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Bell nonlocality refers to correlations between two distant, entangled particles that challenge
classical notions of local causality. Beyond its foundational significance, nonlocality is crucial for
device-independent technologies like quantum key distribution and randomness generation. Non-
locality quickly deteriorates in the presence of noise, and restoring nonlocal correlations requires
additional resources. These often come in the form of many instances of the input state and joint
measurements, incurring a significant resource overhead. Here, we experimentally demonstrate that
single copies of Bell-local states, incapable of violating any standard Bell inequality, can give rise
to nonlocality after being embedded into a quantum network of multiple parties. We subject the
initial entangled state to a quantum channel that broadcasts part of the state to two independent
receivers and certify the nonlocality in the resulting network by violating a tailored Bell-like in-
equality. We obtain these results without making any assumptions about the prepared states, the
quantum channel, or the validity of quantum theory. Our findings have fundamental implications
for nonlocality and enable the practical use of nonlocal correlations in real-world applications, even
in scenarios dominated by noise.

Introduction

Quantum entanglement and Bell nonlocality [1],
though intimately related, are fundamentally inequiva-
lent manifestations of quantum theory. All pure entan-
gled states display nonlocal correlations [2], but quantum
systems are invariably subject to noise in the real world.
The presence of noise degrades the quality of nonclassi-
cal correlations, as evidenced by the existence of entan-
gled Bell-local states—mixed entangled states [3, 4] that
cannot display any nonlocality in the standard Bell sce-
nario. The motivation behind the study of nonlocality
is not limited to foundational insights into quantum the-
ory since nonlocal correlations are at the heart of many
quantum technologies [5].

A significant discovery in counteracting the effects of
noise was that nonlocality can be activated: entangled
states that cannot display nonlocal correlations in any
standard Bell test can recover their nonlocality when us-
ing additional resources [6]. For some restricted families
of states, a single copy of a Bell-local state can be acti-
vated using more intricate measurement procedures [7–
11]. In cases when more than one copy of the state is
available, proposed activation protocols require perform-
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ing joint measurements on several quantum states dis-
tributed between two [12–14] or multiple [15, 16] spatially
separated parties. Scenarios involving many parties pro-
vide considerably stronger generalizations of Bell nonlo-
cality [17] with the potential to yield powerful activation
schemes [18, 19]. Multi-copy approaches for activation,
however, are presently unfeasible as the number of neces-
sary copies of the states increases rapidly with noise [20].
Despite the importance of nonlocality in quantum foun-
dations and technologies, a robust and resource-efficient
activation is yet to be realized.

Here we demonstrate an experimental activation of
nonlocality in a photonic quantum network using a sin-
gle copy of the target state per experimental round. We
achieve this by departing from typical correlation scenar-
ios in networks [21]—where independent parties are con-
nected by independent sources of entanglement—towards
scenarios with a more general causal structure [22, 23],
enabling distinct forms of quantum advantages in net-
works. We employ a quantum channel [24] that broad-
casts part of an entangled Bell-local state to two spa-
tially separated parties, embedding a bipartite quantum
state into a three-party network, as shown in Fig. 1.
Importantly, our activation is certified through a rigor-
ous and robust statistical analysis of the Bell locality
of the original bipartite states. We present a compu-
tationally efficient method to prove the existence of lo-
cal hidden variable (LHV) models for general quantum
states. In this manner, we prepare certified Bell-local
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Fig. 1. Nonlocality scenarios. a, Causal structure for
the standard Bell scenario, in which a classical resource λAB

is shared between two parties. λAB is responsible for the
observed joint correlations of measurement outcomes a and
b given inputs x and y, respectively. b, Broadcast scenario
with three parties, where a classical bipartite resource λAB

is shared between one party and a broadcast channel ΩBC.
Measurement nodes receive inputs x, y and z, respectively,
yielding outcomes a, b and c. The broadcast parties are sub-
ject only to no-signalling (NS) constraints. c, d, Schematic
representation of the membership of quantum states within
different correlation sets for the bipartite Bell (c), and tripar-
tite broadcast (d) scenarios. Bell-NL (Br-NL) signify Bell-
nonlocal (broadcast-nonlocal) correlations; states in the Bell-
L (Br-L) set are Bell-local (broadcast-local), admitting a local
hidden variable in their respective scenario. The intermediate
yellow region in d represents the set of Bell-local states that
can be activated in the broadcast scenario.

states, which, after the activating procedure, unambigu-
ously show the emergence of nonlocality from the ob-
served network statistics. Our results are obtained ex-
clusively from experimental data, without making any
assumptions about the prepared states or quantum chan-
nel.

From a fundamental point of view, we demonstrate
that the nonlocal behavior of Bell-local states can be
unveiled when they are integrated into larger networks.
This illustrates a form of nonclassicality within networks
that extends beyond the conventional notions of network
Bell nonlocality [17]. On a practical note, our results
open up possibilities for quantum applications involving
noisy states. This recovers the potential of nonlocality-
based applications in more realistic contexts, encompass-
ing tasks such as secure communications [25], generating
randomness [26], or certifying entanglement within a net-
work [27, 28].

Results

From Bell to broadcast nonlocality

The differences between testing nonlocality in a typ-
ical Bell scenario and our three-node quantum network

are highlighted in Fig. 1. In the simplest Bell scenario, a
bipartite source SAB distributes a pair of systems among
two distant parties, Alice and Bob. These parties per-
form measurements x and y on their local subsystem,
obtaining binary outcomes a and b, respectively. If the
correlations arising from the measurement outcomes are
compatible with the causal structure of Fig. 1a—under
the assumption that SAB is a source of classical shared
randomness λAB—then they can be described with an
LHV model of the form

p(a, b|x, y) =∫
dλABp(λAB)pA(a|x, λAB)pB(b|y, λAB), (1)

for some distribution p(λAB). If the correlations cannot
be described this way, they are said to be Bell-nonlocal.
This is witnessed by the violation of suitable Bell inequal-
ities.

The three-node network depicted in Fig. 1b also fea-
tures a single source of two particles. This scenario, how-
ever, incorporates an additional channel that applies the
transformation ΩBC on part of the initial state. The ef-
fect of this transformation is to distribute the information
encoded in one of the particles to two additional parties,
Bob and Charlie. One can introduce an additional LHV
associated with the channel, but the resulting statistics
would be equivalent to a standard tripartite Bell scenario
(see Methods and Ref. [24]). Conversely, when no con-
straints are placed on the channel other than the prepa-
ration of no-signalling resources [29], an LHV model for
the source SAB in this network can be written as

p(a, b, c|x, y, z) =∫
dλABp(λAB)pA(a|x, λAB)pNS

BC(b, c|y, z, λAB). (2)

Here, pNS
BC(b, c|y, z, λAB) indicates that the only con-

straint for the correlations shared between Bob and Char-
lie is that they must be no-signalling, conditioned on
the source preparing the classical state λAB. This as-
sumption follows the theory-independent spirit of Bell’s
theorem, as it does not rely on the validity of quan-
tum mechanics, and has the critical consequence that
any nonlocality observed from the correlations arising in
the three-party scenario must have originated from the
initial source SAB.

The certification of nonlocality in this setting comes
as a tailored causal compatibility inequality [24] for the
distribution p(a, b, c|x, y, z) in the form

IB =⟨A0B0C0⟩ + ⟨A0B1C1⟩ + ⟨A1B1C1⟩ − ⟨A1B0C0⟩
+ ⟨A0B0C1⟩ + ⟨A0B1C0⟩ + ⟨A1B0C1⟩ − ⟨A1B1C0⟩
− 2⟨A2B0⟩ + 2⟨A2B1⟩ − 4 ≤ 0, (3)

with ⟨AxByCz⟩ = Σa,b,c=0,1(−1)a+b+c p(a, b, c|x, y, z)
and analogously for the two-party correlator terms. A
violation of this inequality implies the failure of equation
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(2), without any assumption about the type of resources
produced by the broadcasting device—whether classical,
quantum, or described by some general probabilistic the-
ory [30]. In this sense, the violation of inequality (3) can
be understood as ruling out that the source SAB is clas-
sical, even while allowing any generalized causal model
with the causal structure of Fig. 1b [23].

Nonlocality activation

For the task of activating nonlocality, we are interested
in whether: (i) we can observe tripartite quantum cor-
relations that do not admit a description as in equation
(2); and (ii) the bipartite state prior to broadcasting is
local in the standard Bell scenario of Fig. 1a. That is,
we need to certify that all correlations supported by this
state admit an LHV model of the form (1). A simultane-
ous validation of both would be conclusive proof for the
activation of nonlocality.

A positive answer to the first question is obtained
whenever a violation of inequality (3) is observed. An-
swering the second question—a rigorous demonstration
that an arbitrary state belongs to the class of Bell-local
states—is also a difficult task [31]. While the locality
bounds for some classes of quantum states have been
extensively studied, it is unclear to what degree these
findings can be extended to experimentally prepared sys-
tems. Experimental states inevitably deviate from the-
oretical targets, yet a typical approach is to make as-
sumptions about the type of state at hand and draw
conclusions based on common benchmarks like quantum
state fidelity, which can be problematic [32]. To tackle
this problem, we provide a computational method for
constructing LHV models for generic quantum states un-
der general dichotomic measurements, i.e., general two-
outcome Positive Operator-Valued Measures (POVMs).
Conceptually, our algorithm can be understood as de-
riving new LHV models for generic quantum states that
are close to some reference local state. This involves two
steps. We first perform state tomography to obtain a
density matrix ρexp that best describes our experimental
states. Then, we verify the presence of an LHV model
for ρexp by leveraging existing LHV models of particular
quantum states [33] via an efficient certification protocol
(see Methods). The algorithm is not restricted to specific
families of states; rather, it is designed to be applicable
to general quantum states.

Our experimental demonstration of activation em-
ployed a photonic setup, as shown in Fig. 2. To success-
fully implement our three-photon activation protocol, we
had to meet strict technological prerequisites, including
the use of high-fidelity heralded single-photon and en-
tangled photon-pair sources and a high-quality broadcast
channel. These are discussed in depth in the Methods.
We used two independent photon-pair sources to gener-
ate the required single photons, encoding information in
the polarization degree of freedom, such that |0⟩ ≡ |H⟩
and |1⟩ ≡ |V ⟩. One photon source was designed to gen-

erate the two-qubit isotropic state

Wα = α|Φ+⟩⟨Φ+| + (1 − α)I4/4, (4)

where |Φ+⟩ = (|HH⟩ + |V V ⟩)/
√

2 is a maximally en-
tangled state and I4/4 is the maximally mixed state.
Here, the parameter α ∈ [0, 1] is the pure-state fraction
of the state, which cannot display Bell nonlocality for
α < 0.6875 under dichotomic measurements (see Ref. [33]
and Methods). For general measurements, the current
known bound is α < 0.5 [34, 35].

We prepared six experimental states ρexp
and their measured fidelity, defined as F =

Tr
(√√

ρexpWα
√
ρexp

)2
, with the nearest Wα state

were all F > 0.991 (see Supplementary Tab. 1).
These values are on par with the highest reported fi-

delities for two-qubit isotropic states to date [36]. This
state was initially shared between Alice and Bob, and
the design of the source allowed us to precisely tune
the amount of mixture in the state using a controllable
depolarizing channel on Alice’s qubit (see Methods for
details). An additional source was used to generate a
heralded single photon as an ancillary resource for the
broadcast channel.

The channel for activation included a nondeterministic
controlled-NOT (C-NOT) gate [37], which relied on non-
classical Hong-Ou-Mandel (HOM) [38] interference be-
tween photons from different sources. The prerequisite
for activation in the broadcast scenario is that the broad-
cast parties satisfy no-signalling constraints. This con-
dition was experimentally enforced by encoding qubits
in different photons sent to spatially separated parties.
Each party performed local projective measurements on
their respective photon, and data was recorded as four-
fold coincidences.

In Fig. 3a, we present our experimental test of the
inequality (3), along with theoretical predictions, for a
set of states with varying degrees of noise.

The observed experimental values are well captured by
the predictions (Fig. 3a, solid diagonal line) derived from
a theoretical model that considers non-ideal HOM inter-
ference (which introduces unwanted mixed terms to the
final target state) and errors in the performed measure-
ments. We also include predictions for the case of ideal
interference (Fig. 3a, dashed diagonal line).

For all the experimental states ρexp, except for the case
of the lowest α value, we measured a value of IB > 0
by at least two standard deviations, representing a clear
violation of the classical limit. In particular, three exper-
imental states (Fig. 3a, inset) have an associated value of
α ≤ 0.6875, the current known upper bound for projec-
tive LHV models of the isotropic state Wα [33] (Fig. 3,
vertical dashed line). States with larger α also violate
the broadcast inequality, but since they can additionally
violate a standard two-party Bell inequality under pro-
jective measurements, they are not activated.

A definitive demonstration for activation must refrain
from making the unrealistic assumption that the exper-
imental states precisely match the form of ideal states.
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Fig. 2. Schematic overview of the experiment. a, The experimental setup comprises state preparation (blue area) and
a broadcast channel with a photon measurement stage (red area). We constructed two single-photon pair sources by pumping
two identical periodically poled potassium titanyl phosphate crystals (ppKTP) with a modelocked laser centered at 775 nm.
Each source produced frequency-degenerate single photons at 1550 nm via type-II spontaneous parametric downconversion
(SPDC). One source (solid white rim) generated a maximally entangled state, which was controllably depolarized (solid white
background) to tune the parameter α and prepare the state Wα in equation (4). A second source (striped white background)
produced a heralded ancilla photon, initialized to |H⟩. After the broadcast channel (dashed black box), the resulting state was
transmitted to three spatially separated parties for projective polarization measurements. Single photons were detected with
superconducting nanowire single-photon detectors (SNSPD), and a time-to-digital converter identified fourfold coincidences
within a 1 ns window. b, Quantum circuit for activation. The broadcast channel, highlighted by the dashed box, consisted
of a C-NOT, Hadamard (H), and S = ( i 0

0 1 ) gates, where i represents an additional π/2 phase. A, B, and C indicate local
projective measurements performed by parties Alice, Bob, and Charlie. QWP, quarter-wave plate; HWP, half-wave plate; PBS,
polarizing beamsplitter; NPBS, non-polarizing beamsplitter; PPBS, partially polarizing beamsplitter.

In this spirit, we assess the Bell locality of our original
bipartite states via the previously introduced algorithm.
We plot these results in Fig. 3b versus the ideal state
parameter α. A value for the certificate parameter η = 1
ascertains the existence of an LHV model for the respec-
tive state. Values beyond this (η > 1) indicate that the
LHV model is robust against white noise. Here too, we
present the certificate results for the case of the ideal
isotropic state as a dashed curve, recovering the locality
of the state up to the current α ≤ 0.6875 bound. Of the
three broadcast states shown in the inset of Fig. 3a, one,
depicted by a red triangle, is certifiably activated. The
inset of Fig. 3b emphasizes this further. In this case,
two of the three previously mentioned states (red circles)
yield outcomes that fall below the certificate threshold.
These results underscore the necessity of performing such
a rigorous locality analysis: even if the associated values
of α suggest that the states are Bell-local, one cannot
assume this to be the case. At this point, it is impor-

tant to stress that one should avoid interpreting a value
of η < 1 as an indication of nonlocality in the causal
scenario of Fig. 1a; instead, it simply conveys that the
Bell locality of the state cannot be conclusively verified.
We further tested the two remaining states (red circles)
numerically against standard bipartite Bell inequalities
[39], which failed to violate the local bounds (see Supple-
mentary Note 1). In this way, one is able to exclude the
possibility of them being trivially Bell-nonlocal. We sum-
marize the experimental outcomes in Fig. 4, symbolizing
the membership of our experimental states to different
correlation sets.

Discussion

Within the rapidly developing landscape of quantum
information, nonlocal correlations lay the foundation for
new theoretical and technological discoveries. The orig-
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Fig. 3. Experimental activation of nonlocality as a
function of the quantum state parameter α. a, Results
for the broadcast inequality IB of equation (3). Diagonal
lines represent theoretical predictions for ideal (dashed gray)
and experimentally observed (solid blue) two-photon inter-
ference. Red and blue data points indicate activatable and
non-activatable states, respectively. A red triangle symbol-
izes certified nonlocality activation. The vertical dashed line
shows the current Bell-local upper bound (α ≤ 0.6875) for
isotropic states under projective measurements in the two-
party scenario. The gray area indicates the classical region
above which broadcast nonlocality is observed. b, Locality
test for the experimental bipartite states. The dashed curve
depicts the certificate results for an ideal isotropic state. Val-
ues of the certificate η ≥ 1, shown in the gray area, guarantee
the existence of an LHV model for the corresponding quantum
state for two-outcome POVMs. Error bars are ± 1 standard
deviations in total. Uncertainties in IB arise from Poissonian
statistics, whereas the uncertainties in η and α are calculated
from Monte Carlo simulations of the different ρexp that in-
clude Poissonian photon-counting noise and systematic errors
in measurements (see Methods).

inal scenario that Bell envisioned was a catalyst for
decades of intense research on nonlocality. Now, with the
advent of quantum networks, we can explore these cor-
relations in a broader and richer context. Here, we have
experimentally demonstrated that nonlocality, as a re-
source, can be accessed beyond the standard noise limits
that are present for standard scenarios involving two par-
ties. To achieve a fully loophole-free implementation, the
key assumption to eliminate is the fair-sampling assump-
tion. This would require increasing the overall efficiency,
currently limited by the probabilistic implementation of
the channel.

We note that, although stronger examples of nonlocal-
ity activation are known in multi-copy settings [13, 15],

Bell-L and Br-NL

Bell-NL

Br-L

Fig. 4. Illustration of the experimental states within
the hierarchy of correlations. The activation of nonlocal-
ity is certified for any experimental state that is rigorously
proven to belong to the set producing both Bell-local and
broadcast-nonlocal correlations, as illustrated by the triangle
symbol. Striped areas represent uncertainties for determining
the boundaries between correlation sets.

this can be prohibitively hard to achieve in practice when
dealing with large ensembles of distributed, independent
copies of a quantum state. For instance, to achieve an ac-
tivation under similar noise conditions (i.e., for α ∼ 0.64),
one would require at least N = 21 copies of the isotropic
state in a star network configuration [18]. For up to
α ∼ 0.6875, N ≥ 10 copies are still needed [40].

Unlike earlier works on multipartite nonlocality that
mainly focused on scenarios consisting only of sources
and measurements [5, 17], our experimental demonstra-
tion reveals the potential for unlocking further advan-
tages in networks by incorporating an intermediate quan-
tum hub: a node with quantum inputs and many quan-
tum outputs. These results represent a demonstration of
nonlocality in more general quantum networks, where the
sources are taken to be classical, but the only limitations
on any intermediate channel are general no-signalling re-
sources. If these are constrained to allow quantum cor-
relations, the noise tolerance in such network scenar-
ios could be increased even further, while still allow-
ing for fully device-independent (but no longer theory-
independent) protocols. One example is entanglement
certification [28], where the inclusion of broadcast chan-
nels was predicted to significantly improve over standard
methods. Incorporating hybrid assumptions into network
scenarios [24, 41, 42] enables key insights into nonlocality
tasks. Characterizing correlations in these hybrid scenar-
ios will become increasingly essential as future quantum
networks naturally expand in size and complexity.

Methods

Classical model in the broadcast scenario

For the scenario in Fig. 1b, one takes the source SAB to
be an LHV, as denoted by λAB. In a quantum mechani-
cal description, the final joint probability distribution is
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given by the Born rule

p(abc|xyz) = Tr
(
Aa|x ⊗Bb|y ⊗ Cc|z ρABC

)
, (5)

where ρABC represents the resulting state after the ap-
plication of the broadcast channel ΩBC on half of the
input state. If the broadcast channel were assumed to
produce an additional classical resource described by a
hidden-variable λ′, which is, in turn, dependent on λAB,
the distribution could be decomposed as

p(a, b, c|x, y, z) =∫
dλABp(λAB)pA(a|x, λAB)p̃B(b|y, λAB)p̃C(c|z, λAB),

(6)

where p̃B(b|y, λAB) =
∫
dλ′ pB(b|y, λ′)pB(λ′|λAB) (and

similarly for p̃C).
The model in equation (6) is equivalent to a standard

tripartite Bell-local model, and its violation can be ob-
tained even with a classical λAB (e.g. if the channel pre-
pares a maximally entangled state). Thus, the violation
of a standard tripartite Bell inequality cannot be used
to rule out a classical description of SAB. By relaxing
the constraint on ΩBC, allowing it to prepare general no-
signalling resources [24], one obtains the decomposition
shown in equation (2). Any violation of this then ensures
that SAB cannot be described as an LHV.

The no-signalling condition between the broadcast par-
ties is formalized by

∑

b

pNS
BC(b, c|y, z, λAB) =

∑

b

pNS
BC(b, c|y′, z, λAB) (7)

∀y, y′, z, λAB,∑

c

pNS
BC(b, c|y, z, λAB) =

∑

c

pNS
BC(b, c|y, z′, λAB) (8)

∀y, z, z′, λAB.

This is a weak condition applicable to the channel and
is motivated by the assumption that B and C are
causally disconnected parties, as per the causal diagram
in Fig. 1b. We reiterate that this is not a classicality as-
sumption on the channel—on the contrary, it is even al-
lowed to produce post-quantum resources like PR-boxes
[29]. The classicality of λAB is a condition imposed on
the source, not on the channel.

Certifying that states have an LHV model

Our algorithm builds on the conceptual framework in-
troduced in Refs. [43, 44] and reviewed in Ref. [45]. It
incorporates the existence of local models for specific en-
tangled states to certify an LHV model for general quan-
tum states and general two-outcome POVMs, which are
a superset of projective qubit measurements. First, we
consider a d × d-dimensional bipartite quantum state ρ
with an LHV model for all n-outcome POVMs. Let Λ
be a positive trace-preserving, linear map that acts on
a d-dimensional system. A positive map is defined such

that, for all positive semidefinite states σ, Λ(σ) ≥ 0.
If [Id ⊗ Λ](ρ) is a valid quantum state, then it will also
have an LHV model for all n-outcome POVMs (a detailed
proof is provided in Supplementary Note 2). For LHV ex-
tension methods, it is sufficient that Λ is a positive (but
not necessarily completely positive) map [46]. Following
this, a suitable choice of ρLHV is needed. To this end,
we use the recent results of Ref. [33] that prove the exis-
tence of an LHV model for the two-qubit isotropic state
W0.6875 under projective measurements. Furthermore,
since extremal two-outcome qubit measurements are pro-
jective [47], this state also has an LHV model for all
two-outcome POVMs. The selection of ρLHV = W0.6875

is thus naturally motivated because our experimentally
prepared states are, by design, very close to this family
of states.

An additional step is required to find an LHV model
for the state ρexp obtained via quantum state tomogra-
phy. Explicitly, we use the convexity of the set of states
admitting an LHV model for n-outcome measurements
L. That is, if ρ1 , ρ2 ∈ L then ρ = qρ1 + (1 − q)ρ2 ∈ L,
where q ∈ [0, 1]. This fact allows us to certify a larger
space of states, expanding our search further by searching
for a map Λ and a local state ρ2 such that:

ρexp = q[I2 ⊗ Λ](W0.6875) + (1 − q)ρ2 . (9)

The last step is to select a set of LHV states to ex-
plore in the context of ρ2. We opted for the set of sep-
arable states, which are readily and fully characterized
for bipartite qubit-qubit states using the Positive Partial
Transpose (PPT) criterion [48]. According to the PPT
criterion, a qubit-qubit state is deemed separable if and
only if its density matrix ρ satisfied the condition ρT2 ≥ 0,
where Ti denotes the partial transpose operation on the
ith system. The considerations discussed above lead us
to the formulation of the following optimization problem:

max η (10)

such that:

ηρexp + (1 − η)
I4
4

= q[I2 ⊗ Λ](W0.6875) + (1 − q)ρppt

(11)

0 ≤ q ≤ 1 (12)

ρppt ≥ 0, Tr(ρppt) = 1, ρT2
ppt ≥ 0 (13)

ρ ≥ 0 =⇒ Λ(ρ) ≥ 0 (Λ is a positive map) (14)

Tr[A] = Tr[Λ(A)] ∀A (Λ is trace preserving). (15)

A subtle fact to note is that this problem is not strictly
equivalent to the one we described earlier in equation (9).
Instead, we ask a slightly modified question: What is the
minimum amount of white noise that needs to be added
to ρexp until we have a state admitting an LHV model
for two-outcome measurements? When the optimization
returns a value of η ≥ 1, we can certify that our ex-
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perimental state has an LHV model for all dichotomic
measurements; otherwise, the results are inconclusive.

Our algorithm can be, additionally, computed effi-
ciently. Since the positive map Λ is a qubit-qubit map, it
can be decomposed as Λ = Λ1

CP+Λ2
CP◦T , where Λ1

CP and
Λ2
CP are completely positive and T is the transposition

map [48]. It is then possible to use the Choi-Jamio lkowski
isomorphism [49] to phrase this optimization routine as
a semidefinite program (SDP), which belongs to a class
of optimization problems that can be efficiently solved
using precise and efficient methods. Our algorithm takes
advantage of existing LHV models for specific states, re-
sulting in a substantial improvement in computational
efficiency. Given that an LHV model for W0.6875 is guar-
anteed to exist [33], we exploit this result to efficiently de-
rive new LHV models for general states close to W0.6875.
While the method in Ref. [33] required around a month
to execute on a powerful 64-core computer, our approach
can find an LHV model for ρexp in less than one second
using a standard personal computer.

Broadcast nonlocality activation and POVMs

Our algorithm establishes that the experimentally ob-
tained state ρexp admits an LHV for all projective
measurements and, consequently, for all two-outcome
POVMs. A general proof for arbitrary POVMs is still an
open question, as this is a much more challenging task
even for very well-studied states [34, 35].

This becomes particularly relevant as one may consider
the case of Bob and Charlie as grouped together, acting
collectively. Under this assumption, the broadcast chan-
nel ΩBC and local projective measurements performed
by B and C may be reinterpreted as an effective POVM
with more than two outcomes. It could then be argued
that the activation observed in our experiment can be
exclusively attributed to this more general measurement
being performed on part of the state and not due to the
causal structure considered. To address this, we further
analyzed this scenario within the A and BC bipartition.

Formally, we considered the behavior

p(a, b, c|x, y, z) = Tr
(
ρABCAa|x ⊗Mbc|yz

)

= Tr
(
ρABAa|x ⊗ Ω†

BC(Mbc|yz)
)
, (16)

where Ω† is the adjoint map of Ω and Ω†
BC(Mbc|yz) de-

notes a valid qubit 4-outcome POVM.
Using standard semidefinite programming methods for

quantum steering and joint measurability [50], we show
that the effective POVMs performed in our experiment
(corresponding to the measurements in Table 1 along
with the adjoint of the isometry defined in equation (18))
have a white noise robustness of 0.7746. In other words,
when such measurements are performed by parties B and
C on part of the two-qubit state Wα for α ≤ 0.7746, the
resulting assemblage is unsteerable. Finally, we recon-
structed the experimental assemblage

σbc|yz := TrB(ρexpΩ†(Mbc|yz)) (17)

and numerically verified that this assemblage is also un-
steerable and thus can only lead to Bell-local behav-
iors, regardless of what measurements Alice performs (see
Code availability statement for the full code). This re-
sult establishes unambiguously that the observed nonlo-
cality in this work is not a consequence of transitioning
from projective measurements to POVMs, but due to the
broadcasting causal structure. Indeed, it has been shown
that broadcasting scenarios can allow for activation even
for states that are known to be Bell-local with respect to
arbitrary POVMs [28].

The question of whether non-projective POVMs are
useful for revealing the nonlocality of states that are
otherwise local under projective measurements remains
a crucial open problem in quantum information science.
In the case of some specially tailored Bell inequalities,
POVMs may be used to violate it more with more
states [51]. But, in the context of EPR steering, equiva-
lence between POVMs and projective measurements has
been established for two-qubit Werner states [34, 35].
There is also evidence suggesting that the most incom-
patible sets of qubit POVMs are always projective [52].

Photon sources

The single photons used in the protocol were gener-
ated via type-II SPDC. A mode-locked Ti:sapphire laser
at 775 nm was used to produce 1 ps pulses with a
repetition rate of 80 MHz at 200 mW of power. The
pump pulses were split into two beams with a half-wave
plate (HWP) and polarizing beam splitter (PBS), before
pumping two separate photon sources with identical pp-
KTP crystals. The first source, based on the design of
Refs. [36, 53], embedded one of the ppKTP crystals in-
side of a beam displacer (BD) based Mach-Zehnder inter-
ferometer and generated the maximally entangled state
|Φ+⟩ = (|HH⟩+ eiθ|V V ⟩)/

√
2. We set the relative phase

θ through slight tilting of one of the BD. One of the
photons from this source underwent a controllable depo-
larizing channel with probability 1 − α that consisted of
a Sagnac-based variable beam splitter (VBS) and a fully
depolarizing operation [54]. A motorized HWP inside
the interferometer controlled the splitting ratio of the
VBS and was used to set the amount of mixture in the
state. The fully depolarizing channel included two con-
secutive dephasing maps. Each of these used an imbal-
anced BD interferometer, generating a relative temporal
delay between single-photon wavepackets with orthogo-
nal polarization modes, correlating the polarization and
time degree of freedom. An additional HWP set to 22.5◦

was inserted between the BD interferometers to dephase
in two different bases. The photon detection does not
resolve different arrival times, effectively resulting in a
polarization mixture. The experimental states generated
in this way were very similar to two-qubit isotropic states
Wα, although we do not make this assumption to reach
our experimental conclusions. For various proportions
of mixture, we reconstructed the density matrices of the
experimentally produced state via maximum-likelihood
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quantum state tomography. A second photon source pre-
pared a heralded photon to be used as an ancilla for the
broadcast channel. Its polarization state was fixed.

Experimental error analysis

We derived experimental uncertainties in the state pa-
rameter α and the locality certificate η from tomographic
reconstructions, considering systematic measurement er-
rors and statistical errors intrinsic to probabilistic pho-
ton sources. Quantum state tomography, as is usual in
device-dependent tasks, requires that the measurement
devices used are precisely characterized and calibrated.
It is thus crucial to avoid mischaracterizing our generated
experimental states for our locality test algorithm. The
systematic errors included: (i) imperfect calibration of
the measurement wave plates, (ii) mechanical repeatabil-
ity of the motorized stages involved in the measurement,
and (iii) phase-shift errors due to manufacturing imper-
fections in wave plate thickness. We reconstructed 2000
density matrices for each experimental state in a Monte
Carlo simulation, with each trial independently sampling
the systematic (statistical) errors from a normal (Poisso-
nian) distribution. For each reconstructed matrix, we
calculated the parameters α and η, and the standard
deviations of the distributions in the parameters pro-
duced the final uncertainties. Conversely, the broadcast
inequality is a device-independent task and does not rely
on the actual states used or measurements performed.
The uncertainties in the inequality values were calculated
from Poissonian photon counting statistics and standard
error propagation techniques.

Broadcast channel

After applying an appropriate broadcast channel on
half of the original state, it is possible to obtain a quan-
tum violation of inequality (3) for Wα. This operation
aims to map the two-dimensional Hilbert space of the
original subsystem to another space of dimension 2m,
where m = 2 is the total number of broadcast parties. In
our case, the transformation carried out by the channel
ΩBC can be modeled as an isometry V : C2 :→ C4, de-
composable into single-qubit rotations and C-NOT gates
[55].

Our instance of a suitable broadcast channel was in-
spired by Ref. [24] and featured one probabilistic C-NOT
gate [37] and single-qubit operations. The quantum cir-
cuit for this channel is shown in Fig. 3b, and the corre-
sponding isometry is described by

V =

( |HH⟩ − |V V ⟩√
2

)
⟨H| −

( |HV ⟩ + |V H⟩√
2

)
⟨V |.

(18)

The inclusion of an additional ancillary photon was to
physically enforce the no-signalling required between the
broadcast parties, in contrast to using different degrees
of freedom of a single photon [56].

Keeping the number of nondeterministic gates to a
minimum is necessary since it can be impossible to ver-
ify the success of cascaded operations in post-selection.
Since the ancilla photon state is fixed, we can use
known methods to construct efficient isometries [57]. The
single-qubit rotations used a combination of quarter-
wave (QWP) and half-wave plates, and the C-NOT gate
was implemented with partially polarizing beam splitters
(PPBS). In our case, the C-NOT gate only required two
PPBSs because of the fixed polarization state in the an-
cilla, raising the success probability from 1/9 to 1/6. To
maximize the HOM interference visibility at the central
PPBS, we placed bandpass filters (3.2 nm full width at
half maximum) at each output port of the gate. We mea-
sured interference visibility of 0.97 ± 0.03 between pho-
tons generated from independent sources with no back-
ground subtraction.

Projective measurements

A binary variable determined the choice of measure-
ments for Bob and Charlie (y, z = 0, 1), while Alice had
a choice of three possible measurements (x = 0, 1, 2). The
settings that result in a maximal violation of inequality
(3) with our broadcast channel are summarized in Table
1. An additional, fixed HWP was inserted before Alice’s
measurement station, rotating her measurements to {σZ ,
σX , σY }, for experimental convenience.

Each party used a polarization measurement stage—
consisting of a QWP, HWP, and PBS—to perform ar-
bitrary projective measurements on their qubit. Photon
events were detected with SNSPDs at both outputs of
the PBS. Using a coincidence window of 1 ns, we col-
lected 30633 four-fold coincidence events among all six
data points in approximately 51 hours. For the data
point corresponding to certified activation (Fig. 3, red
triangle), we measured 9802 four-fold coincidences.

Data availability

All data generated and analyzed during this study is
available from the corresponding author upon reasonable
request.

Code availability

All the code used in this work is openly avail-
able at the following link: https://github.com/mtcq/
LHVextention.
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[14] Cavalcanti, D., Aćın, A., Brunner, N. & Vértesi, T. All
quantum states useful for teleportation are nonlocal re-
sources. Phys. Rev. A 87, 042104 (2013).

[15] Sen(De), A., Sen, U., Brukner, Č., Bužek, V. &
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Tables

Alice Bob Charlie

A0 = −σX−σZ√
2

B0 =
√

2σX+σY√
3

C0 = σZ

A1 = σX−σZ√
2

B1 =
√

2σX−σY√
3

C1 = σX

A2 = −σY

Tab. 1. Optimal projective measurement settings for
nonlocality activation.



Supplementary Information: Nonlocality activation in a photonic quantum network

Luis Villegas-Aguilar,1 Emanuele Polino,1 Farzad Ghafari,1 Marco Túlio Quintino,2
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Supplementary Tab. 1 | Experimental results for nonlocality activation for different quantum states. Data for the
parameter α of the ideal isotropic state Wα (with which the fidelity of the experimental state is maximized), the corresponding
fidelity F , the broadcast inequality IB , and locality certificate η for our six experimentally prepared states. The fidelity is

defined as F(ρexp,Wα) = Tr
(√√

ρexpWα
√
ρexp

)2
. Green background (b) highlights the data for conclusive activation. Yellow

background (c and d) indicates the cases with supporting evidence for activation, but inconclusive locality test results in η.

α F(ρexp,Wα) IB η

a 0.423 ± 0.003 0.9974 ± 0.0004 2.84 ± 0.15 1.49 ± 0.02

b 0.637 ± 0.004 0.995 ± 0.003 4.24 ± 0.09 1.014 ± 0.007

c 0.661 ± 0.003 0.997 ± 0.002 4.27 ± 0.11 0.997 ± 0.006

d 0.675 ± 0.004 0.997 ± 0.003 4.34 ± 0.15 0.972 ± 0.006

e 0.726 ± 0.008 0.993 ± 0.003 4.83 ± 0.18 0.89 ± 0.01

f 0.862 ± 0.008 0.991 ± 0.006 5.69 ± 0.19 0.775 ± 0.006
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Supplementary Fig. 1 | Experimental quantum states. a Real part of the density matrix ρexp, reconstructed through
quantum state tomography, for α = 0.423±0.003. b–f Same as a, but for α = 0.637±0.004, α = 0.661±0.003, α = 0.675±0.004,
α = 0.726 ± 0.008, and α = 0.862 ± 0.008, respectively. The absolute values of the imaginary parts were all below 0.02, except
for e, which were below 0.04.

Supplementary Note 1: Evidence for the Bell-locality of the experimental states

For each experimental density matrix, we generated a large ensemble of associated states in a Monte Carlo simula-
tion, which included systematic and statistical errors. We used these ensembles to certify the locality of the original
states with statistical significance. We subjected all of the derived states to our locality testing procedure described
in the main text. For the experimental state ρexp with an associated α = 0.637 ± 0.004 parameter (red triangle in
Figure 3), we obtained a value η ≥ 1 for 98.1% of all sampled density matrices. This result implies a low probability
of erroneously classifying ρexp as Bell-local. For the α = 0.661 ± 0.003 state, 16.8% matrices produced a local result.

As mentioned in the main text, a η < 1 value does not imply that ρexp is Bell-nonlocal. We further analyzed
the bipartite nonlocality of the six experimental states (and associated Monte Carlo distributions) via the Horodecki
criterion [1], which is a sufficient condition for Bell-nonlocality for general mixed two-qubit states. It provides the
maximum value possible for the CHSH [2] inequality under projective measurements. It is possible to associate a
correlation matrix Tρ to any two-qubit state ρ. This correlation matrix has entries tij = Tr [ρ(σi ⊗ σj)] for i, j = 1, 2, 3,
where σi represent the standard Pauli matrices. The Horodecki criterion then gives the maximum possible CHSH
value B for a given state ρ:

max⟨B⟩ρ = 2
√
m2

11 + m2
22 ≥ 2, (1)

where m2
11 and m2

22 denote the two largest eigenvalues of TρT
T
ρ .

These results are presented as a violin plot in Supplementary Fig. 2, which provides an intuitive way to visualize
the results for the distribution in the calculated values of max⟨B⟩ρ. For all experimental states ρexp with α < 0.726,
we obtained a value max⟨B⟩ρ < 2 for 100%of the simulated density matrices. It is important to acknowledge that
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although max⟨B⟩ρ ≥ 2 provides definitive evidence of Bell nonlocality for the sampled states, a value below this bound
does not guarantee Bell locality. These states, in principle, may still have the potential to violate other bipartite Bell
inequalities. This is the reason why the two experimental states ρexp that violate the broadcast inequality but do
not have a conclusive certificate parameter η > 1 (red dots in Figure 3 and Figure 4) are depicted in the region of
uncertainty for activation in Figure 4 of the main text.

Supplementary Fig. 2 |Maximum violation of the CHSH inequality under projective measurements for different
experimental states. We simulated 2000 samples of each experimental density matrix via Monte Carlo simulation; the rotated
kernel density plots associated with each data point show the results for the derived distributions. The grey area indicates the
region where the CHSH inequality is not violated.

Supplementary Note 2: Proving the existence of an LHV model for (III ⊗ Λ)(ρ)

Here we prove the following statement:

If ρ is a state that admits an LHV model for all n-outcome measurements, and Λ is a positive trace-preserving linear
map such that (I⊗Λ)(ρ) is a quantum state, then (I⊗Λ)(ρ) also admits an LHV model for all n-outcome measurements.

Since we know that ρ admits an LHV model for n-outcome measurements, then for any n-outcome POVMs {Aa|x}
and {Bb|y} for Alice and Bob, there exist distributions {p(λ)}, {pA(a|x, λ)}, and {pB(b|y, λ)} such that

p(a, b|x, y) = Tr
[
ρ(Aa|x ⊗Bb|y)

]
=

∫
dλ p(λ)pA(a|x, λ)pB(b|y, λ) . (2)

We can now consider the probability distribution for the same measurements with the state (I⊗ Λ)(ρ), i.e.,

q(a, b|x, y) = Tr
[
(I⊗ Λ)(ρ)(Aa|x ⊗Bb|y)

]

= Tr
[
ρ(I⊗ Λ)†(Aa|x ⊗Bb|y)

]

= Tr
[
ρ(Aa|x ⊗ Λ†(Bb|y))

]
.

(3)

where for the sake of clarity, we are using q to denote the probabilities resulting from state (I ⊗ Λ)(ρ). Since Λ is a
positive trace-preserving map, its adjoint is necessarily a positive unital map. This means that {Λ†(Bb|y)} is also an

n-outcome POVM. Denoting Λ†(Bb|y) = B′
b|y, we have

q(a, b|x, y) = Tr[ρ(Aa|x ⊗B′
b|y)] =

∫
dλ p(λ)pA(a|x, λ)pB(b|y, λ), (4)
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where the final equality results from equation (2) since it holds for any valid pair of POVMs.

Supplementary Note 3: Experimental no-signalling conditions

Experimental probabilities are derived from a finite number of samples, introducing unavoidable statistical fluctu-
ations. Consequently, any non-signalling constraint can only be approximately satisfied, even in the case of space-like
separation between parties. We explicitly verified that our results are consistent with the no-signalling condition
formalized by equations (7) and (8) in the Methods. To check this, we computed the expressions:

ENS
B (y, y′, z, c) =

∣∣∣∣∣
∑

b

pBC(b, c|y, z) − pBC(b, c|y′, z)

∣∣∣∣∣ ∀ y, y′, z, c, (5)

ENS
C (y, z, z′, b) =

∣∣∣∣∣
∑

c

pBC(b, c|y, z) − pBC(b, c|y, z′)
∣∣∣∣∣ ∀ y, z, z′, b. (6)

To satisfy the no-signalling condition, it follows that ENS
B = ENS

C = 0. We computed the expressions (5) and (6) for
all non-trivial combinations (y ̸= y′, z ̸= z′). As shown in Supplementary Tab. 2, we found the mean value of these
expressions to be ⟨ENS⟩ = 0.02 ± 0.05, indicating that our results are consistent with no-signalling being satisfied.

Supplementary Tab. 2 | No-signalling condition between Bob and Charlie

z ENS
B (y ̸= y′) y ENS

C (z ̸= z′)

0 1.66e-02 ± 4.37e-02 0 3.75e-02 ± 4.17e-02

1 2.96e-04 ± 4.32e-02 1 1.63e-02 ± 4.74e-02
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