≤ i < j ≤ m and f ′

nf
′′
i f

′
j 7→ f ′

nf
′′
i for all 1 ≤ i < j ≤

n− 1;
• f ′

ne
′
if

′
j 7→ f ′

ne
′
i for all 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1;

• f ′
ne

′
ix

′′ 7→ f ′
ne

′
i for all 1 ≤ i ≤ m and f ′

nf
′
ix

′ 7→ f ′
nx

′ for all 1 ≤ i ≤ n− 1.

It is routine to check that conditions (1) and (2) of Definition 1.3 are satisfied,
thus confirming that it is indeed an E-K splitting. �
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If s = 0, then G(J0
m:n) is the disjoint union

{

e′
if

′
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

∪
{

e′′
i e

′
j | 1 ≤ i < j ≤ m

}

∪
{

f ′′
i f

′
j | 1 ≤ i < j ≤ n

}

. Similarly, we obtain the follow-
ing.

Proposition 4.8. Denote by H0
m:n the monomial ideal (e′

1, . . . , e
′
m, f

′′
1 , . . . , f

′′
n−1).

Then J0
m:n = J0

m:n−1 + f ′
nH

0
m:n is an E-K splitting, and J0

m:n−1 ∩ f ′
nH

0
m:n = f ′

nJ
0
m:n.

Proposition 4.9. Let s ≥ 0 be an even number, m,n ≥ 1. Then for all i ≥ 0, we

have

βi(J
s
m:n) =







(i+ 1)
(

m+n

i+2

)

, s = 0;

(i+ 1)
(

m+n+1
i+2

)

, s > 0.

Proof. We consider the following two cases.
Case s=0: We also employ the induction on n. The case that m = n = 1 or i = 0 is
straightforward. If m+ n ≥ 3 and i ≥ 1, then, we have

βi(J
0
m:n) = βi(J

0
m:n−1) + βi(H

0
m:n) + βi−1(J0

m:n−1)

= (i+ 1)

(

m+ n − 1

i+ 2

)

+ i

(

m+ n − 1

i+ 1

)

+

(

m+ n − 1

i+ 1

)

= (i+ 1)

(

m+ n

i+ 2

)

,

as desired.
Case s> 0: We also employ the induction on n. The case that i = 0 is straightfor-
ward. If i ≥ 1, we have

βi(J
s
m:n) = βi(J

s
m:n−1) + βi(H

s
m:n) + βi−1(Js

m:n−1)

= (i+ 1)

(

m+ n

i+ 2

)

+ i

(

m+ n

i+ 1

)

+

(

m+ n

i+ 1

)

= (i+ 1)

(

m+ n+ 1

i+ 2

)

.

This completes the proof. �

Proposition 4.10. Let s ≥ 0 be an even number and m,n ≥ 1. Then

reg(Js
m:n) = mat(Bs

p:q) + 1.

Proof. Case s=0: In this case, mat(B0
p:q) =

m∑

i=1
pi +

n∑

i=1
qi + 1. We proceed with the

induction on n. By Proposition 4.8, we have

βi,j(J
0
m:n) = βi,j(J

0
m:n−1) + βi,j−qn−1(H0

m:n) + βi−1,j−qn−1(J0
m:n−1).

It follows that

reg(J0
m:n) = max{j − i | βi,j(J

0
m:n−1) + βi−1,j−qn−1(J

0
m:n−1) + βi,j−qn−1(H

0
m:n) 6= 0}

= max{reg(J0
m:n−1), reg(J0

m:n−1) + qn, reg(H0
m:n) + qn + 1}.
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Note that H0
m:n is generated by a regular sequence of degrees p1 + 1, . . . , pm +

1, q1, . . . , qn−1. By using the Koszul theory, we obtain

reg(H0
m:n) =

m∑

i=1

pi +
n−1∑

i=1

qi − n+ 2.

Hence, if n = 1, since reg(J0
m:0) = reg(Jm) =

m∑

i=1
pi + 1, we have

reg(J0
m:1) = max{

m∑

i=1

pi + q1 + 1,
m∑

i=1

pi + q1 + 2} =
m∑

i=1

pi + q1 + 2.

This proves the case when n = 1.
If n > 1, then

reg(J0
m:n) = max{

m∑

i=1

pi +
n∑

i=1

qi + 2,
m∑

i=1

pi +
n∑

i=1

qi − n + 3}

=
m∑

i=1

pi +
n∑

i=1

qi + 2.

Case s > 0: In this case, we have mat(Bs
p:q) =

m∑

i=1
pi +

n∑

i=1
qi + s

2
. We proceed with

the induction on n again. First, note that

reg(Hs
m:n) =

m∑

i=1

pi +
n−1∑

i=1

qi +
s

2
− n+ 1.

If n = 1, then

βi,j(J
s
m:1) = βi,j(J

s
m:0) + βi,j−q1−1(Hs

m:1) + βi−1,j−q1−1(J
s
m:0).

Note that G(Js
m:0) = {e′′

i e
′
j | 1 ≤ i < j ≤ m} ∪ {e′

ix
′′ | 1 ≤ i ≤ m}. By putting

e′′
0 = x′′, we may write G(Js

m:0) = {e′′
i e

′
j | 0 ≤ i < j ≤ m}. This is exactly the ideal

studied in Subsection 4.1, and so it follows from Proposition 4.4 that

reg(Js
m:0) =

m∑

i=1

pi +
s

2
+ 1.

Hence, reg(Js
m:1) = max{reg(Js

m:0) + q1, reg(Hs
m:1) + q1 + 1} =

m∑

i=1
pi + q1 + s

2
+ 1.

Suppose that n > 1. Then, since

βi,j(J
s
m:n) = βi,j(J

s
m:n−1) + βi,j−qn−1(Hs

m:n) + βi−1,j−qn−1(Js
m:n−1),

we have

reg(Js
m:n) = max{reg(Js

m:n−1), reg(Js
m:n−1) + qn, reg(Hs

m:n) + qn + 1}

= max{
m∑

i=1

pi +
n∑

i=1

qi +
s

2
+ 1,

m∑

i=1

pi +
n∑

i=1

qi − n +
s

2
+ 2}

=
m∑

i=1

pi +
n∑

i=1

qi +
s

2
+ 1,

as desired. �
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4.3. Type three. In this subsection, we denote the toric ideal of Cp:q:r and its initial
ideal as Im:n:k and Jm:n:k respectively. Similarly, Im:n:k−1 and Jm:n:k−1 represent the
toric ideal of Cp:q:r′ and its initial ideal, respectively. Recall from Subsection 3.3 that

G(Jm:n:k) is the disjoint union
{

e′′
i e

′
j | 1 ≤ i < j ≤ m

}

∪
{

f ′′
i f

′
j | 1 ≤ i < j ≤ n

}

∪
{

g′′
i g

′
j | 1 ≤ i < j ≤ k

}

∪ {e′
iy | 1 ≤ i ≤ m} ∪ {f ′

iz | 1 ≤ i ≤ n} ∪ {g′
ix | 1 ≤ i ≤ k} ∪

{

e′
if

′
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

∪
{

f ′
ig

′
j | 1 ≤ i ≤ n, 1 ≤ j ≤ k

}

∪
{

g′
ie

′
j | 1 ≤ i ≤ k, 1 ≤ j ≤ m

}

.

Proposition 4.11. Denote by Hm:n:k the monomial ideal

(x, e′
1, . . . , e

′
m, f

′
1, . . . , f

′
n, g

′′
1 , . . . , g

′′
k−1).

Then Jm:n:k = Jm:n:k−1 + g′
kHm:n:k is an E-K splitting. Furthermore, we have

Jm:n:k−1 ∩ g′
kHm:n:k = g′

kJm:n:k−1.

Proof. First of all, it is routine to check that G(Jm:n:k) = G(Jm:n:k−1)
⊔
G(g′

kHm:n:k)
and Jm:n:k−1 ∩ g′

kHm:n:k = g′
kJm:n:k−1.

Define a function φ : G(g′
kJm:n:k−1) → G(JCm:n:k−1

) that sends g′
ku to u for all

u ∈ G(Jm:n:k−1).
Define a function ψ : G(g′

kJm:n:k−1) → G(g′
kHm:n:k) by the following rules:

• g′
ke

′′
i e

′
j 7→ g′

ke
′
j for all 1 ≤ i < j ≤ m and g′

ke
′
iy 7→ g′

ke
′
i for all 1 ≤ i ≤ m;

• g′
ke

′
if

′
j 7→ g′

ke
′
i for all 1 ≤ i ≤ m and 1 ≤ j ≤ n;

• g′
kf

′′
i f

′
j 7→ g′

kf
′
j for all 1 ≤ i < j ≤ n and g′

kf
′
iz 7→ g′

kf
′
i for all 1 ≤ i ≤ n;

• g′
kf

′
ig

′
j 7→ g′

kf
′
i for all 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n;

• g′
kg

′′
i g

′
j 7→ g′

kg
′′
i for all 1 ≤ i < j ≤ k − 1 and g′

kg
′
ix 7→ g′

kx for all 1 ≤ i < j ≤
k − 1;

• g′
kg

′
ie

′
j 7→ g′

ke
′
j for all 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ m.

It is routine to check conditions (1) and (2) of Definition 1.3 are satisfied. �

Proposition 4.12. Let m,n, k ≥ 1. Then βi(Jm:n:k) = (i + 1)
(

m+n+k+1
i+2

)

for all

i ≥ 0. In particular, pdim(Jm:n:k) = m+ n + k − 1.

Proof. We also employ the induction on k. The case that i = 0 is straightforward.
If i ≥ 1, then, we have

βi(Jm:n:k) = βi(Jm:n:k−1) + βi(Hm:n:k) + βi−1(Jm:n:k−1)

= (i+ 1)

(

m+ n+ k

i+ 2

)

+

(

m+ n + k

i+ 1

)

+ i

(

m+ n + k

i+ 1

)

= (i+ 1)

(

m+ n+ k + 1

i+ 2

)

,

as desired. �

Proposition 4.13. Let m,n, k ≥ 1. Then reg(Jm:n:k) = mat(Cp:q:r) + 1.
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Proof. Note that mat(Cp:q:r) =
m∑

i=1
pi+

n∑

i=1
qi+

k∑

i=1
ri+1.We proceed with the induction

on k. If k = 1, then

βi,j(Jm:n:1) = βi,j(Jm:n:0) + βi,j−r1−1(Hm:n:1) + βi−1,j−r1−1(Jm:n:0).

Since reg(Jm:n:0) = reg(J2
m:n), we obtain reg(Jm:n:1) =

m∑

i=1
pi +

n∑

i=1
qi + r1 + 2.

Suppose that k > 1. Then, by Proposition 4.11, we have

βi,j(Jm:n:k) = βi,j(Jm:n:k−1) + βi,j−rk−1(Hm:n:k) + βi−1,j−rk−1(Jm:n:k−1).

It follows that reg(Jm:n:k)

= max{j − i | βi,j(Jm:n:k−1) + βi−1,j−rk−1(Jm:n:k−1) + βi,j−rk−1(Hm:n:k) 6= 0}

= max{reg(Jm:n:k−1), reg(Hm:n:k) + rk + 1, reg(Jm:n:k−1) + rk}.

Note that Hm:n:k is generated by a regular sequence of degrees p1 +1, . . . , pm +1, q1 +

1, . . . , qn + 1, r1, . . . , rk−1, 1, we obtain reg(Hm:n:k) =
m∑

i=1
pi +

n∑

i=1
qi +

k−1∑

i=1
ri − k + 2.

Hence,

reg(Jm:n:k) = max{
m∑

i=1

pi +
n∑

i=1

qi +
k∑

i=1

ri + 2,
m∑

i=1

pi +
n∑

i=1

qi +
k∑

i=1

ri − k + 3}

=
m∑

i=1

pi +
n∑

i=1

qi +
k∑

i=1

ri + 2,

as desired. �

To complete the proof of Theorem 4.1, we require some additional notation and
facts. Recall a connected graph is planar if it can be drawn on a 2D plane such
that none of the edges intersect. If a planar graph G is drawn in this way, it divides
the plane into regions called faces. The number of faces is denoted by f(G). The
famous Euler formula states that for any planar graph G, we have

|E(G)| − |V (G)| = f(G) − 2.

If we assume that every edge of G belongs to at most one induced cycle, then there is
a one-to-one correspondence between induced cycles and bounded faces of G. Since
there is exactly one unbounded face of G, it follows that f(G) = t(G) + 1.

However, it is worth noting that the formula f(G) = t(G) + 1 does not hold in
general. For example, if G is the complete graph with 4 vertices, then G is planar,
but f(G) = t(G) = 4.

We are now ready to present the proof of Theorem 4.1.

Proof. (1) This is a combination of Propositions 4.5, 4.9 and Proposition 4.12.
(2) It follows immediately from (1).
(3) Since G is a compact graph, G is a planar graph and every edge of G belongs

to at most one induced cycle. Hence, because of the discussion above, we have

|E(G)| − |V (G)| = t(G) − 1.
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This implies

depth(K[E(G)]/in<(IG)) = |E(G)| − pdim(K[E(G)]/in<(IG))

= |V (G)| = dim(K[G])

= dim(K[E(G)]/in<(IG)).

Here, the second last equality follows from [16, Corollary 10.1.21]. Hence, by defi-
nition, K[E(G)]/in<(IG) is Cohen-Macaulay.

(4) This is a combination of Propositions 4.4, 4.10 and Proposition 4.13. �

5. Cohen-Macaulay types and top graded Betti numbers

Assume that G is a compact graph. In this section we will compute the top
graded Betti numbers of K[G]. Since K[G] is Cohen-Macaulay, the regularity of
K[G] is determined by its top graded Betti numbers. Therefore, the regularity
formula given in Section 4 could also be deduced from the results of this section.
To present the top graded Betti numbers of K[G], we need to consider three cases.
The most complex case is when G is a compact graph of type 3, and we will provide
detailed proof specifically for this case. The proofs for the cases when G is a compact
graph of type one or type two are similar, with only minor differences, so we will
only provide an outline of the proofs for those cases.

The top graded Betti numbers of the edge rings of three types of compact graphs
are presented in Propositions 5.2, 5.3 and Proposition 5.4, respectively. By combin-
ing the aforementioned results and their proofs, the following conclusion regarding
the top total Betti numbers can be immediately derived.

Theorem 5.1. Let G be a compact graph, and let IG be the toric ideal of K[G].
Denote by JG the initial ideal of IG with respect to the order given in Section 3.

Then IG and JG share the same top graded Betti numbers. In particular, we have

type(K[G]) = t(G) − 1.

5.1. type three. Let C denote the compact graph Cp:q:r, whose vertex set V (C)

and edge set E(C) are given explicitly in Subsection 3.3. In this subsection, we
compute the minimal generators of the canonical module ωK[C] and then determine
the top graded Betti numbers of the toric ring K[C].

It is easy to see that |V (C)| = 2
m∑

i=1
pi + 2

n∑

i=1
qi + 2

k∑

i=1
ri + 3. We use the following

notions for all the entries of R|V (C)|:

R
|V (C)| = {

m∑

i=1

2pi∑

j=1

ai,jui,j + au +
n∑

i=1

2qi∑

j=1

bi,jvi,j + bv +
k∑

i=1

2ri∑

j=1

ci,jwi,j + cw |

ai,j, a, bi,j, b, ci,j, c ∈ R for all i, j},

where u,ui,j ,v,vi,j,w,wi,j are the unit vectors of R|V (C)|, each ui,j (resp. vi,j ,wi,j)
corresponds to ui,j (resp. vi,j, wi,j) (where 1 ≤ i ≤ m and 1 ≤ j ≤ 2pi) (resp.
1 ≤ i ≤ n and 1 ≤ j ≤ 2qi, 1 ≤ i ≤ k and 1 ≤ j ≤ 2ri) and u (resp. v,w )
corresponds to u (resp. v, w).
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In what follows, we will construct m+ n + k integral vectors in R
|V (C)| and then

show that they are minimal vectors of relint(R+(C)) ∩ Z
|V (C)|. Here, an integral

vector in relint(R+(C)) is called minimal if it cannot written as the sum of a vector
in relint(R+(C))∩Z

|V (C)| and a nonzero vector of R+(C)∩Z
|V (C)|. The construction

is as follows:
For ℓ = 1, . . . , m, let

αℓ :=
m∑

i=1

2pi∑

j=1

ui,j +
n∑

i=1

2qi∑

j=1

vi,j +
k∑

i=1

2ri∑

j=1

wi,j + v + w + 2ℓu.

For ℓ = 1, . . . , n, let

βℓ =
m∑

i=1

2pi∑

j=1

ui,j +
n∑

i=1

2qi∑

j=1

vi,j +
k∑

i=1

2ri∑

j=1

wi,j + w + u + 2ℓv.

For ℓ = 1, . . . , k, let

γℓ =
m∑

i=1

2pi∑

j=1

ui,j +
n∑

i=1

2qi∑

j=1

vi,j +
k∑

i=1

2ri∑

j=1

wi,j + u + v + 2ℓw.

We now verify that αℓ, βℓ, γℓ ∈ relintR+(C) for all possible ℓ. For this, we put

u
(1)
i = {ui,j | j = 1, 3, . . . , 2pi − 1} for i = 1, . . . , m, u

(2)
i = {ui,j | j = 2, 4, . . . , 2pi}

for i = 1, . . . , m and v
(1)
i , v

(2)
i , w

(1)
i , w

(2)
i are defined similarly.

We see the following:

• Each of ui,j’s, vi,j’s and wi,j’s is a regular vertex of C, while u, v and w are
not.

• An independent subset T of V (C) is fundamental if and only if T is one of
the following sets:

(i)
m⋃

i=1
u

(fi)
i , where (f1, . . . , fm) ∈ {1, 2}m;

(ii)
n⋃

i=1
v

(gi)
i , where (g1, . . . , gn) ∈ {1, 2}n;

(iii)
k⋃

i=1
w

(hi)
i , where (h1, . . . , hk) ∈ {1, 2}k;

(iv) {u} ∪
m⋃

i=1
(u

(fi)
i \{ui,1, ui,2pi

}) ∪
n⋃

i=1
v

(gi)
i ∪

k⋃

i=1
w

(hi)
i }, where (f1, . . . , fm) ∈

{1, 2}m, (g1, . . . , gn) ∈ {1, 2}n and (h1, . . . , hk) ∈ {1, 2}k;

(v) {v} ∪
n⋃

i=1
(v

(gi)
i \ {vi,1, vi,2pi

}) ∪
m⋃

i=1
u

(fi)
i ∪

k⋃

i=1
w

(hi)
i , where (f1, . . . , fm) ∈

{1, 2}m, (g1, . . . , gn) ∈ {1, 2}n and (h1, . . . , hk) ∈ {1, 2}k;

(vi) {w} ∪
k⋃

i=1
(w

(hi)
i \ {wi,1, wi,2pi

}) ∪
m⋃

i=1
u

(fi)
i ∪

n⋃

i=1
v

(gi)
i , where (f1, . . . , fm) ∈

{1, 2}m, (g1, . . . , gn) ∈ {1, 2}n and (h1, . . . , hk) ∈ {1, 2}k.

It should be noted that there are 2m fundamental sets in (i) and 2m+n+k fundamental
sets in (iv), and so on. Hence, it follows from (∆) (see this in Subsection 1.3) that
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a vector of R|V (C)| of the form:

m∑

i=1

2pi∑

j=1

ai,jui,j + au +
n∑

i=1

2qi∑

j=1

bi,jvi,j + bv +
k∑

i=1

2ri∑

j=1

ci,jwi,j + cw

belongs to R+(C) if and only if the following inequalities are satisfied:

(1) ai,j ≥ 0 for any 1 ≤ i ≤ m and 1 ≤ j ≤ 2pi;
(2) bi,j ≥ 0 for any 1 ≤ i ≤ n and 1 ≤ j ≤ 2qi;
(3) ci,j ≥ 0 for any 1 ≤ i ≤ k and 1 ≤ j ≤ 2ki;

(4)
m∑

i=1

2pi∑

j=1
ai,j −

∑

ui,j∈T
ai,j + a ≥

∑

ui,j∈T
ai,j for any T ∈ (i);

(5)
n∑

i=1

2qi∑

j=1
bi,j −

∑

vi,j∈T
bi,j + b ≥

∑

vi,j∈T
bi,j for any T ∈ (ii);

(6)
k∑

i=1

2ri∑

j=1
ci,j −

∑

wi,j∈T
ci,j + c ≥

∑

wi,j∈T
ci,j for any T ∈ (iii);

(7)
∑

+b+ c ≥ a + 2(
∑

ui,j∈T
ai,j +

∑

vi,j∈T
bi,j +

∑

wi,j∈T
ci,j) for any T ∈ (iv);

(8)
∑

+c+ a ≥ b+ 2(
∑

ui,j∈T
ai,j +

∑

vi,j∈T
bi,j +

∑

wi,j∈T
ci,j) for any T ∈ (v);

(9)
∑

+a+ b ≥ c + 2(
∑

ui,j∈T
ai,j +

∑

vi,j∈T
bi,j +

∑

wi,j∈T
ci,j) for any T ∈ (vi).

Here,
∑

denotes
m∑

i=1

2pi∑

j=1
ai,j +

n∑

i=1

2qi∑

j=1
bi,j +

k∑

i=1

2ri∑

j=1
ci,j. It is straightforward to check

that αℓ satisfies these inequalities, with strict inequalities holding for each αℓ. This
implies that αℓ ∈ relint(R+(C)) ∩ Z

|V (C)|.
Next, we show that αℓ is a minimal vector in relint(R+(C)) ∩ Z

|V (C)|, i.e., it
cannot be written as a sum of an element in relint(R+(C)) ∩Z

|V (C)| and an element
in R+(C) ∩ Z

|V (C)| \ {0} for all ℓ = 1, . . . , m.
Suppose on the contrary that αℓ = α′ + α′′ for some α′ ∈ relint(R+(C)) ∩ Z

|V (C)|

and α′′ ∈ R+(C) ∩ Z
|V (C)| \ {0}. Write

α′ =
m∑

i=1

2pi∑

j=1

a′
i,jui,j + a′u +

n∑

i=1

2qi∑

j=1

b′
i,jvi,j + b′v +

k∑

i=1

2ri∑

j=1

c′
i,jwi,j + c′w,

α′′ =
m∑

i=1

2pi∑

j=1

a′′
i,jui,j + a′′u +

n∑

i=1

2qi∑

j=1

b′′
i,jvi,j + b′′v +

k∑

i=1

2ri∑

j=1

c′′
i,jwi,j + c′′w.

In view of the inequalities (1) - (3), we see that a′
i,j, b

′
i,j , c

′
i,j ≥ 1 for all i, j. Because

of the inequalities (4) - (6), we also see that a′, b′, c′ ≥ 1. Hence, a′′
i,j = b′′

i,j = c′′
i,j =

b′′ = c′′ = 0 for all possible i, j. From this together with (7) it follows that a′′ ≤ 0.
Hence, α′′ = 0. This is a contradiction, which shows that αℓ is a minimal vector in
relint(R+(C)) ∩ Z

|V (C)| for ℓ = 1, . . . , m. Likewise, so are βℓ’s and γℓ’s.
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Proposition 5.2. Let C be defined as before. Assume m ≤ n ≤ k. Then type(K[C]) =
m+ n+ k, and the top graded Betti numbers of K[C] are given by

βm+n+k,j(K[C]) =







1, j = mat(C) + n +m+ ℓ, ℓ = 1, . . . , k − n;

2, j = mat(C) +m+ k + ℓ, ℓ = 1, . . . , n−m;

3, j = mat(C) + k + n+ ℓ, ℓ = 1, . . . , m;

0, otherwise.

Proof. Every minimal vector in relint(R+(C)) ∩ Z
|V (C)| corresponds to a minimal

generator of ωK[C]. It follows from the above discussion that type(K[C]) ≥ m+ n+
k. Since type(K[C]) is equal to the top total Betti number of K[C], we conclude
that type(K[C]) ≤ m + n + k by Theorem 4.1. Thus the first conclusion follows.
From this, we see that α1, . . . , αm, β1, . . . , βn, γ1, . . . , γk are all the minimal vectors
of relint(R+(C)) ∩ Z

|V (C)|. Therefore, the set of monomials

{xαℓ , ℓ = 1, . . . , m; xβℓ , ℓ = 1, . . . , n; xγℓ , ℓ = 1, . . . , k}

is a minimal generating set of ωK[C], which is an ideal of the edge ring K[C] ⊂
K[V (C)]. Note that every monomial xα belonging to K[C], which is regarded as a
graded module over the standard graded ring K[E(C)], has a degree of 1

2
|α|. Hence,

β0,j(ωK[C]) =







3, j =
m∑

i=1
pi +

n∑

i=1
qi +

k∑

i=1
ri + 1 + ℓ, ℓ = 1, . . . , m;

2, j =
m∑

i=1
pi +

n∑

i=1
qi +

k∑

i=1
ri + 1 + ℓ, ℓ = m+ 1, . . . , n;

1, j =
m∑

i=1
pi +

n∑

i=1
qi +

k∑

i=1
ri + 1 + ℓ, ℓ = n+ 1, . . . , k;

0, otherwise.

Since |E(C)| = 2(
m∑

i=1
pi +

n∑

i=1
qi +

k∑

i=1
ri) +m+n+k+ 3 and mat(C) =

m∑

i=1
pi +

n∑

i=1
qi +

k∑

i=1
ri + 1, the second conclusion follows by Lemma 1.1. �

5.2. type one. Let A denote the compact graph Ap, whose vertex set V (A) and

edge set E(A) are given explicitly in Subsection 3.1. Then |V (A)| = 2
m∑

i=1
pi + 1. We

may write

R
|V (A)| = {

m∑

i=1

2pi∑

j=1

ai,jui,j + au | all ai,j, a ∈ R}.

Here, ui,j ,u correspond the vertices of A in a natural way. Then, we could show the
following vectors

αℓ :=
m∑

i=1

2pi∑

j=1

ui,j + 2ℓu, ℓ = 1, . . . , m− 1

are all the minimal vectors of relint(R+(A)) ∩ Z
|V (A)|.
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Proposition 5.3. Let A denote the compact graph Ap. Then type(K[A]) = m− 1,

and the top graded Betti numbers of K[A] are given by

βm−1,j(K[A]) =

{

1, j = mat(A) + ℓ, ℓ = 1, . . . , m− 1;

0, otherwise.

5.3. type two. Let B0 and Bs denote the compact graph B0
p:q and Bs

p:q respectively.

Their vertex sets V (B0) and V (Bs) and edge sets E(B0) and E(Bs) are given

explicitly in Subsection 3.2. Then |V (B0)| = 2(
m∑

i=1
pi +

n∑

i=1
qi) + 2. We may write

R
|V (B0)| = {

m∑

i=1

2pi∑

j=1

ai,jui,j +
m∑

i=1

2pi∑

j=1

bi,jvi,j + au + bv | all ai,j, bi,j, a, b ∈ R}.

Here, ui,j ,vi,j,u,v correspond the vertices of B0 in the natural way. Then, we could
show the following vectors

αℓ :=
m∑

i=1

2pi∑

j=1

ui,j +
n∑

i=1

2qi∑

j=1

vi,j + v + (2ℓ+ 1)u, ℓ = 0, . . . , m− 1

and

βℓ :=
m∑

i=1

2pi∑

j=1

ui,j +
n∑

i=1

2qi∑

j=1

vi,j + u + (2ℓ+ 1)v, ℓ = 1, . . . , n− 1

are all the minimal vectors of relint(R+(B0)) ∩ Z
|V (B0)|.

On the other hand, we have |V (Bs)| = |V (B0)| + s− 1 and we may write

R
|V (Bs)| = {

m∑

i=1

2pi∑

j=1

ai,jui,j+
n∑

i=1

2qi∑

j=1

bi,jvi,j+
s−1∑

i=1

ciwi+au+bv | all ai,j , bi,j, ci, a, b ∈ R}.

Here, ui,j,vi,j,wi,u,v correspond the vertices of Bs in the natural way. We may
also show the following vectors

αℓ :=
m∑

i=1

2pi∑

j=1

ui,j +
n∑

i=1

2qi∑

j=1

vi,j +
s−1∑

i=1

wi + v + 2ℓu, ℓ = 1, . . . , m

and

βℓ :=
m∑

i=1

2pi∑

j=1

ui,j +
n∑

i=1

2qi∑

j=1

vi,j +
s−1∑

i=1

wi + u + 2ℓv, ℓ = 1, . . . , n

are all the minimal vectors of relint(R+(Bs)) ∩ Z
|V (Bs)|.

Proposition 5.4. Let B0 and Bs be defined as before. Assume m ≤ n. Then the

following statements hold:

• type(K[B0]) = m+ n− 1 and type(K[Bs]) = m+ n;

• the top graded Betti numbers of K[B0] are given by

βm+n−1,j(K[B0]) =







1, j = mat(B0) +m− 1 + ℓ, ℓ = 1, . . . , n−m;

2, j = mat(B0) + n − 1 + ℓ, ℓ = 1, . . . , m− 1;

1, j = mat(B0) +m+ n− 1.

0, otherwise.
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• the top graded Betti numbers of K[Bs] are given by

βm+n,j(K[Bs]) =







1, j = mat(Bs) + ℓ, ℓ = m+ 1, . . . , n;

2, j = mat(Bs) + n + ℓ, ℓ = 1, . . . , m;

0, otherwise.

6. A question

Let G be a compact graph, and let IG be the toric ideal of K[G]. Denote by JG

the initial ideal of IG with respect to the order given in Section 3. As we have seen
in the previous section, IG and JG share the same top graded Betti numbers. This
naturally leads to the following question:

Does IG and JG always share the same graded Betti numbers?

Unfortunately, we are unable to provide a general answer to this question, except
for a very specific case when G is a compact graph of type one.

In what follows, we use A to denote the compact graph Ap, where p = (
m

︷ ︸︸ ︷
p, . . . , p)

is a vector in Z
m
+ . Let f(t) and g(t) denote the polynomial

∑

i,j
βi,j(IA)(−1)itj and

∑

i,j
βi,j(JA)(−1)itj, respectively. It is known f(t) = g(t) and βi,j(IA) ≤ βi,j(JA) for

all i, j.

Proposition 6.1. If 2 ≤ m ≤ p+ 3, then

βi,j(IA) = βi,j(JA) =

{ (
m

i+2

)

, j = (i+ 2)p+ ℓ, ℓ = 1, . . . , i+ 1;

0, otherwise.

Proof. Put Ai = {j ∈ Z | βi,j(JA) 6= 0} for all i ≥ 0. Then, by Proposition 4.6, we
have Ai = {(i + 2)p + ℓ | ℓ = 1, . . . , i + 1} for 0 ≤ i ≤ m − 2, and is ∅ otherwise.
Given that j /∈ Ai it can be inferred that βi,j(JA) = βi,j(IA) = 0. Therefore, we will
next consider only the case when j ∈ Ai.

(1) If m ≤ p + 2 then it follows that Ai1
∩ Ai2

= ∅ for any distinct i1 and i2.
Consequently, for any j ∈ Ai, the coefficient of tj in f(t) is (−1)iβi,j(JA), while in
g(t) it is (−1)iβi,j(IA). Therefore we can deduce that βi,j(JA) = βi,j(IA).

(2) If m = p + 3, then for any pair i1 6= i2, Ai1
∩ Ai2

6= ∅ if and only if {i1, i2} =
{m− 3, m− 2} and in that case Am−3 ∩ Am−2 = {mp+ 1} = {(m− 1)p+ m− 2}.
If j 6= mp + 1 then it follows that βi,j(IA) = βi,j(JA) for the same reason as in (1).
If j = mp + 1 then, by comparing the coefficients of tmp+1 in polynomials f(t) and
g(t), we conclude that

βm−3,mp+1(IA) − βm−2,mp+1(IA) = βm−3,mp+1(JA) − βm−2,mp+1(JA).

On the other hand, we have βm−2,mp+1(IA) = βm−2,mp+1(JA) by Theorem 5.1. From
this it follows that βm−3,mp+1(IA) = βm−3,mp+1(JA), as required. �
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