
Asynchrony-Resilient Sleepy Total-Order Broadcast Protocols

Francesco D’Amato
Ethereum Foundation

francesco.damato@ethereum.org

Giuliano Losa
Stellar Development Foundation

giuliano@stellar.org

Luca Zanolini
Ethereum Foundation

luca.zanolini@ethereum.org

Abstract

Dynamically available total-order broadcast (TOB) protocols tolerate fluctuating participation, e.g., as
high as 99% of their participants going offline, which is especially useful in permissionless blockchain
environments. However, dynamically available TOB protocols are synchronous protocols, and they lose
their safety guarantees during periods of asynchrony. This is a major issue in practice.

In this paper, we propose a simple but effective mechanism for tolerating bounded periods of asyn-
chrony in dynamically available TOB protocols that ensure safety deterministically. We propose to trade
off assumptions limiting the online/offline churn rate in exchange for tolerating bounded asynchronous
periods through the use of a configurable message-expiration period.

In practice, this allows picking a small synchrony bound δ, and therefore obtain a fast protocol in the
common case, knowing that the protocol tolerates occasional periods of duration at most π > δ during
which the bound does not hold. We show how to apply this idea to a state-of-the-art protocol to make it
tolerate bounded periods of asynchrony.

1 Introduction

At the heart of a system like Ethereum is a dynamically available, Byzantine fault-tolerant (BFT) total-order
broadcast (TOB) protocol that allows participants to propose new blocks and agree on a growing blockchain.
Byzantine fault-tolerance means that the protocol tolerates attacks in which some participants misbehave,
i.e., they are controlled by an adversary and maliciously deviate from the protocol. Dynamic availability
means that the protocol can handle participants going offline or coming back online at any time — even 99%
of them — as long as a sufficient fraction (more than half in Ethereum) of the online participants remain
well behaved.

In Ethereum, dynamic availability is crucial to survive a failure scenario in which one or more of
Ethereum’s consensus clients (which are different implementations of Ethereum’s TOB protocol) suffer a
software bug and crash, taking down a large fraction1 of the participants at once. In contrast, traditional
BFT protocols (synchronous or partially synchronous) get stuck when participation drops below their fixed
(usually 1/2 or 2/3) quorum threshold.

It is unfortunately impossible to achieve consensus, a prerequisite for TOB, in the dynamically-available
setting under partial synchrony [10][11, Theorem 7.1]. Thus, dynamically available TOB protocols are syn-
chronous protocols, meaning that they depend on a known, system-wide upper bound δ on communication
delay and clock skew (assuming local computation takes negligible time). This allows simulating a round-by-
round model (in the vein of the basic round model of Dwork, Lynch, and Stockmeyer [7]), such that, each
round, every message sent by an online and well-behaved participant is received by all the participants that
are online and well-behaved in the next round.

All existing dynamically available TOB protocols are formulated in variants of this round-by-round model,
such as the sleepy model [17], that make additional assumptions such as cryptographic assumptions, assump-

1In May 2023, roughly 60% of Ethereum’s consensus clients went offline for about 25 minutes due to a software bug;
Ethereum’s dynamically available chain nevertheless continued growing normally.

1

ar
X

iv
:2

30
9.

05
34

7v
2

 [
cs

.D
C

]
 6

 M
ay

 2
02

4

francesco.damato@ethereum.org
giuliano@stellar.org
luca.zanolini@ethereum.org

tions about the ratio of ill-behaved to well-behaved online participants, assumptions about eventually stable
participation, etc.

Unfortunately, in practice, when the synchrony bound δ is violated, the message-delivery guarantees of
the round-by-round model cannot be guaranteed anymore, and existing dynamically available TOB protocols
lose their safety and liveness guarantees. Therefore, practical deployments must choose an excessively conser-
vative, i.e., large, synchrony bound δ. This is a problem because the latency and throughput of dynamically
available TOB protocols are proportional and inversely proportional, respectively, to δ.

In this work, we propose a methodology to modify existing dynamically available TOB protocols in order
to obtain protocols that have the following desirable properties:

1. They tolerate asynchronous periods, i.e., periods during which message delivery is under full control of
the adversary, of maximum duration π, which is a parameter; and

2. They match the latency and throughput of the original protocol when the synchrony bound δ holds.

In practice, this allows picking a small synchrony bound δ, and therefore to obtain a fast protocol in the
common case, knowing that the protocol tolerates occasional periods of duration at most π > δ during which
the synchrony bound does not hold. With existing dynamically available TOB protocols, maintaining safety
under those assumptions would require setting δ = π, which would significantly slow down the protocol.

The methodology we present applies to protocols that ensure safety deterministically. Examples are the
protocols of Momose and Ren [14], Malkhi, Momose, and Ren [12, 13], Gafni and Losa [8], and D’Amato
and Zanolini [6]. The case of protocols that ensure probabilistic safety is treated separately by D’Amato and
Zanolini [4].

To build some intuition as to why existing dynamically available TOB protocols lose their safety guarantees
when message-delivery guarantees are violated, let us consider the 1/3-resilient, dynamically available TOB
protocol of Malkhi, Momose, and Ren [12] (the MMR protocol, further detailed in Section 3.1). The MMR
protocol tolerates less than a fraction β = 1/3 of the online participants being malicious in each round. The
protocol consists of a sequence of views of 2 rounds each. In each view, participants may introduce new
values in the first round of the view and vote to extend the blockchain in the second round, which we call
the decision round. Each participant decides on a value b when more than a fraction α = 1 − β = 2

3 of the
votes it receives in a decision round are for b (note that this threshold is relative to the number of votes
that a participant receives, and not the total number of participants, because there is no telling how many
participants are online in a given round).

In order to guarantee progress in the face of changing participation, in each round r, each participant only
uses votes cast in the same round r. Otherwise, a drop in participation might stall the protocol because the
currently-online participants would not be numerous enough, compared to the number of previously online
participants, to reach the decision threshold. For example, if participation drops from 100 to 10 participants
from one round r to the next round r + 1, then the votes of the participants that are online in round r + 1
can obviously not account for 2

3 of participants’ latest votes over rounds r and r + 1.
Regrettably, protocols that only use votes from the current round lose all safety guarantees if there are

periods of asynchrony during which message-delivery is fully under adversarial control. For example, suppose
that the network delivers only adversarial messages in the decision round of the MMR protocol. Trivially, if
the adversary sends only votes for b to a participant pi and only votes for b′ ̸= b to another participant pj ,
then pi decides v because it receives unanimous votes for b and, similarly, pj decides b′. This violates the
agreement property of total-order broadcast.

To sum up, on the one hand it seems that, each round, dynamically available protocols like the MMR
protocol must only use votes cast in the current round or they lose progress guarantees in case of fluctuation
in the participation level from one round to the next. On the other hand, using only votes cast in the current
round means losing safety in asynchronous rounds. In this paper, we offer a solution to this conundrum: We
observe that we can use the most recent votes that each participant casts over a fixed number of previous
rounds, called the expiration period, without losing safety or progress guarantees if we fix a maximum churn
rate γ (roughly, the fraction of participants online during the last expiration period that are allowed to go
offline) and set the maximum failure ratio to be a function of γ as depicted in Figure 1. In turn, using votes
from a fixed expiration period allows tolerating periods of asynchrony shorter than the expiration period.

Although using messages from multiple rounds allows tolerating bounded asynchrony, it comes at a cost:
Even during synchrony, to ensure safety and progress of the protocol, we must introduce bounds on the

2

fraction of participants that drop offline after participating at some point during the last expiration period.
Otherwise, safety can be violated because a consensus decision may be witnessed by too few participants,
compared to the number of participants that have been active during the expiration period, and then overrid-
den in the following rounds. Progress may also be hampered, as old votes may be too numerous and prevent
votes for a new value from reaching the decision threshold.

In this paper, we address all these challenges and introduce a simple but effective methodology to augment
dynamically available protocols, enabling them to withstand bounded periods of asynchrony. The remainder
of this paper is as follows: Section 2 outlines our system model, provides definitions useful to the subsequent
sections, and establishes specific conditions concerning the adversary. The core contribution of this work is
detailed in Section 3. Here, we present an overview of our proposed methodology, revisit a dynamically avail-
able TOB protocol that serves as a practical example for applying our methodology, and then demonstrate
the application of our approach, complete with supporting proofs. Discussions on related work are presented
in Section 4, and conclusions are drawn in Section 5.

Figure 1: Allowable failure ratio β̃2/3 to ensure progress during synchrony with an expiration period of η

rounds and a churn rate of γ per η rounds. We assume an algorithm using a decision threshold of 1− β = 2
3 .

If participation is static (i.e. γ = 0), the maximum tolerable failure ratio is 1
3 , and this matches the upper

bound for a decision threshold of 2
3 . At a drop-off rate of γ ≥ 1

3 , the system may stall even without failures.

As we explain in Section 2.3, in general we must have β̃ = β−γ
γ(β−2)+1 .

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ll
ow

ab
le

fa
il
u
re

ra
ti
o
β̃
2
/
3

Drop-off rate γ

β̃2/3 = 1−3γ
3−5γ

2 Model and Definitions

2.1 System Model

Processes

We consider a system of n processes P = {p1, . . . , pn} in a message-passing system with an underlying
peer-to-peer dissemination protocol (e.g., a gossip protocol). Each process is assigned a protocol to follow,
consisting of a collection of programs with instructions for all processes. Processes are divided into well-
behaved processes and Byzantine processes. Well-behaved processes follow their assigned protocol and send
the messages stipulated by it, while Byzantine processes are controlled by an adversary which can make
them send arbitrary messages. Messages sent by processes come with an unforgeable signature, and messages
without a valid signature are discarded.

Time and Network

An execution of the system proceeds in an infinite sequence of rounds 1, 2, 3, . . . The system is characterized
by a known upper bound δ that governs the message delay. Under the assumption that local computations
occur instantaneously, it is feasible to establish rounds of duration ∆ = 3δ [17, Section 2.1]. Finally, we
assume that processes have synchronized local real-time clocks and that, even under asynchrony, clocks
remain synchronized.

3

Asynchronous Period

We assume the existence of a single asynchronous period starting after round ra, unknown to the processes,
which could extend up to π ∈ N rounds. In other words, the rounds ranging in [ra+1, ra+π] may experience
asynchrony.

Cryptography

We assume a verifiable random function (VRF). Each process pi with its secret key can evaluate (ρ, π) ←
VRFpi(µ) on any input µ. The output is a deterministic pseudorandom value ρ along with a proof π. Using
π and process pi’s public key, anyone can verify whether ρ is the correct evaluation of VRFpi

on input µ.

Sleepiness

Each round has two phases, one occurring at its beginning and one at its end. In either phase, only an
adversarially chosen subset of the processes are said to be awake [17]. Processes that are not awake are said
to be asleep. The subset of processes awake at the beginning of round r is Or, and they coincide with the
processes awake at the end of the previous round, r−1. In other words, the processes awake at the beginning
of a round are potentially different from those awake at the end of it. Asleep processes do not execute the
protocol, and messages for that round are queued and delivered in the first round in which the process is
awake again. When a process pi goes from being awake to being asleep, we say that pi goes to sleep. We
denote with Hr and Br the sets of well-behaved and Byzantine processes, respectively, that are awake at
the beginning of round r. From now on, we refer to Hr, Br, and Or simply as processes that are awake at
round r, leaving it implicit that they are awake at the beginning of it. The Byzantine processes never go
to sleep: the adversary is either constant, in which case we have Br is the same at every round r, or the
adversary is growing [12], in which case Br ⊆ Br+1 for every round r. In this work we will mainly focus on
the growing adversary model.

Round structure

A round starts with a send phase, and ends with a receive phase, immediately prior to the beginning of the
next round. Processes in Hr participate in the send phase, while processes in Hr+1 in the receive phase.

In the send phase of round r, each process pi ∈ Or sends messages. A process pi ∈ Br may send arbitrary
messages, and processes that are not awake in round r do not send any messages. If process pi is well-behaved,
then pi sends the messages dictated by the protocol.

In the receive phase of round r, each well-behaved process that is awake at the end of round r, i.e., a
process in Hr+1, receives the following messages:

• If round r belongs to a synchronous period, then pi receives all the messages that it has not received
yet and that were sent in any round r′ ≤ r.

• Otherwise, if r belongs to an asynchronous period, then pi receives an arbitrary subset of such messages.

Moreover, processes that are not awake at the end of round r do not receive any messages. Finally, we
assume that messages entering the peer-to-peer messaging protocol are disseminated to all processes, even if
the original sender goes to sleep2. Furthermore, these messages withstand the transient asynchronous period
we consider and are delivered to all awake processes once normal network conditions are restored.

Message structure

We assume that every message exchanged among processes has an expiration period η ∈ N (except in Sec-
tion 3.1). Specifically, the expiration period for round r is defined as the interval [r − 1 − η, r − 1]. Only
the messages sent within this interval influence the protocol’s behavior at round r. Moreover, each message
is tagged with the corresponding round number r and during each round of a protocol’s execution, only the
latest messages sent by the processes are considered.

2Observe that this is roughly the case in most blockchain networks, such as Ethereum (https://ethereum.org) and Stellar
(https://stellar.org). For example, in Ethereum, process votes are aggregated by intermediate nodes which then disseminate
the votes independently.

4

https://ethereum.org
https://stellar.org

2.2 Total-Order Broadcast and Asynchrony Resilience

Definition 1 (Log). A log is a finite sequence of blocks bi, represented as Λ = [b1, b2, ..., bk]. Here, a block
represents a batch of transactions and it contains a reference to another block. For two logs Λ and Λ′, we
write Λ ⪯ Λ′ when Λ is a prefix of Λ′, and we also say that Λ′ extends Λ. We say that two logs are compatible
when one is a prefix of the other, and that they conflict when they are not compatible (i.e., none is a prefix
of the other).

Definition 2 (Byzantine total-order broadcast). A Byzantine total-order broadcast (TOB) protocol ensures
that all the well-behaved processes deliver compatible, growing logs. In a Byzantine total-order broadcast
protocol, every process can input a value v and the broadcast primitive repeatedly delivers logs Λ.

A protocol for Byzantine total-order broadcast satisfies the following properties.

Safety: If two well-behaved processes deliver logs Λ1 and Λ2, then Λ1 and Λ2 are compatible.

Liveness: For every valid transaction3 there exists a log Λ containing it and a round r such that all well-
behaved processes awake for sufficiently long4 after r deliver Λ.

Definition 3 (Dynamically available total-order broadcast). A protocol for total-order broadcast is dynam-
ically available if and only if the protocol satisfies safety and liveness (Definition 2) provided that at every
round r it holds that |Br| < β|Or|, for some fixed failure ratio β.

Currently implemented dynamically available total-order broadcast share a similar underlying structure:
They build upon a graded agreement primitive.

Definition 4 (Graded agreement). In a graded agreement protocol5, each process has an input log and, at the
end of the protocol, outputs a set of logs with each log assigned a grade bit, such that the following properties
are satisfied6.

Graded consistency: If a well-behaved process outputs a log with grade 1, then all well-behaved processes
output the log with grade ≥ 0.

Integrity: If a well-behaved process outputs a log with any grade, then there exists a well-behaved process
that inputs the log.

Validity: Processes output with grade 1 the longest common prefix among well-behaved processes’ input logs.

Uniqueness: If a well-behaved process outputs a log with grade 1, then no well-behaved processes outputs
any conflicting log with grade 1.

Bounded divergence: Each well-behaved process outputs at most two conflicting logs (with grade 0).

Let Dra be the set of logs decided by well-behaved processes in rounds ≤ ra.

Definition 5 (Asynchrony resilience). A dynamically available Byzantine total-order broadcast protocol is
asynchrony resilient if it preserves safety during periods of asynchrony, specifically during the interval [ra +
1, ra + π]. This means that during [ra + 1, ra + π + 1], no well-behaved process awake at round ra decides
on a log that conflicts with Dra . Furthermore, after round ra + π + 1, no well-behaved process should decide
on a log conflicting with Dra . A Byzantine total-order broadcast protocol is π-asynchrony resilient if it can
preserve safety during all asynchrony periods lasting up to π rounds.

3A transaction is valid according to a global, efficiently computable predicate P , known to all processes. The specific details
of this predicate are omitted.

4The duration “sufficiently long” varies depending on the protocol. For instance, in the MMR protocol [12], it is 4∆ in
expectation, where ∆ denotes the network delay.

5Graded agreement is a variant of connected consensus [1]
6It is important to note that various formulations of graded agreement exist, each possessing distinct properties. For example,

the version of graded agreement utilized by Momose and Ren [14] does not ensure bounded divergence. In contrast, the
formulation adopted by D’Amato and Zanolini [6] assures that outputs of any grade will be unique. The properties of the
graded agreement significantly influence the implementation of various dynamically available total-order broadcast protocols.
In this work we focus our attention on the graded agreement of [12].

5

Definition 6 (Healing after asynchrony). A Byzantine total-order broadcast protocol heals from asynchrony
if it restores its operation according to both safety and liveness after a period of asynchrony. Specifically, this
means that after round r + k, where r is the final round of an asynchronous period and k > 0 is a constant,
the following conditions are met:

Safety: For any two rounds r′ and r′′ such that r′, r′′ > r+k, and for any two well-behaved processes pi and
pj awake in these rounds respectively, their logs (Λr′

i and Λr′′

j) are compatible, i.e., either Λr′

i ⪯ Λr′′

j or

Λr′′

j ⪯ Λr′

i .

Liveness: For every valid transaction, there exists a log Λ that includes it, and there is a round r′ > r after
which all well-behaved processes awake for a sufficient duration deliver Λ.

2.3 Adversary

In dynamically available total-order broadcast protocols, where the protocol’s behavior at each round r is
exclusively influenced by messages received in the immediately preceding round r−1, it is typically sufficient
to impose a threshold for the failure ratio β, i.e., |Br| < β|Or|. Commonly, β is set to 1

2 [3, 8, 14, 13, 6],
although some work [12] also explored β = 1

3 and β = 1
4 . However, these protocols do not guarantee safety

during periods of asynchrony, as they are assumed to be synchronous.
In this work, we adopt the approach of extending the time frame of prior rounds considered in message

evaluation. This extended span aligns with the expiration duration of messages in our model. Importantly,
the protocol’s behavior at round r is influenced only by the most recent, i.e., latest, unexpired messages sent
by each process (See Section 2.1 for a discussion of message expiration).

However, as we discuss next, incorporating messages from an expanded range of prior rounds may diminish
the system’s resilience to dynamic participation and adversarial actions within such range. Conversely, this
approach enhances tolerance against (bounded) periods of asynchrony.

If there are many processes whose latest messages are unexpired but which are no longer awake in round r,
the protocol’s behavior may be adversely affected. This is because the adversary could in principle exploit
these latest messages to their advantage, as they are not entirely up to date. We prevent this by bounding
the churn rate of well-behaved processes, i.e., by requiring that the rate at which awake and well-behaved
processes go to sleep is bounded by γ per η rounds. Letting Hs,r =

⋃
s≤r′≤r Hr′ (with Hs := ∅ if s < 0) be

the set of processes that are awake and well-behaved at some point in rounds [s, r], the requirement is then:

|Hr−η,r−1 \Hr| ≤ γ|Hr−η,r−1| (1)

In other words, at most a fraction γ of the well-behaved processes of the last η rounds are allowed to not
be well-behaved processes of the current round r. Besides bounding the churn rate, we also as usual need
to bound the failure rate of each round, which we do by requiring a failure rate β̃ ≤ β, in particular with
β̃ = β−γ

γ(β−2)+1 :

|Br| < β̃|Or| (2)

Here, β is meant to be the failure ratio tolerated by the original dynamically available protocol, which is
modified to use unexpired latest messages in order to strengthen its resilience to asynchrony. The failure
rate of the modified protocol needs to be appropriately lowered, in particular to β−γ

γ(β−2)+1 if the churn rate is

bounded by γ, to account for the additional power derived from exploiting latest messages of asleep processes.
Observe that, if γ = 0, our first requirement reduces to |Hr−η,r−1 \Hr| = 0, i.e., awake processes do not

go to sleep, so that the model reduces to one without dynamic participation. Moreover, β̃ = β, so Equation 2
simply requires the failure ratio β of the original protocol. In other words, no extra stronger assumption is
required under the standard synchronous model with constant participation. Observe also that η = 0 implies
Hr−η,r−1 = ∅, so that the first requirement does not introduce any restriction, regardless of which γ we
choose. In other words, fully dynamic participation is allowed. We can in particular let γ = 0, meaning that
the required failure ratio β̃ is once again just β, recovering the original model. Finally, note that γ must be
smaller than β, since otherwise Equation 2 requires |Br| < 0: we cannot allow a fraction β of Hr−η,r−1 to fall
asleep before round r, even if there is no adversary, because then Hr cannot possibly meet a 1 − β quorum
over all unexpired messages (if no more processes wake up).

6

The η-sleepy model in the work of D’Amato and Zanolini [4] deals with the same problem. There, the
churn rate is not bound explicitly, and instead a single all-encompassing assumption is made, called the
η-sleepiness condition, the equivalent of which in our framework is7:

|Hr| > (1− β)|Or−η,r| (3)

Bounded asynchrony

As discussed above, a round r might belong to the period of asynchrony and, if that’s the case, a well-behaved
process pi might receive in r an arbitrary subset of the messages sent during such period. It is therefore
necessary to forbid the awakening of too many well-behaved processes during asynchronous periods, because
the messages they receive upon waking up are adversarially controlled, and thus they can be manipulated into
sending messages that jeopardize the safety of decisions made before the period of asynchrony. To preserve
it, we must prevent the adversary from overwhelming the well-behaved processes which were awake in the
last round before asynchrony started, round ra, either with its own messages or with those of newly awake
well-behaved processes, or with corruption, since the adversary can grow.

Analogously to Hs,r, we define Os,r =
⋃

s≤r′≤r Or′ (with Or := ∅ if r < 0). We require the following
conditions to hold whenever analyzing behavior related to asynchrony:

|Hra \Br| > (1− β)|Or−η,r| ∀r ∈ [ra + 1, ra + π + 1] (4)

Hra ⊆ Hra+1 (5)

The first condition must hold for all rounds in the period of asynchrony and for the first synchronous round
after it. For such rounds, we require that the well-behaved processes which were awake in the last synchronous
round ra, and have not since been corrupted, sufficiently (meaning, with the usual failure ratio) outnumber
all other processes awake in the interval. Intuitively, the processes in Hra attempt to preserve the safety of
decisions made before asynchrony, unless they are corrupted, and they must sufficiently outnumber all other
processes in order to do so. The reason why we include round ra + π + 1, which is itself synchronous, is
that round ra + π being asynchronous means that messages are not guaranteed to be received in its receive
phase, and thus that processes in Hra+π+1 still do not necessarily have access to up-to-date messages. The
second condition simply requires that all process in Hra are still awake at the end of round ra, so that they
participate in the receive phase and in particular obtain messages for the current round, from the other
processes in Hra . Knowledge of these messages is what prevents them from “changing their mind” during
the period of asynchrony. Observe that, by the nature of the asynchronous period, round ra is not known
in advance by the processes. This implies that the conditions might not always be satisfied. However, as we
will demonstrate, if these conditions are met during an asynchronous period of length π, then the protocol
exhibits resilience to such period.

3 Asynchrony-resilient Byzantine total-order broadcast

Recent studies on dynamically available total-order broadcast protocols have explored diverse techniques to
resolve consensus in the sleepy model and its variants [3, 4, 8, 12, 14, 16, 6]. However, these protocols share a
common limitation – they are strictly applicable to synchronous models. This restriction is due to the CAP
theorem [9], which stipulates that no consensus protocol can accommodate dynamic participation and simul-
taneously tolerate network partitions [16]. For this reason, methods to overcome this limitation have been
proposed, e.g., the ebb-and-flow family of protocols [16], and are currently being implemented (Ethereum).
These involve pairing a dynamically available consensus protocol with a partially synchronous protocol, which
provides finality, a concept commonly referred to as safety in the standard consensus literature. However, in
scenarios where network partitions or asynchronous periods occur, it becomes challenging to ensure reliable
outputs from dynamically available protocols. This is particularly relevant in blockchain contexts, where such
conditions could lead to reorganizations of the chain output by these dynamically available protocols. Con-
sequently, our research is driven towards developing mechanisms that improve the resilience of dynamically

7The original formulation more closely resembles |Br ∪ Hr−η,r−1 \ Hr| < ρ|Hr|, where ρ = β
1−β

. This is equivalent to

|Br ∪Hr−η,r−1 \Hr| < β|Or−η,r|, and in turn to |Hr| > (1− β)|Or−η,r|.

7

available protocols against (bounded) periods of asynchrony. Our aim is not to contravene the established
impossibility result, but rather to make the output from the protocol more resistant to asynchrony. By doing
so, even ebb-and-flow protocols can benefit, as the resulting protocol becomes more robust during periods of
asynchrony [5].

However, achieving this resilience is not without drawbacks. As detailed in Section 2, our approach first
necessitates equipping messages with an expiration period of η rounds. This parameter significantly affects
the protocol’s tolerance to adversaries and the level of dynamic participation among processes. A high value
of η could severely limit, or even negate, dynamic participation. Consequently, in practical applications, it
is essential to carefully calibrate this parameter. The goal is to ensure that the system maintains dynamic
availability while accommodating reasonable periods of network asynchrony.

Enhancing Resilience to Asynchrony in Dynamically Available Protocols We briefly outline our
proposed mechanism to enhance dynamically available protocols, enabling them to resist bounded periods of
asynchrony. The mechanism, simple yet effective, involves some key steps:

1. Choice of Message Expiration Parameter (η): The first step involves selecting a suitable message
expiration parameter, η, which dictates the maximum length of asynchrony the protocol can withstand.
This parameter should be calibrated to ensure the system maintains dynamic availability while accom-
modating reasonable periods of network asynchrony. The specifics of this calibration are beyond the
scope of this work.

2. Understanding Adversarial Constraints: Based on Inequality 1 and Inequality 2, it is crucial to
understand the adversarial constraints, particularly how they limit the churn rate of participants in
relation to the expiration parameter.

3. Protocol Adjustments: Different protocols may require distinct adjustments. It is essential to
modify each step of the protocol to incorporate the handling of the latest messages from participants
in the preceding η rounds. We will detail typical adjustments necessary for these dynamically available
TOBs, as they are all share a similar underlying structure. Specifically, these protocols operate in
rounds, with a series of rounds forming a view. Within each view, a proposal is made and a decision is
reached. To make such decisions, one or multiple instances of graded agreement are employed within
each view [14, 12, 13, 8, 6]. We show how to make these adjustments using the Malkhi, Momose,
and Ren protocol [12], chosen for its simplicity and instructional value. While more complex protocols
necessitate a more detailed examination, it’s important to note that our approach remains applicable
to them as well.

4. Proof of Preserved Properties: The final step involves demonstrating that all essential properties
of the protocol are preserved when messages are equipped with expiration periods.

This mechanism aims to provide a framework for enhancing the resilience of dynamically available pro-
tocols, contributing to more robust and reliable systems in the face of network asynchrony.

3.1 Total-Order Broadcast Protocol of Malkhi, Momose, and Ren [12]

We recall the total-order broadcast protocol proposed by Malkhi, Momose, and Ren [12] and present it within
its original framework, specifically the growing adversary model.

Malkhi, Momose, and Ren [12] propose a total-order broadcast protocol with a resilience of 1
3 , and

expected termination in 6 rounds, without the assumption of participation stabilization [14, 6]. The authors
extended the sleepy model [17] to allow for a growing number of faulty processes, and developed a simple
graded agreement protocol with a fault tolerance of 1

3 , upon which their TOB protocol is based.
Figure 2 describes an instance of the graded agreement protocol of Malkhi, Momose, and Ren [12]. As

in the original formulation, different processes can be awake in the two phases. Every well-behaved process
awake at round r multi-casts a vote message for a log Λ. Then, during the receive phase of round r, every
awake process pi tallies vote messages for the received logs, counting votes for a log extending Λ as one
for Λ, and ignoring multiple votes from the same process. If there exists a log Λ that has been voted by

8

Process pi runs the following algorithm if awake in one of the two phases of round r:

Beginning of round r – Send phase: Multi-cast [vote, Λ]pi where Λ is the input log.

End of round r – Receive phase: Tally vote messages and decides the outputs as follows. Let m be the number
of vote messages received.

1. For any Λ voted by > 2m
3

processes, output (Λ, 1)

2. For any Λ voted by > m
3

processes (but ≤ 2m
3
), output (Λ, 0)

If Λ′ extends Λ, then [vote, Λ′] counts as a vote for Λ. Two different vote messages from the same process are
ignored.

Figure 2: Graded Agreement GA - Malkhi, Momose, and Ren [12]

Algorithm 1 Total-order broadcast - Malkhi, Momose, and Ren [12] (protocol for pi in view v). Process
pi runs the following algorithm if it is awake at round r. View 0 lasts 1 round, Round r = 0. At such
round, multi-cast [propose, Λ, VRFpi

(1)]pi
to propose Λ := [b0]. All later views v ≥ 1 take two rounds

(r = 2v − 1, 2v) and work as follows:

Round 1 of view v (r = 2v − 1)
1: Compute outputs from GAv−1,2

2: if GAv−1,2 outputs (Λ, 1) then
3: decide Λ
5: Lv−1 ← Λ′ Λ′ is the longest log s.t. GAv−1,2 outputs (Λ′, ∗)
6: Start GAv,1 with a log in the propose message with the largest
7: valid VRF(v) not conflicting with Lv−1

Round 2 of view v (r = 2v)
8: Compute outputs from GAv,1

9: Start GAv,2 with the longest Λ s.t. GAv,1 outputs (Λ, 1)
10: Cv ← C C is the longest log s.t. GAv,1 outputs (C, ∗)
12:Multi-cast [propose, Λ′, VRFpi(v + 1)]pi Λ′ := b||Cv

more than 2
3 (or more than 1

3) of the processes that pi heard from, then pi outputs Λ with grade 1 (or with
grade 0).

Malkhi, Momose, and Ren [12] implement their total-order broadcast protocol (Algorithm 1) via two
instances of graded agreement. Algorithm 1 is executed in views spanning two rounds each, corresponding to
two instances of graded agreement (Figure 2). The exception is view 0, which requires only a single round.
Specifically, at round 1 of view 0, every awake process pi multi-casts a [propose, Λ, VRFpi

(1)]pi
message,

proposing Λ := [b0].
Subsequently, at round 1 of any other view v ≥ 1, each awake and well-behaved process calculates the

outputs of GAv−1,2, deciding for any log Λ that is output with a grade 1. In addition, it sets Lv−1 as
the longest log Λ′ for which GAv−1,2 generates output at any grade. It then initiates a graded agreement
instance GAv,1, inputting a log contained in the propose message with the largest valid VRF(v), ensuring
it doesn’t conflict with Lv−1.

At round 2 of this view, every awake and well-behaved process pi computes its outputs from GAv,1, and
starts a graded agreement instance GAv,2 with the input being the longest log Λ that GAv,1 outputs with
a grade 1. Notably, due to the validity property, it’s always possible to identify such a Λ. Furthermore,
process pi proposes for view v + 1 a block b extending the longest log Cv where GAv,1 outputs (Cv, ∗). This
means process pi multi-casts a [propose, Λ′, VRFpi

(v + 1)]pi
message with Λ′ := b||Cv.

The total-order broadcast depicted in Algorithm 1 is not resilient to periods of asynchrony, losing its
safety regardless of the duration of the asynchrony. This vulnerability arises because the protocol is designed
to operate under synchronous conditions. To understand the implications more concretely, consider the
adversary’s capabilities during an asynchronous period: In such scenarios, the adversary possesses the ability
to dictate the set of messages that any well-behaved process receives. This control extends to influencing
the decision-making process of these well-behaved processes. Essentially, by selectively manipulating the

9

message flow, the adversary can steer the decisions of these processes in its advantage, breaking the safety
property. For instance, D’Amato and Zanolini [4] show this for the Goldfish protocol [3]. An analogous
reasoning applies to all the other dynamically available TOB protocols as well, as they are all assumed to be
synchronous.

3.2 Extended Graded Agreement Protocol

In order to devise a dynamically available Byzantine total-order protocol with deterministic safety that can
effectively handle periods of bounded asynchrony, it becomes essential to extend the concept of a graded
agreement protocol. This adjustment is crucial in facilitating discussions about the “messages received in
previous rounds”.

Graded agreement, by nature, is a one-shot primitive. This means it does not produce a sequence of logs
but rather is instantiated with specific inputs and, once it provides output, its execution terminates. In this
framework, arguments pertaining to “unexpired messages from previous rounds” do not fit.

In the subsequent sections, we demonstrate how to enhance the graded agreement protocol initially
presented in Section 3.1 and we also establish that this improved primitive upholds the properties of graded
agreement, as outlined in Section 2.

In this section, we elaborate on the extension of the graded agreement protocol initially presented in
Figure 2. This extended protocol maintains a send and receive phase at round r, with the send phase
remaining unchanged.

At the beginning of the protocol, each awake process pi comes equipped with an initial set of vote
messages, denoted as Mi

0. These messages originate from a set of processes P0, each supporting a specific
log Λ. We require that the cardinality of Hr exceeds

2
3 of the cardinality of Or∪P0, and each setMi

0 contains
a maximum of one message per process. Process pi tallies all the votes it has accumulated from round r and
discards equivocations. Furthermore, it discards votes in Mi

0 sent by processes from which pi has received
a new vote message in round r. As a result, by the end of the protocol, process pi holds at most one vote
per process in P0 ∪ Or. The vote message from round r takes precedence over the initial set of votesMi

0.
The set of all remaining vote messages, referred to as Mi

r, is then employed to output logs with a grade,
aligning with the methodology in Figure 2. The requirement for grade 0 is a quorum of 1

3 and for grade 1,
a quorum of 2

3 . It is worth noting that whenMi
0 = ∅ for all pi, we revert to the standard graded agreement

from Figure 2.

Process pi runs the following algorithm if awake in one of the two rounds:

Beginning of round r – Send phase: Multi-cast [vote, Λ′]pi where Λ′ is the input log extending Λ.

End of round r – Receive phase: LetMi
r be the set of vote messages from round r and fromMi

0 (discarding
equivocations in either set, and discarding messages in Mi

0 if the processes that sent such messages also sent a
message in round r).
Tally vote messages inMi

r and decide the outputs as follows. Let m be the number of vote messages received.

1. For any Λ voted by > 2m
3

processes, output (Λ, 1)

2. For any Λ voted by > m
3

processes (but ≤ 2m
3
), output (Λ, 0)

If Λ′ extends Λ, then [vote, Λ′] counts as a vote for Λ. Two different vote messages from the same process are
ignored.

Figure 3: Extended Graded Agreement GA initialized with a set Mi
0 of vote messages from a set of

processes P0, each supporting some log Λ – protocol for process pi.

Lemma 1. The extended graded agreement presented in Figure 3 satisfies the original properties of graded
agreement (Section 2). It moreover satisfies the following property, both for synchronous and asynchronous
rounds.

Clique validity: Consider H ′ ⊂ Hr ∪Hr+1 such that all pi ∈ H ′ ∩Hr have an extension of Λ as input, and
such that, for any pi ∈ H ′ ∩Hr+1, Mi

0 contains a message from each process in H ′, also all for some

10

extension of Λ. Moreover, suppose that |H ′| > 2
3 |Or ∪ P0|. Then, all processes in H ′ ∩Hr+1 output Λ

with grade 1.

Proof. The proofs of the shared properties is similar as in the original protocol. There, we use that |Hr| >
2
3 |Or|, whereas here we use |Hr| > 2

3 |Or ∪ P0| in an analogous manner, as Or ∪ P0 is set the of all processes
whose messages can influence the outputs, much like Or in the original protocol.

Let us consider a round r, and let nr be the maximum possible perceived participation by any well-behaved
participant awake in round r, i.e., nr = |P0 ∪Or|. We repeatedly use the assumption that |Hr| > 2

3nr.
Moreover, for all properties other than clique validity, network synchrony is assumed, so we repeatedly use
that, for all pi ∈ Hr+1, Hr ⊂ Mi

r, since all well-behaved messages from Hr are broadcast on time and thus
received by the end of the round.

For the graded consistency property, let us assume that process pi outputs a log Λ with grade 1 and
let m = |Mi

r| ≤ nr be the perceived participation of process pi. Moreover, let S be the set of processes
whose message in Mi

r is for an extension of Λ. By assumption, |S| > 2
3m, and |Hr| > 2

3nr. Moreover,
|S| + |Hr| − |S ∩ Hr| = |S ∪ Hr| ≤ m, since S,Hr ⊂ Mi

r. Therefore, |S ∩ Hr| ≥ |S| + |Hr| − m >
2
3 (nr +m)−m = 2

3nr − m
3 ≥

2
3nr − nr

3 = nr

3 , i.e., |S ∩Hr| > nr

3 . For any process pj ∈ Hr+1, S ∩Hr ⊂Mj
r,

so pj counts > nr

3 votes for extensions of Λ, and it thus outputs Λ with at least grade 0.
The proof for the integrity property follows from a very similar argument as for graded consistency, in

this case with |S| > m
3 . In particular, |S ∩Hr| ≥ |S|+ |Hr| −m > m

3 + 2
3nr −m = 2

3 (nr −m). Since m ≤ nr,
it follows that S ∩Hr ̸= ∅, implying that at least a well-behaved process voted for a log extending Λ.

For validity, let Λ be the longest common prefix among well-behaved processes’ inputs logs at round r.
Every process in Hr multi-casts a vote message for an extension of Λ. The proof easily follows from the
assumption that |Hr| > 2

3nr, and from Hr ⊂Mi
r for all pi ∈ Hr+1.

To prove uniqueness, let us assume that a well-behaved process pi awake at round r outputs a log Λ
with grade 1. By the same logic of the graded consistency property, we have that every other well-behaved
process pj awake at round r sees |S ∩Hr| > nr

3 vote messages for an extension of Λ. This implies that there
cannot be a well-behaved process pj that sees more that 2

3m vote messages for a conflicting log.
For bounded divergence, observe that in order to be output with any grade by process pi, a log Λ must

be voted by more than m
3 processes, where m = |Mi

r| is the perceived participation of pi. Recall that Mi
r

contains at most one message per process. Thus, each process outputs at most two conflicting logs.
Finally, for the clique validity property, let us consider a process pi ∈ H ′ ∩ Hr+1. By assumption, Mi

0

contains a vote message for some extension of Λ from each process in H ′. Since all vote messages from
H ′∩Hr are also by assumption for some extension of Λ, it is the case thatMi

r also contains a vote message
for each process in H ′, all for extensions of Λ. By assumption, |H ′| > 2

3 |Or ∪P0| = 2
3nr which implies that Λ

is output with grade 1 by pi.

Note that the mechanism of extending the graded agreement protocol by Malkhi, Momose, and Ren [12] is
also applicable to other graded agreement protocols. Specifically, by providing each process pi with a setMi

0

possessing the characteristics defined above, the same logic can be applied to adapt other protocols similarly.

3.3 Extended Byzantine Total-Order Broadcast Protocol

We show that the extended graded agreement protocol from the previous section can be used to capture
expiration of messages in the η-sleepy model, allowing us to simply prove safety and liveness of Algorithm 1
in the η-sleepy model with messages subject to expiration.

Recall that Algorithm 1 proceeds in views of two rounds each, and in each round an instance of graded
agreement (Figure 2) is started. In order to make Algorithm 1 asynchrony resilient, we modify it to use the
latest unexpired messages as inputs in its graded agreement instances, i.e., a process pi ∈ Hr+1 computes
its outputs from a GA instance started in round r based on the set of unexpired, latest messages, i.e., the
latest among those from rounds [r − η, r], with equivocating latest messages being discarded. From this
point, “Algorithm 1 modified to use latest unexpired messages”, or simply “the modified Algorithm 1”, refers
precisely to this modified protocol.

Note that a GA instance in the modified Algorithm 1 corresponds exactly to a specific instance of the
extended graded agreement depicted in Figure 3. In particular, the GA instance at round r of the modified
Algorithm 1 corresponds to an instance of extended graded agreement protocol where the initial setMi

0 of

11

process pi is taken to contain the set of all latest messages among those from rounds [r−η, r) seen by pi, with
equivocating latest messages being discarded. The setMi

r, which pi ∈ Hr+1 uses to determine its output in
the extended graded agreement protocol used in Algorithm 1, contains simply all latest unexpired messages,
i.e., the latest messages among those from rounds [r − η, r] (without equivocations). It is helpful to show
that the assumptions of the extended graded agreement protocol hold when instantiated in the context of
the modified Algorithm 1. For an extended graded agreement protocol happening at a synchronous round r,
we have required that |Hr| > 2

3 |Or ∪ P0|. In the particular instance we have constructed above in the
context of Algorithm 1, P0, the set of senders of messages in Mi

0, is contained in Hr−η,r−1 ∪ Br ⊆ Or−η,r,
since by constructionMi

0 contains only messages from rounds [r − η, r), and we are at round r. Therefore,
|Or ∪ P0| ≤ |Or−η,r|, and thus |Hr| > 2

3 |Or ∪ P0| immediately follows from the η-sleepiness assumption
|Hr| > 2

3 |Or−η,r|. Since all the assumptions hold, Lemma 1 guarantees that graded consistency, integrity,
validity, uniqueness, and bounded divergence all apply to the extended graded agreement instances used in
our modified Algorithm 1.

Theorem 1. Algorithm 1 with the extended graded agreement protocol implements Byzantine total-order
broadcast.

Proof. As we have just discussed, each instance of the extended graded agreement protocol utilized in the
modified Algorithm 1 satisfies the five properties of the graded agreement primitive from Malkhi, Momose,
and Ren [12]. Since the safety and liveness proofs of Algorithm 1 (Lemma 6 and Lemma 7 of [12]) rely
entirely on these properties, they apply to the modified Algorithm 1 as well.

Recall that ra is the last round before asynchrony starts. We have the following results for Algorithm 1
modified to use latest messages.

Lemma 2. Let [ra +1, ra +π] with π < η be the period of asynchrony. If every process pi in Hra multi-casts
a vote message for an extension of a log Λ in round ra, then every process pi ∈ Hra ∩ Hr multi-casts a
vote message for an extension of log Λ, for every round r ∈ [ra + 1, ra + π + 1].

Proof. We prove this lemma through an inductive argument. The base case is round ra + 1. By assumption
(Equation 5) we have that Hra ⊆ Hra+1, i.e., processes participating in the send phase of the extended graded
agreement of round ra also participate in its receive phase. In particular, seen that round ra is synchronous
by assumption, each process pi ∈ Hra receives all the vote messages for an extension of Λ sent by other
processes in Hra in round ra. By validity property of the extended graded agreement, every process in Hra+1

outputs from GA the log Λ with grade 1, and thus multi-casts a vote message for an extension of it in the
next instance of the extended graded agreement of round ra + 1.

For the inductive step, suppose that every process pi ∈ Hra ∩ Hr multi-casts a vote message for an
extension of Λ, for every round r ∈ [ra+1, r′], with r′ < ra+π+1. Let H ′ = Hra \Br′ , and observe that for
every pi ∈ H ′ ∩Hr′+1, the setMi

0 contains all latest unexpired vote messages from rounds < r′ that pi has
received. In particular it contains a latest and unexpired message from each process in Hra \ Br′ , all from
rounds no later than ra. This is because messages from round ra from Hra were previously received in round
ra, and these are still unexpired, since r′ + 1− η ≤ ra + π + 1− η < ra. By inductive assumptions, all such
latest messages are for an extension of Λ. It is then the case that all pi ∈ H ′ ∩Hr′ have an extension of Λ as
input, and that, for any pi ∈ H ′ ∩Hr′+1,Mi

0 contains a message from each process in H ′, also all for some
extension of Λ, as required by the assumptions of clique validity. To apply clique validity, we need only to
show that |H ′| > 2

3 |Sr′ ∪ P0|. Equation 4 gives us that |H ′| = |Hra \ Br′ | > 2
3 |Or′−η,r′ |, which immediately

implies the desired result, because by construction P0 ⊂ Or′−η,r′ , so |Or′ ∪ P0| ≤ |Or′−η,r′ |.

The following lemma describes the behavior of MMR under synchrony, which is preserved when modifying
Algorithm 1 to use latest unexpired messages, as we have already argued. This result will then be used in
the proof of Theorem 2.

Lemma 3. Let Λ ∈ Dra be a log decided in a round r ≤ ra. In every round r′ ∈ [r, ra], every process pi ∈ Hr′

multi-casts a vote message for an extension of log Λ.

Proof. Let Λ ∈ Dra be a log decided in round r ≤ ra by process pi awake at round r, i.e., pi has outputs Λ
with grade 1 in round r. We prove this result through induction on rounds r′ ∈ [r, ra].

12

The base case, i.e., r′ = r, follows from the graded consistency property of the extended graded agreement.
In particular, if an awake and well-behaved process pi decides Λ in round r ≤ ra, then, since r is a synchronous
round, all processes pi ∈ Hr multi-cast a vote message for an extension of Λ.

For the induction step, suppose that if every process in Hr′ multi-casts a vote message for an extension
of Λ, then (from the validity property of the extended graded agreement) every process in Hr′+1 outputs Λ
with grade 1. This implies that then they all multi-cast a vote message for an extension of Λ.

Theorem 2. Algorithm 1 with the extended graded agreement protocol is π-asynchrony resilient for π < η.

Proof. Let Λ ∈ Dra be a log decided in round r ≤ ra and let [ra + 1, ra + π] with π < η be the period
of asynchrony. By Lemma 3, all processes in Hra multi-cast a vote message for an extension of Λ in
rounds [r, ra]. In particular they do so in round ra, so we can apply Lemma 2 and conclude that every
process in Hra ∩ Hr′ also multi-casts a vote message for an extension of Λ in round r′, for any round
r′ ∈ [ra + 1, ra + π + 1]. Firstly, this shows that no process pi ∈ Hra ever decides a log Λ′ conflicting with Λ
in rounds [r, ra +π+1], as this would imply multi-casting a vote message for an extension of Λ′. Moreover,
since round ra + π + 1 is synchronous by assumption, all vote messages from rounds [ra, ra + π + 1] are
delivered in the receive phase of the round to all well-behaved processes which are awake during it, i.e., to
processes in Hra+π+2. Any such process would then have received all messages sent by processes in Hra in
rounds [ra, ra+π+1], which are all unexpired at round ra+π+2, since the expiration period for it starts at
round (ra+π+2)−1−η = ra+1+π−η ≤ ra since π < η. Therefore, any process pi ∈ Hra+π+2 has received
an unexpired message for each process in Hra \ Bra+π+1, all for extensions of Λ, since no other messages
were cast during rounds [ra, ra + π + 1] by such processes. In particular, the latest of these messages is then
for an extension of Λ. Equation 4 then gives us |Hra \ Hra+π+1| > 2

3 |Ora+π+1−η,ra+π+1| > 2
3 of all latest

unexpired messages seen by pi are for an extension of Λ, and thus pi outputs Λ with grade 1 and multi-casts
a vote message for an extension of it in round ra+π+2. Since rounds ≥ ra+π+2 are synchronous, we can
then apply the same inductive reasoning of the original protocol (MMR) and conclude that all processes Hr′

multi-cast a vote message for an extension of Λ in any round r′ ≥ ra + π + 2. In particular, this rules out
any decision for a conflicting log in such rounds. Overall, we have shown that processes in Hra never decide
a log conflicting with Dra , and after round ra + π+1 no well-behaved process at all decides a log conflicting
with Dra , i.e., that the protocol is π-asynchrony-resilient.

Theorem 3. Algorithm 1 with the extended graded agreement protocol heals after any period of asynchrony
after k = 1 slots.

Proof. Let r be the first round after asynchrony, and view v be any view whose first round is ≥ r. By
assumption, η-sleepiness holds at all rounds of views ≥ v, so all such rounds satisfy the graded agreement
properties. Thus, all decisions made in views ≥ v are safe, and all proposals from well-behaved proposers
made in such views have a probability 1

2 of being decided. In other words, the protocol is safe and live after
round r.

4 Related work

Pass and Shi’s “Sleepy Model” [17] marked a key formalization in distributed protocols. Their work presents a
significant shift in consensus protocols, formalizing the concept, initially adopted by the Bitcoin [15] protocol,
of participants fluctuating between being online or offline during a protocol execution.

Momose and Ren [14] present a total-order broadcast protocol that supports dynamic participation while
achieving constant latency. The authors do this by extending the classic Byzantine Fault Tolerance (BFT)
approach from a static quorum size to a dynamic one, adjusting according to the current level of participation.

Another stride towards accommodating fluctuating participation was made by Malkhi, Momose, and
Ren [12]. This work presents a protocol with a significantly reduced latency of three rounds, which tolerates
one-third malicious participants and allows fully dynamic participation of both well-behaved and malicious
participants. Subsequently, Malkhi, Momose, and Ren [13] improve on their previous work [12] by providing
a dynamically available Byzantine total-order broadcast protocol under dynamic and unknown participation
with an assumption of minority corruption.

13

Gafni and Losa [8] present two consensus algorithms that tolerate a ratio of 1
2 malicious failures in the

the sleepy model. The first algorithm achieves deterministic safety and probabilistic liveness with constant
expected latency, while the second, albeit theoretically due to its high round and message complexity, offers
deterministic safety and liveness.

D’Amato and Zanolini [6] propose a total-order broadcast protocol in the sleepy model, designed to
withstand adversarial behavior from up to 50% of the participants. A significant advancement of their
protocol is its efficiency, necessitating just one voting round for each decision, in contrast to earlier protocols
that demanded multiple voting rounds per decision.

Focusing on Ethereum’s consensus protocol, D’Amato and Zanolini [4] tackle the challenge of tolerating
periods of asynchrony in LMD-GHOST, the dynamically available component of Gasper [2]. The authors
present RLMD-GHOST, a synchronous consensus protocol that not only ensures dynamic availability but
also maintains safety during bounded periods of asynchrony. Unlike our result, which concentrates on deter-
ministically safe, dynamically available consensus protocols, D’Amato and Zanolini [4] focus on a consensus
protocol that is probabilistically safe and dynamically available.

5 Conclusions

In this work we studied the problem of handling asynchrony in dynamically available protocols that are de-
terministically safe. Our main contribution revolves around the concept of a configurable message-expiration
period applied to the 1/3-resilient, dynamically available total-order broadcast protocol of Malkhi, Momose,
and Ren [12]. By leveraging the latest votes of participants across multiple prior rounds instead of restricting
to the current round, we presented an effective mechanism to enhance the resilience of the protocol during
asynchrony. In order to benefit from this approach, we introduced a “churn rate” to quantify the maximal
fraction of online participants that can transition to an offline state. We have shown that this churn rate
plays a central role in determining the maximum tolerable failure ratio during synchronous operations. The
techniques utilized in this work can also be directly applied to other deterministically safe, dynamically
available protocols, and we leave an in-depth analysis of this for future work.

Acknowledgments

The authors thank anonymous reviewers for interesting discussions and helpful feedback.

References

[1] Hagit Attiya and Jennifer L. Welch. Brief announcement: Multi-valued connected consensus: A new
perspective on crusader agreement and adopt-commit. In Rotem Oshman, editor, 37th International
Symposium on Distributed Computing, DISC 2023, October 10-12, 2023, L’Aquila, Italy, volume 281
of LIPIcs, pages 36:1–36:7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https:
//doi.org/10.4230/LIPIcs.DISC.2023.36, doi:10.4230/LIPICS.DISC.2023.36.

[2] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok
Sin, Ying Wang, and Yan X Zhang. Combining GHOST and Casper. arXiv:2003.03052 [cs.CR], 2020.
URL: https://arxiv.org/abs/2003.03052.

[3] Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. Goldfish: No More Attacks
on Proof-of-Stake Ethereum, 2023. URL: http://arxiv.org/abs/2209.03255, doi:10.48550/arXiv.
2209.03255.

[4] Francesco D’Amato and Luca Zanolini. Recent latest message driven ghost: Balancing dynamic avail-
ability with asynchrony resilience, 2023. URL: https://arxiv.org/abs/2302.11326, doi:10.48550/
ARXIV.2302.11326.

[5] Francesco D’Amato and Luca Zanolini. A simple single slot finality protocol for ethereum. In Sokratis K.
Katsikas, Frédéric Cuppens, Nora Cuppens-Boulahia, Costas Lambrinoudakis, Joaqúın Garćıa-Alfaro,

14

https://doi.org/10.4230/LIPIcs.DISC.2023.36
https://doi.org/10.4230/LIPIcs.DISC.2023.36
https://doi.org/10.4230/LIPICS.DISC.2023.36
https://arxiv.org/abs/2003.03052
http://arxiv.org/abs/2209.03255
https://doi.org/10.48550/arXiv.2209.03255
https://doi.org/10.48550/arXiv.2209.03255
https://arxiv.org/abs/2302.11326
https://doi.org/10.48550/ARXIV.2302.11326
https://doi.org/10.48550/ARXIV.2302.11326

Guillermo Navarro-Arribas, Pantaleone Nespoli, Christos Kalloniatis, John Mylopoulos, Annie I. Antón,
and Stefanos Gritzalis, editors, Computer Security. ESORICS 2023 International Workshops - CyberICS,
DPM, CBT, and SECPRE, The Hague, The Netherlands, September 25-29, 2023, Revised Selected
Papers, Part I, volume 14398 of Lecture Notes in Computer Science, pages 376–393. Springer, 2023.
doi:10.1007/978-3-031-54204-6_23.

[6] Francesco D’Amato and Luca Zanolini. Streamlining sleepy consensus: Total-order broadcast with
single-vote decisions in the sleepy model. CoRR, abs/2310.11331, 2023. URL: https://doi.org/10.
48550/arXiv.2310.11331.

[7] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988. doi:10.1145/42282.42283.

[8] Eli Gafni and Giuliano Losa. Brief announcement: Byzantine consensus under dynamic participation
with a well-behaved majority. In Rotem Oshman, editor, 37th International Symposium on Distributed
Computing, DISC 2023, October 10-12, 2023, L’Aquila, Italy, volume 281 of LIPIcs, pages 41:1–41:7.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.
DISC.2023.41.

[9] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[10] Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the permissionless setting. In Foteini
Baldimtsi and Christian Cachin, editors, Financial Cryptography and Data Security - 27th International
Conference, FC 2023, Bol, Brač, Croatia, May 1-5, 2023, Revised Selected Papers, Part I, volume 13950
of Lecture Notes in Computer Science, pages 21–37. Springer, 2023. doi:10.1007/978-3-031-47754-6\
_2.

[11] Andrew Lewis-Pye and Tim Roughgarden. Permissionless Consensus, March 2024. arXiv:2304.14701,
doi:10.48550/arXiv.2304.14701.

[12] Dahlia Malkhi, Atsuki Momose, and Ling Ren. Byzantine Consensus under Fully Fluctuating Partici-
pation. 2022. URL: https://eprint.iacr.org/archive/2022/1448/20221024:011919.

[13] Dahlia Malkhi, Atsuki Momose, and Ling Ren. Towards practical sleepy BFT. In Weizhi Meng, Chris-
tian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2023, Copenhagen, Denmark, November
26-30, 2023, pages 490–503. ACM, 2023. URL: https://doi.org/10.1145/3576915.3623073.

[14] Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 2295–2308.
ACM, 2022. doi:10.1145/3548606.3559347.

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008. Accessed: 2015-07-01.
URL: https://bitcoin.org/bitcoin.pdf.

[16] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolution of the availability-
finality dilemma. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021, pages 446–465. IEEE, 2021.

[17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In ASIACRYPT (2), volume 10625 of
Lecture Notes in Computer Science, pages 380–409. Springer, 2017.

15

https://doi.org/10.1007/978-3-031-54204-6_23
https://doi.org/10.48550/arXiv.2310.11331
https://doi.org/10.48550/arXiv.2310.11331
https://doi.org/10.1145/42282.42283
https://doi.org/10.4230/LIPIcs.DISC.2023.41
https://doi.org/10.4230/LIPIcs.DISC.2023.41
https://doi.org/10.1007/978-3-031-47754-6_2
https://doi.org/10.1007/978-3-031-47754-6_2
http://arxiv.org/abs/2304.14701
https://doi.org/10.48550/arXiv.2304.14701
https://eprint.iacr.org/archive/2022/1448/20221024:011919
https://doi.org/10.1145/3576915.3623073
https://doi.org/10.1145/3548606.3559347
https://bitcoin.org/bitcoin.pdf

	Introduction
	Model and Definitions
	System Model
	Total-Order Broadcast and Asynchrony Resilience
	Adversary

	Asynchrony-resilient Byzantine total-order broadcast
	Total-Order Broadcast Protocol of Malkhi, Momose, and Ren DBLP:journals/iacr/MalkhiMR22
	Extended Graded Agreement Protocol
	Extended Byzantine Total-Order Broadcast Protocol

	Related work
	Conclusions

