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ABSTRACT
GPU-aware collective communication has become a major bottle-
neck for modern computing platforms as GPU computing power
rapidly rises. A traditional approach is to directly integrate lossy
compression into GPU-aware collectives, which can lead to serious
performance issues such as underutilized GPU devices and uncon-
trolled data distortion. In order to address these issues, in this paper,
we propose gZCCL, a first-ever general framework that designs and
optimizes GPU-aware, compression-enabled collectives with an
accuracy-aware design to control error propagation. To validate
our framework, we evaluate the performance on up to 512 NVIDIA
A100 GPUs with real-world applications and datasets. Experimental
results demonstrate that our gZCCL-accelerated collectives, includ-
ing both collective computation (Allreduce) and collective data
movement (Scatter), can outperform NCCL as well as Cray MPI
by up to 4.5× and 28.7×, respectively. Furthermore, our accuracy
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evaluation with an image-stacking application confirms the high
reconstructed data quality of our accuracy-aware framework.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; Par-
allel algorithms; • General and reference→ Performance; •
Computer systems organization→ Distributed architectures.

KEYWORDS
GPU, Collective Communication, Compression
ACM Reference Format:
Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang Liu, Yafan Huang,
Ken Raffenetti, Hui Zhou, Kai Zhao, Xiaoyi Lu, Zizhong Chen, Franck
Cappello, Yanfei Guo, and Rajeev Thakur. 2024. gZCCL: Compression-
Accelerated Collective Communication Framework for GPU Clusters. In
Proceedings of the 38th ACM International Conference on Supercomputing
(ICS ’24), June 4–7, 2024, Kyoto, Japan. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3650200.3656636

1 INTRODUCTION
In the exascale computing era, efficient large-message collective
communications are crucial for the performance of modern GPU-
based supercomputers and clusters. This is particularly true for
scientific applications and deep learning tasks that involve extensive
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data processing and exchange [1, 2, 4, 5, 15]. For example, the classic
LSTM [11] model used in the language modeling task can contain
more than 66 million parameters and the communication overhead
can be as high as 94% [2], increasing the need for optimizing GPU-
aware collective communication for large messages [6, 7].

For GPU-aware collective communication, numerous researchers
are actively working on mitigating network congestion in large-
message collectives. Network saturation is often the major bottle-
neck because of limited network bandwidth. For example, even
with advanced networks, such as HPE Slingshot 10, the network
bandwidth is only about 100 Gbps [22]. A straightforward solution
is designing large-message collective communication algorithms
that can minimize the transferred data volume instead of latency [3,
20, 26]. Another promising solution is shrinking the message size by
error-bounded lossy compression techniques [9, 13, 18, 19, 25, 27],
as it can significantly reduce the data volume and maintain the data
quality.

Previous lossy-compression-integrated approaches can be di-
vided into two categories. The first is compression-enabled point-to-
point communication (namely CPRP2P) [30], which directly uses
the 1D fixed-rate ZFP [18] to compress the data before it is sent and
decompresses the received data after it is received. This method
may cause significant overheads and unbounded errors in the col-
lective communications as shown in [12, 31]. The other category is
to particularly optimize the compression-enabled collectives. Zhou et
al. [31] integrated the 1D fixed-rate ZFP [18] into MPI_Alltoall on
GPUs; however, this approach is limited to the Alltoall operation
and CPU-centric staging algorithm and also results in the issue of
unbounded error. Huang et al. [12] designed an optimized general
framework for compression-enabled collectives that can realize
high performance for all MPI collectives with controlled errors.
Nevertheless, this approach suffers from suboptimal performance
on modern GPU clusters because of under-utilized GPU devices.

Designing a GPU-aware compression-enabled collective commu-
nication system that realizes both high performance and controlled
error propagation is non-trivial. There are three key challenges to
address.

(1) How can we co-design and implement a compression-
enabled collective algorithm that optimizes performance
within modern GPU clusters? For Allreduce operations, for ex-
ample, state-of-the-art GPU-aware collective communication li-
braries, such as NCCL [8] and MPICH [17], adopt ring-based algo-
rithms to optimize the transmission of large messages. However,
it is unclear whether the ring-based model is the best fit when we
include lossy compression techniques. In fact, unlike CPU, the GPU-
based compression may easily face a low utilization issue, because
of the inevitable GPU kernel-launch overhead and limited parallel
design in GPU-based compression algorithms, which significantly
lowers the performance.

(2) How can we optimize the redesigned algorithms to
increase GPU utilization and decrease the required synchro-
nizations and data transfers? This is because unnecessary data
transfers and synchronization can considerably increase the over-
all runtime and eliminate the opportunity for overlapping in the
coordination of the host and device.

(3) How can we devise an accuracy-aware co-design that
maintains data quality without sacrificing performance? The

accuracy of collective operations is at risk due to the data loss from
GPU lossy compression. It is important to balance performance
with accuracy.

To address the challengesmentioned above, this paper introduces
a first-ever generic high-performance framework, namely gZCCL,
specifically designed for GPU-aware compression-accelerated col-
lective communications. Our contributions can be summarized in
four key aspects:

• To tackle challenge (1), we present two innovative algo-
rithm design frameworks for classic collective operations,
encompassing both collective computation and collective
data movement. This proposal stems from a thorough analy-
sis of the limitations in traditional large-message algorithms.
This is fundamental to various co-designed compression-
enabled collective algorithms, which can increase device
utilization, decrease times of compression/decompression,
and maximize performance.

• To address challenge (2), we develop a series of optimiza-
tion strategies to improve performance. Specifically, we im-
prove the error-bounded lossy compressor (cuSZp [14]) and
develop a multi-stream version to suit the context of the
two collective performance optimization frameworks. For
the data movement framework, we overlap the compres-
sion/decompression, kernel launching, and data movement,
respectively. For the collective computation framework, we
enable possible overlapping between compression, decom-
pression, and communication, which can further reduce the
collective runtime.

• To address challenge (3), we design various strategies to
considerably control the error accumulation in the gZCCL
framework. We carefully design the gZCCL framework with
the error-bounded lossy compressor that always causes an
unknown compressed data size instead of the fixed-rate com-
pressor that leads to a pre-known output data size to ensure a
bounded error. We also decrease the number of compression
operations on purpose, which can effectively decrease the
number of stacked errors during the communication pattern.

• We integrate gZCCL framework into numerous collective
operations, including Allgather, Reduce_scatter, Allreduce,
and Scatter, and meticulously evaluate their performance
using different real-world scientific datasets. Experiments
with up to 512 NVIDIA A100 GPUs reveal that other re-
lated works suffer from undesirable performance degrada-
tion in both Allreduce and Scatter due to significant com-
pression overhead, inefficient GPU utilization, or larger data
transfer volume. In contrast, our gZCCL-based Allreduce
(referred to as gZ-Allreduce) outperforms the Allreduce in
Cray MPI and NCCL by 20.2× and 4.5×, respectively. Our
gZCCL-based Scatter (gZ-Scatter) operates 28.7× faster than
the MPI_Scatter in Cray MPI. We also utilize a real-world
use case (i.e., image stacking analysis) to validate the prac-
tical effectiveness of gZ-Allreduce. It demonstrates a 1.69×
performance gain over NCCL, while still preserving a high
level of data integrity.

The rest of the paper is organized as follows: we introduce back-
ground and related work in Section 2 and detail our design and
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optimization in Section 3. Evaluation results are presented in Sec-
tion 4 followed by conclusion and future work in Section 5.

2 BACKGROUND AND RELATEDWORK
Researchers have long been interested in utilizing compression
to enhance MPI communication performance, based on the two
communication categories – point-to-point communication and
collective communication.

For the first category, a typical latest related work is utilizing 1D
fixed-rate ZFP to boost MPI communications on GPU clusters [30].
Their approach, however, focuses on enhancing MPI point-to-point
communication performance, yielding suboptimal performance in
collective scenarios. Furthermore, their solution could not provide a
bounded error due to its fixed-rate design that fixes the compressed
data size rather than ensuring accuracy. In contrast, our collective
framework integrates error-bounded lossy compression, guarantee-
ing both high-quality compression and high collective performance.
Hence, we regard this work as orthogonal to ours.

As for the second category, several existing studies explored how
to optimize the MPI collective performance particularly, while they
are limited to either CPU-centric communication (i.e., all the data
are transferred through the CPU essentially) and/or have the uncon-
trolled error propagation. Zhou et al. proposed several optimized
MPI collective operations [28, 29, 31] using fixed-rate compression,
which leads to inferior compression quality and unbounded er-
ror aggregation. On the contrary, our general framework provides
a detailed guideline for designing and optimizing compression-
accelerated collective algorithms, maximizing the performance of
both collective computation and collective datamovementwhile fea-
turing well-controlled data distortion. Hence, we categorize these
works as orthogonal works to ours. In addition, Huang et al. pro-
posed an error-controlled compression-enabled framework that
is capable of achieving a high performance across all MPI collec-
tives [12]. Their method, however, fails to solve the inefficient GPU
utilization, synchronization, and device-host data transfer issues,
resulting in suboptimal performance on GPU clusters. In contrast,
our GPU-centric framework is capable of fully utilizing the com-
putational power of GPUs, significantly lowering the amounts of
required compression, synchronization, and device-host data trans-
fer, leading to a remarkable performance improvement.

In the following text, we mainly focus on optimizing the per-
formance of collective communications on GPU clusters by error-
bounded lossy compression. This is because prior research [12]
already demonstrated that the error-bounded lossy compression
brings a limited and controllable impact on the final accuracy of
collective communications by both theoretical and experimental
analysis.

3 GZCCL DESIGN AND OPTIMIZATION
In this section, we present our design and optimization strategies.
Figure 1 shows the design architecture of gZCCL, where the newly
designed modules are highlighted in purple boxes. We develop an
adapter that can run cuSZp [14] more efficiently in regard to col-
lective communications, to be detailed in Section 3.3.2. We discuss
our algorithm design as well as a series of performance optimiza-
tion strategies, which are meticulously crafted for the two classic

types of collectives – collective computation and collective data
movement. Details are described in Sections 3.3.3 and 3.3.4.
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Figure 1: gZCCL design architecture.

3.1 Analysis of existing compression-enabled
GPU-aware collectives

In this section, we analyze the problems of prior solutions and pro-
vide a comprehensive performance breakdown to identify potential
bottlenecks.

3.1.1 Inefficient prior solutions in GPU-aware collectives.
Lossy compression-enabled point-to-point communication (CPRP2
P) can decrease the transferred data volume [30], however, it faces
huge accuracy loss and performance degradation in the collective
scenario [31]. To solve these issues, C-Coll framework was proposed
with two sub-frameworks: data movement framework and collec-
tive computation framework [12]. In the data movement framework,
the data is pre-compressed and then sent along the communication
patterns. Through this method, the huge compression overhead
brought by the CPRP2P could be avoided. In the collective com-
putation framework, the compression and communication costs
are overlapped with each other, resulting in a better overall run-
time. However, the direct implementation of the C-Coll framework
may experience a huge performance degradation on modern GPU
clusters due to two facts: 1. The current MPI collectives result in
sub-optimal performance because all the temporary buffers are allo-
cated on CPU, which means the data needs to be moved from GPU
to CPU for the data to be transmitted over networks. Even though
integrated compression can reduce the transferred message size,
the device-host data movement cost can be significant. 2. The C-Coll
framework does not address the inefficient GPU utilization problem
and host-device synchronization issue, which may substantially
degrade the collective performance.

3.1.2 Identification of the bottlenecks in prior relatedworks.
The ring-based Allreduce is a method commonly used in numer-
ous state-of-the-art GPU-aware collective communication libraries
such as NCCL [8] and MPICH [17], particularly when optimiz-
ing large-message communications. This technique is composed
of both data movement collective (Allgather) and collective com-
putation (Reduce_scatter), both of which have been optimized in
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C-Coll [12]. Figure 2 presents a performance breakdown for the
CPRP2P and C-Coll within the GPU-aware ring-based Allreduce
algorithm. The evaluation is conducted utilizing 64 NVIDIA A100
GPUs, with 4 GPUs per node. When comparing CPRP2P versus
C-Coll, it is evident that the latter significantly decreases the time
cost in compression and decompression (CPR), resulting in overall
enhanced performance. However, it is notable that in C-Coll, the
time required for host-device data transfer (DATAMOVE) is signif-
icant, accounting for nearly 45% of the total runtime. In addition,
the time consumed by compression and decompression (CPR) still
remains substantial, occupying more than 23% of the total time.
This can be attributed to the inefficient utilization of GPUs. To
rectify these problems, we present the gZCCL framework, whose
design and implementation are detailed in subsequent sections.

CPR 121%
27%

MPI 273% 60%

DATAMOVE
46% 10%

REDUCTION
13% 3%

OTHERS
1% 0%

(a) CPRP2P

CPR
23%

MPI
17%

DATAMOVE
45%

REDUCTION
14%

OTHERS
1%

(b) C-Coll

Figure 2: Performance breakdown of Allreduce using
CPRP2P and C-Coll: CPRP2P’s first percentage is scaled to
C-Coll’s runtime, and the second is scaled to its own.

3.2 Characterization of ring-based
compression-enabled GPU-aware collectives

3.2.1 Traditional ring-based algorithms for long messages.
Ring algorithms are widely acknowledged as the state-of-the-art
solution for large-message collective communications such as All-
gather, Reduce_scatter, and Allreduce. In scenarios involving pure
collective communications, ring approaches can significantly con-
trol the total data transfer volume, which can effectively control the
network congestion when message sizes are large, thereby deliv-
ering optimal performance. When CPU compression is employed,
the CPU can be fully utilized for large message sizes, and the com-
munication data volume can be substantially reduced, leading to
a vast increase in overall collective performance. Prior research
has shown that compression cost can be a dominant bottleneck in
compression-enabled collectives. The reduction in communication
volume in the ring-based algorithm design can lower the workload
on the compressor, resulting in optimal performance. Hence, ring-
based approaches are considered the most suitable algorithms for
collectives integrated with CPU compression.

Taking into account modern GPUs [23] features very high perfor-
mance because of its performant single instruction, multiple threads
(SIMT) architecture, adopting GPU-based lossy compression may
further reduce the compression overhead intuitively, however, a key
question arises: Can GPUs still be fully utilized in the compression-
enabled ring-based algorithm? In fact, unlike CPUs which are often

saturated, GPU performance is heavily dependent on the utilization
rate. That is, a low utilization rate on GPUwill increase the compres-
sion cost and lead to sub-optimal collective performance. To answer
the above question, we need to characterize the performance of the
lossy compressor.

3.2.2 Characterization of GPU lossy compressor. In this sec-
tion, we detail the characterization of the GPU lossy compressor –
cuSZp [14], and this process is also applicable to other GPU com-
pressors. Utilizing 646MB (the data size of the largest scientific
dataset we use later) of synthetic data where all data points are uni-
formly distributed, we characterize the performance of cuSZp on an
NVIDIA A100 GPU as shown in Figure 3. We observe that as data
size decreases, execution time decreases for both compression and
decompression kernels with a declining rate, and even stagnates
when the data size is smaller than 5MB. This indicates that the GPU
is not fully utilized, especially when the input data size is relatively
small, and the utilization rate continues to drop with a decrease
in message size. However, an input message larger than 1MB is
already considered a large message in collective communications,
and the actual message to be sent/received or compressed during
ring-like communication patterns is much smaller than the input
message. This is because the original data is divided into small
blocks for communications. Consequently, ring-based algorithms
may result in relatively low GPU utilization, and we provide a more
detailed discussion in the following text.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

646
323

161
80.8

40.4
20.2

10.1
5.05

2.52
1.26

0.631

0.316

0.158

0.079

0.0394

0.0197

0.00986

0.00493

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Data Sizes (MB)

Compression
Decompression

Figure 3: Characterization of cuSZp compression and decom-
pression execution time with uniform data.

3.2.3 Ring-based collective computation. In this section, we
explore the limitations of the ring-based algorithms integrated with
GPU compression, using the ring-based Reduce_scatter operation as
an illustrative example. In the ring-based Reduce_scatter operation,
the input data, denoted by size 𝐷 , is divided into 𝑁 small chunks,
with 𝑁 being the process count. Each of these chunks undergoes a
ring-like communication pattern for reduction across 𝑁−1 rounds.
When the GPU compression is incorporated, each round provides
a data chunk of size 𝐷/𝑁 to the compression kernel, while an
equal-sized output is produced by the decompression kernel. This
mechanism necessitates a total of 𝑁−1 rounds of both compres-
sion and decompression. Consequently, even when dealing with
large message sizes like 646MB, the GPU experiences significantly
poor utilization when the process count reaches approximately 128
(646/5.05 ≈ 128), according to our previous analysis in Section
3.2.2. This results in compromised scalability. Further exacerbat-
ing this issue is the fact that the total number of decompression
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and compression operations is 𝑁−1, which scales linearly with
the process count 𝑁 . Notably, this problem is not exclusive to the
ring-based Reduce_scatter operation. The widely-used ring-based
Allreduce operation, which is composed of ring-based Allgather
and Reduce_scatter, is also plagued by these scalability and perfor-
mance shortcomings. Therefore, the direct application of ring-based
algorithms for collective computation with GPU compression may
not always yield optimal results. It is hence vital to explore other
algorithms that may offer superior performance.

3.3 Proposing the novel gZCCL framework
In this section, we delve into the details of our gZCCL framework.
Our primary goal is to address and overcome the performance
issues noted in the previous GPU-aware MPI collective framework
that incorporates compression, such that a superior performance
can be reached.

3.3.1 Getting rid of the traditional host-centric design. To
circumvent the high cost of device-to-host data transfer inherent
in traditional CPU-centric designs, we implement a GPU-centric
design. Specifically, when GPU support is enabled, a sufficiently
large GPU buffer pool is pre-allocated during the MPI_Init function
call. The size of this GPU buffer pool can be adjusted based on user
input. Hence, GPU-aware MPI collectives can leverage these pre-
allocated device buffers directly during function calls, rather than
repeatedly allocating them amidst intensive communications. This
is not only resource-intensive but also causes undesired host-device
synchronization. Moreover, current MPI implementations tend to
use the host for carrying out reduction operations in collective
computations. In response to this, we designed and implemented a
GPU reduction kernel capable of processing data entirely on the
device. With these optimizations, we successfully transition from
the original host-centric algorithms and elevate the compression-
enabled collectives to the device-centric level.

3.3.2 Adapting lossy compression to achieve high collective
performance. To improve collective performance in compression-
enabled collectives, it is critical to adapt the lossy compression to
suit the requirements of collective communications. We illustrate
our customization and optimization strategies based on cuSZp,
and the improvement strategies can also be applied to other lossy
compressors.

In the following, we analyze the potential performance issue of
cuSZp, and then describe our improvement strategies. In the cuSZp
function cuSZp_compress_deviceptr, an initial step involves the
allocation of a unified memory buffer known as d_cmpOffset, ac-
cessible from both the device and host. This joint accessibility in-
curs implicit host-device data transfer, leading to suboptimal perfor-
mance. To counteract this issue, we redesign cuSZp’s data allocation
process, liberating cuSZp from the constraints of unified memory.
This modification results in a reduction of necessary data transfers,
subsequently improving performance. Moreover, cuSZp allocates
temporary buffers to store compression-related parameters upon
any invocation of the cuSZp_compress_deviceptr function. This
procedure may block the host and also generates unwanted device
overheads in collective scenarios where compression is frequently

executed. To address this issue, our solution allocates a tempo-
rary buffer, which will be cleared and reused for any compression
operations, so that the memory allocation costs can be reduced
significantly also with data integrity.

3.3.3 Two algorithm design frameworks. In this section, we
describe the algorithm design inherent to our gZCCL.
Exploring new metrics regarding GPU compression-enabled
collective performance. As for the GPU compression-enable col-
lective algorithms, there are several important new metrics that
need to be addressed in particular.

Total compression cost. The compression cost is determined
by two critical factors: per-compression time cost and the number
of compression executions. As for the per-compression cost on
GPU, it may face a low utilization issue when the input data is not
large enough, as discussed in Section 3.2.2. For example, 10 times
of compression of 1 MB data can be much more expensive than
1 compression of 100 MB data as shown in Figure 3. As such, we
should pay much attention to the number of times the data need
to be compressed, in order to minimize the total compression cost.
As verified in Section 3.2.3, we demonstrate that large-message
algorithms such as ring-based algorithms may result in low scal-
ability with compression in some cases, which is due to the fact
that they can result in more compression operations each with
low GPU utilization. In the compression-enabled collectives, how
often the compression is executed is closely related to the times
of the data communications, which are generally optimized by
the small-message algorithms. Thus, the conclusion is that, with
GPU compression integrated, the small-message algorithms may
outperform the large-message algorithms.

Accuracy loss. Apart from the compression-related overheads,
another concern of integrating lossy compression in the collec-
tives is the accuracy loss caused by accumulated errors along
with the intensive communications. Again, the large-message al-
gorithms like the ring-based approach can introduce larger errors
compared with the small-message algorithms such as the one based
on the recursive-doubling algorithm, further degrading the recon-
structed data quality. This is due to the fact that the ring-based
algorithm requires 𝑁−1 times of compression/decompression and
the recursive-doubling-based algorithm only needs 𝑙𝑜𝑔𝑁 compres-
sion/decompression operations. Fortunately, the increased times
of compression/decompression may not bring a huge accuracy dif-
ference statistically because the mathematical expectation of all
accumulated errors is 0. Thus, we can achieve a high reconstructed
data quality with the integration of lossy compression in the collec-
tive communications, which will be demonstrated later in Section
4.5.
Collective computation algorithm design framework. In the
following discussion, we will employ the typical Allreduce opera-
tion as a case study to describe the algorithm design of our gZCCL
framework in collective computation scenarios. In general, the re-
cursive doubling algorithm is employed for short messages due to its
optimized latency, whereas the previously-mentioned ring-based al-
gorithm is used for large messages in Allreduce because of its ability
to control the data transfer volume [26]. The ring-based Allreduce
operation consists of a Reduce_scatter stage and an Allgather stage.
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In the Reduce_scatter stage, 𝑁−1 compression/decompression op-
erations are required, while the Allgather stage necessitates one
compression and 𝑁−1 decompression operations [12]. When com-
pared with the 𝑁 compression operations and 𝑁−1 decompression
operations required by the ring-based Allreduce algorithm, the re-
cursive doubling algorithm involves only 𝑙𝑜𝑔 𝑁 communication
steps or compression/decompression operations, where 𝑁 is the
process count. As such, the recursive doubling algorithm exhibits
superior scalability in terms of compression cost, especially when
𝐷/𝑁 < 5𝑀𝐵, where 𝐷 denotes the input data size. However, when
compressing the data with the data size being 𝐷/𝑁 and the GPU
utilization is high, the ring-based algorithm still outperforms the
recursive doubling one as it can minimize both compression and
communication workloads. In conclusion, the recursive doubling-
based Allreduce algorithm delivers high scalability, while the ring-
based one projects a high performance when GPU utilization is
high.
Collective data movement algorithm design framework. In this
section, we delve into the algorithm design of our gZCCL frame-
work in collective data movement scenarios. Generally, there are
three types of collective data movement: one-to-all, all-to-one, and
all-to-all. The all-to-all communication pattern is the most complex
as it encapsulates both one-to-all and all-to-one communications.
Accordingly, we select the extensively-used all-to-all communica-
tion operation – Allgather – as a case study to demonstrate the
algorithm selection process in gZCCL. Note that this design can also
be applied to other collectives. In essence, the Bruck algorithm and
the recursive doubling algorithm are optimized toward lowering
latency, while the ring-based algorithm prioritizes minimizing data
transfer volume. Unlike collective computation scenarios, data com-
pression only happens at the beginning and the end of the collective
data movement. For instance, the data in the Allgather operation of
each process should be compressed first, then the compressed data
is communicated between processes. After all communications are
completed, each process decompresses the gathered compressed
data to retrieve the original data.

In what follows, we extensively analyze which compression-
enabled algorithm is the best fit for the Allgather operation. Al-
though the ring-based Allgather requires𝑁−1 communication steps
to finish, it only necessitates one compression and 𝑁−1 decompres-
sion operations. In addition, the 𝑁−1 decompression operations
can be overlapped using multi-stream techniques to improve GPU
utilization, which will be detailed in Section 3.3.4. In conclusion,
the ring-based Allgather only suffers from inefficient GPU utiliza-
tion in one compression operation, and it benefits from optimized
data transfer volume. Therefore, although the Bruck and recur-
sive doubling algorithms exhibit the least communication steps or
compression operations, they cannot further improve scalability
and suffer from sub-optimal data transfer volume compared to the
ring-based algorithm. As a result, the ring-based approach emerges
as the optimal choice for the compression-integrated Allgather
operation.

3.3.4 Two performance optimization frameworks. In this
section, we give a comprehensive discussion of the intricate op-
timization techniques that are integral to our gZCCL framework.
By unveiling the technical underpinnings of our framework, we

aim to provide an in-depth understanding of how our methods
contribute to improved performance and efficiency in GPU-based
computational systems.
Developing multi-stream lossy compression. To facilitate multi-
stream compression and decompression within collective com-
munication, we need to tailor the lossy compressor, which origi-
nally operates using a single default GPU stream. For illustrative
purposes, we mainly describe the compression procedure based
on the state-of-the-art GPU-based compressor – cuSZp as an ex-
ample. We begin by delving into the source code to modify the
cuSZp compression process, enabling it to accept a user-defined
stream rather than operating exclusively on the default stream. This
new stream-supported compression API is henceforth referred to
as cuSZp_compress_stream. To effectively overlap compression
across different streams, it is imperative to ensure the absence of
data races and undesired conflicts. Accordingly, we conduct a metic-
ulous analysis and testing of the critical paths and data dependen-
cies within cuSZp. During this investigation, we find that beyond
the standard d_oriData (buffer of original data) and d_cmpBytes
(buffer of compressed data), cuSZp requires several distinct de-
vice buffers to store temporary information, including offsets of
various compression blocks and flag bits. Consequently, we inde-
pendently allocate buffers for each stream to avoid data conflicts
in the multi-stream scenario. The decompression as well as other
lossy compressors can be multi-streamed similarly, and we omit
details due to space limit.
Collective computation performance optimization framework.
In this section, we illustrate the gZCCL optimizations in the col-
lective computation routines using the recursive doubling-based
Allreduce as an example. Similar optimizations can be applied to
other collective computation algorithms such as Reduce_scatter.
Figure 4 illustrates the gZCCL implementation on the recursive
doubling-based compression-enabled Allreduce operation (we call
it gZ-Allreduce (ReDoub)). We first create one non-default stream
and a set of temporary device buffers then reuse these GPU buffers
for all the compression and decompression to avoid extra over-
heads. Then, the design contains two main stages, which will be
described in the following text, where 𝑁 is the number of processes,
and 𝑟 refers to the remainder of the process count taking away the
maximum power of two: i.e., 𝑟 = min(𝑁 − 2𝑘 ), where 𝑘 ∈ Z+ and
𝑘 ≤ log2 𝑁 .

In the first stage, we mainly handle the remainder processes
(𝑟 processes). In the case where the number of processes is not a
power of two, all even-numbered processes with a rank (denoted 𝑖)
lower than 2𝑟 first asynchronously clear the temporary GPU buffers
and launch the compression kernel on the non-default stream to
compress their whole data and sending their compressed data to the
process of rank 𝑖+1. Meanwhile, the odd-numbered processes pose
non-blocking receive operations to obtain the compressed data and
clear the GPU buffers for decompressing them on the non-default
stream. Then, these even-numbered processes are suspended until
the final stages, and the odd-numbered processes half their ranks
(𝑖=𝑖/2).

In the second stage, we handle the remaining power of two pro-
cesses (i.e., 2𝑘 ). For the processes with ranks 𝑖≥2𝑟 , we update the
ranks by 𝑖=𝑖−𝑟 . Then, in each recursive doubling communication
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Figure 4: Design of our gZCCL collective computation frame-
work on compression-accelerated gZ-Allreduce. This exam-
ple uses four GPUs/Processes.

step, each process asynchronously memsets the temporary device
buffers and launches the compression kernel on the non-default
stream to compress the data. The compressed data is sent through
a non-blocking send operation and another non-blocking receive
operation is posed to receive the compressed data from another
process. Upon the receiving of data, a clear operation and decom-
pression kernel are launched to obtain the original data. There-
after, the reduction kernel is launched on the non-default stream
to reduce the decompressed data and data in the receive buffer.
Unlike the ring-based case, each communication step requires send-
ing/receiving the whole data instead of the divided data blocks,
ensuring high GPU utilization.
Collective data movement performance optimization frame-
work. In this section, we describe how we optimize collective data
movements to enhance GPU utilization. We use the binomial tree-
based gZCCL-accelerated Scatter/Scatterv as an example. Similar
optimization can be applied to other collective data movement
operations, such as Allgather.

We design our gZ-Scatter based on the binomial tree-based Scat-
ter algorithm that is utilized in both short and long messages[26]. In
Figure 5, we present the overall design of our gZ-Scatter. In this al-
gorithm, the original data on the root process is distributed to other
processes in a binomial tree communication pattern. An intuitive
solution is compressing the original data as a whole and sending
the compressed data by blocks to other processes, which however

introduces two challenges. On the one hand, the compressed bytes
contain some metadata that are essential for decompression. If the
compressed data are directly divided into smaller blocks, the vital
information will be lost. On the other hand, the original data distri-
bution might not be uniform and the compressed data sizes for each
block are not equal. As a result, it is impossible for us to correctly
separate the compressed data into data blocks in this case. Thus,
we need to individually compress the corresponding data blocks
and then distribute them.
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Figure 5: Design of our gZCCL data movement framework
on compression-accelerated gZ-Scatter. This example uses
four GPUs/Processes.

To better explain our optimization and design, more details are
shown as follows. First, we create helper arrays on the CPU to store
the compressed data sizes and the related global offsets on each
process. Then, in each process, we create a stream array of size 𝑁 ,
where 𝑁 is the size of the communicator. Additionally, we allocate
two device buffer pointer arrays, also of size𝑁 , to store the offsets of
compressed bytes and flag information for differing streams, respec-
tively. In the root process, we launch the multi-stream compression
kernel utilizing the independent device buffers and streams from 0
to 𝑁−1 in the stream array. The compressed data for each stream is
stored in the same device buffer based on the designated offset so
that there are no data races. Then, we synchronize these streams
with the host to make sure the multi-stream compression has fin-
ished. After that, we obtain the compressed data sizes and offsets of
different streams and synchronize the information with other non-
root processes. Then, we use asynchronous memcpys with different
streams to pack these compressed data based on the compressed
data offsets into another device buffer, so that they can be sent out
in a continuous format. Finally, the data is distributed in a binomial
tree communication pattern and the non-root processes utilize a
non-default stream to decompress its own part of compressed data.
In a nutshell, we have optimized the compression-enabled Scatter
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algorithm with overlapped compression, kernel launching, and data
movements, resulting in improved performance.

4 EXPERIMENTAL EVALUATION
We present and discuss the evaluation results as follows.

4.1 Experimental Setup
We perform the evaluation on a GPU supercomputer that involves
512 NVIDIA A100 80G GPUs (128 nodes each with 4 GPUs, specifi-
cally), which features both internode communication and intranode
communication. These computational nodes are interconnected via
the HPE Slingshot 10 interconnect, providing a network bandwidth
of 100 Gbps. Unless specified, the absolute error bound of com-
pression is set to 1E-4, because the image reconstruction quality is
already superior with 2E-4 error bound, which will be demonstrated
later in Figure 13. Two distinct RTM datasets [16], originating from
the real-world 3D SEG/EAGE Overthrust model, are generated
under two different simulation settings. Table 1 exhibits the aver-
age compression ratio and PSNR that cuSZp can achieve for these
datasets, where ABS denotes the absolute error bound.

Table 1: Compression ratio (CPR) and quality (PSNR).

Simulation Setting 1 Simulation Setting 2
Dimensions 449X449X235 849X849X235

ABS CPR PSNR CPR PSNR
1E-3 92.28 53.23 94.41 53.41
1E-4 73.35 65.67 63.94 70.38
1E-5 55.65 78.83 46.74 88.57

4.2 Evaluating the GPU-centric design
First of all, we present the performance evaluation of our proposed
GPU-centric design compared with the traditional CPU-centric
solution on 64 NVIDIA A100 GPUs across 16 nodes, using two dif-
ferent scientific datasets and the Allreduce collective operation. As
mentioned in Section 1 and Section 2, many of the existing related
works [12, 31] are dependent on the CPU-centric communication
design. As shown in Figure 6b, it is noticeable that the speedups of
GPU-centric design over the CPU-centric solution increase with
the expansion of the data sizes, culminating in a 1.82× performance
improvement for the data size of 600 MB. This trend is also ob-
served in Figure 6a, where the speedup can reach up to 1.32× with
the largest 180 MB data size. As data size increases, the demand of
intensive host-device data movement escalates in the CPU-centric
design, which may cause an increasing PCIe congestion and re-
duction cost. This creates a pronounced bottleneck for the overall
collective performance. To mitigate the substantial cost of host-
device data transfer, our GPU-centric design does not depend on
CPU-based communication, totally eliminating the data movement
cost between CPU and GPU. Moreover, our design can significantly
mitigate reduction operation cost, further boosting the speedup,
especially with the growth of data size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 30  60  90  120  150  180

S
p

e
e

d
u

p
s

Data Sizes (MB)

Baseline (CPU-centric)
Our GPU-centric

(a) Simulation Setting 1

 0

 0.5

 1

 1.5

 2

 100
 200

 300
 400

 500
 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Baseline (CPU-centric)
Our GPU-centric

(b) Simulation Setting 2

Figure 6: Performance evaluation of our GPU-centric design
using two different scientific datasets.

4.3 Evaluating the optimized redesigned GPU
compression-enabled collective algorithms

We evaluate the performance of our optimized, compression-integra
ted collective algorithms using 64 NVIDIA A100 GPUs.

4.3.1 Collective computation. In this section, we evaluate our op-
timized redesigned compression-enabled collective computation
algorithms using the widely-used Allreduce operation. Both Figure
7a and 7b reveal that our optimized solution – gZ-Allreduce (Ring)
surpasses our original GPU-centric approach by up to 3.36×. This
is because our solution improves GPU utilization. Specifically, we
overlap the decompression and kernel launching in the Allgather
stage and facilitate potential overlapping among compression, de-
compression, and communication in the Reduce_scatter stage. Fur-
thermore, the newly designed gZ-Allreduce (ReDoub) achieves an
even higher performance enhancement compared to gZ-Allreduce
(Ring), attaining up to 22.7× speedup compared to our original GPU-
centric approach. We explain the reasons as follows. To tackle the
inefficient device utilization in ring-based Allreduce, we design and
optimize a novel recursive doubling-based compression-enabled
algorithm, with the aim of improving scalability, maximizing per-
formance, and preserving accuracy. However, it is worth noting
that the speedup of both gZ-Allreduce methods generally decreases
as the data size increases. This is because the problem of inefficient
GPU utilization can be mitigated by larger message sizes, and the
performance improvement resulting from higher GPU utilization
would consequently decrease.
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Figure 7: Performance evaluation of our gZCCL collective
computation framework using Allreduce operation.
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4.3.2 Collective data movement. In this section, the performance of
our optimized, redesigned compression-integrated collective data
movement algorithms is demonstrated, using the classic Scatter
operation. From Figure 8a and Figure 8b, we notice that gZ-Scatter
exhibits substantial speedups in both datasets, obtaining up to 20.3×
and 20.6× improved performance in the two simulation settings,
respectively. This is because, in the gZ-Scatter algorithm, we over-
lap compression, kernel launching, and data movements, leading to
enhanced device utilization, diminished host-device synchroniza-
tion, and reduced device-device data movement cost. Similar to
the collective computation scenario, with increasing data sizes, the
performance boost slightly diminishes, with a minimum of 17.4×
at 600 MB as depicted in Figure 8b. This reason is that a larger
input data size can better saturate the device, thereby mitigating
the performance enhancement derived from our gZCCL design.
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Figure 8: Performance evaluation of our gZCCL collective
data movement framework using Scatter operation.

4.4 Comparisons of gZCCL with other collective
communication libraries

In this section, we compare the performance of our gZCCL frame-
workwith other state-of-the-art GPU communication libraries, such
as the widely-utilized NCCL and CUDA-aware Cray MPI.

4.4.1 Collective computation. In this section, the performance of
our gZCCL collective computation framework is compared with
both NCCL and Cray MPI, using the prevalent Allreduce operation.
Evaluation with different message sizes.We evaluate the per-
formance of our gZ-Allreduce algorithm using various data sizes
up to 600 MB on a configuration of 64 NVIDIA A100 GPUs across
16 nodes. As observed in Figure 9, our recursive doubling-based
gZ-Allreduce (ReDoub) consistently outperforms across all data
sizes, achieving up to a speedup of 18.7× compared to Cray MPI and
a 3.4× performance improvement over NCCL. Furthermore, with
increasing data sizes, the speedup generally rises, demonstrating
high scalability with respect to data size. The performance improve-
ment originates from the significantly reduced message size and
compression-related overheads in our gZCCL design, which can
further mitigate network congestion with enlarging message sizes.
However, the ring-based gZ-Allreduce (Ring), despite surpassing
Cray MPI for the data size with 50+ MB, fails to outpace NCCL. This
is attributed to the inefficient GPU utilization in gZ-Allreduce (Ring),

which incurs substantial compression-related costs, outweighing
the benefits of reduced message size.
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Figure 9: Performance evaluation of our gZ-Allreduce with
Cray MPI and NCCL in different data sizes.

Evaluation with different GPU counts. In this section, we assess
the scalability of our gZ-Allreduce algorithm with the complete
RTM dataset of 646 MB data size, utilizing up to 512 NVIDIA A100
GPUs across 128 nodes. We start from 8 GPUs, as it is the minimal
amount to have both internode and intranode communication with
4 GPUs per node.

As depicted in Figure 10, our recursive doubling-based gZ-Allred
uce (ReDoub) consistently performs the best, achieving up to 20.2×
and 4.5× speedups compared to Cray MPI and NCCL respectively,
across varying GPU counts. This superior performance stems from
the substantial reduction in message size with relatively low com-
pression cost achieved by our gZCCL framework. When the GPU
count is at 8, Cray MPI appears to suffer from significant perfor-
mance degradation, as compared to the other three counterparts.
Apart from the 8-GPU case, as the number of GPUs increases, both
gZ-Allreduce (ReDoub) and NCCL tend to exhibit a greater perfor-
mance boost compared to Cray MPI, indicating robust scalability
with respect to the GPU count. This is because both gZ-Allreduce
(ReDoub) and NCCL are optimized for large GPU count scenarios.
However, the trend differs for the ring-based gZ-Allreduce (Ring),
which outperforms NCCL when the GPU count is 32 or less. As
the GPU count increases, its performance deteriorates, ending up
with the worst performance compared with other solutions in the
case of 512 GPUs. The declining performance is attributed to the
reduced input data size for each compression/decompression with
an increase of GPU count, leading to lower device utilization and
prolonged runtime, thus subpar scalability.
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Figure 10: Scalability evaluation of our gZ-Allreduce with
Cray MPI and NCCL in different GPU counts.
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4.4.2 Collective data movement. In this section, we assess the per-
formance of our gZCCL collective data movement framework using
the widely-used Scatter operation, comparing it with Cray MPI. We
exclude NCCL from this comparison as it has no implementation
for Scatter.
Evaluation with different message sizes.We evaluate the per-
formance of our gZ-Scatter with data sizes up to 600 MB, using 64
NVIDIA A100 GPUs on 16 nodes. Figure 11 indicates that our gZ-
Scatter is able to consistently outperform Cray MPI across all data
sizes. The speedup of gZ-Scatter enhances as the data size increases,
achieving its maximum (20.2×) at 600 MB. This demonstrates supe-
rior scalability with respect to data sizes, which can be attributed to
the reduced message sizes and overlapping of compression, kernel
launching, and data movement in our gZCCL framework.
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Figure 11: Performance evaluation of our gZ-Scatter with
Cray MPI in different data sizes.

Evaluation with different GPU counts. We assess the scalability
of our gZ-Scatter with the complete RTM dataset, with a data size
of 646 MB, using up to 512 NVIDIA A100 GPUs spread across 128
nodes. From Figure 12, it is evident that our gZ-Scatter outperforms
Cray MPI in all cases. As the GPU count increases, the speedup
of gZ-Scatter first increases, peaking at 28.7×, and then gradually
decreases to 4.75× when the GPU count reaches 512. Unlike the
Allreduce scenario, the message size distributed to each non-root
GPU in the Scatter communication pattern linearly decreases as the
GPU count rises.When the GPU count is less than or equal to 16, the
message size on the non-root GPU allows for high GPU utilization,
hence the speedup grows with the increasing GPU count. However,
when the GPU count exceeds or equals 32, the GPU utilization
continues to drop, thereby reducing the collective performance and
leading to a decrease in performance enhancement.
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Figure 12: Scalability evaluation of our gZ-Scatter with Cray
MPI in different GPU counts.

4.5 Image Stacking Performance Evaluation
with Accuracy Analysis

In this section, we employ the image stacking application to eval-
uate both the performance and accuracy of our gZCCL. Image
stacking, a technique widely used in various scientific fields such
as atmospheric science and geology, is employed to generate high-
quality images by stacking multiple individual images, which es-
sentially constitutes an Allreduce operation. As demonstrated by
Gurhem in 2021 [10], researchers use MPI to merge these individual
images into a comprehensive final image. As can be seen from Table
2, our ring-based gZCCL (Ring) outperforms Cray MPI by a factor
of 3.99×when using an absolute error bound of 1E-4. Moreover, our
recursive doubling-based gZCCL (ReDoub) offers even higher per-
formance with speedups of up to 9.26× and 1.69× compared with
Cray MPI and NCCL, respectively. This significant performance
enhancement arises from the markedly reduced message sizes and
compression-related overheads brought by our gZCCL framework.

The following text presents a performance breakdown analysis.
For gZCCL (Ring), 84.08% of the total runtime is consumed by com-
pression, whereas gZCCL (ReDoub) has comparable compression
and communication costs at 42.61% and 46.28% respectively. This
substantial reduction in compression cost is due to higher GPU
utilization and fewer compression operations in our optimized gZ-
Allreduce (ReDoub) algorithm compared with gZCCL (Ring).

Table 2: Image stacking performance analysis (The speedups
are based on Cray MPI. The last four columns are perfor-
mance breakdowns of our gZCCL).

Speedups Cmpr. Comm. Redu. Others
gZCCL (Ring) 3.99 84.08% 14.08% 1.26% 0.58%

gZCCL (ReDoub) 9.26 42.61% 46.28% 11.04% 0.06%
NCCL 5.47 No breakdown because of complexity

In addition to performance analysis, we thoroughly evaluate the
accuracy using both visualization method and numerical metrics
such as the widely-used peak signal-to-noise ratio (PSNR) [21] and
normalized root mean squared error (NRMSE) [24]. Our accuracy-
aware design allows gZCCL (ReDoub) to achieve excellent recon-
structed image quality, even with an error bound of 2E-4, as shown
in Figure 13. The reconstructed image of gZCCL (Ring) also exhibits
high visual quality, similar to that shown in Figure 13b, hence it is
not presented separately here. When the error bound is tightened to
1E-4, as used in our performance analysis, gZCCL (Ring) reaches a
great PSNR of 56.83 and an NRMSE of 1E-3. Meanwhile, gZCCL (Re-
Doub) demonstrates better data quality, achieving a PSNR of 57.80
and an NRMSE of 1E-3. The high accuracy of gZCCL confirms a con-
trollable error propagation, which matches the theoretical analysis
in [12]. gZCCL (ReDoub) exhibits a higher quality of reconstructed
data over gZCCL (Ring), because of fewer error propagation steps
as mentioned in Section 3.3.3.

5 CONCLUSION AND FUTUREWORK
This paper presents gZCCL, an innovative framework that opti-
mizes GPU-aware collective communications, offering minimized
compression-related overheads and controlled accuracy. We devise
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(a) Cray MPI/NCCL (lossless) (b) gZCCL (2E-4)

Figure 13: Visualization of final stacking image.

two algorithm design frameworks and two collective optimization
frameworks for both compression-enabled collective computation
and collective data movement. We integrate the framework into
a variety of collective communications including Allgather, Re-
duce_scatter, Allreduce, and Scatter, demonstrating its generality.
Our experiments with up to 512 NVIDIA A100 GPUs illustrate that
our gZ-Allreduce surpasses the Allreduce operation in Cray MPI
and NCCL by up to 20.2× and 4.5× respectively. In addition, our
gZ-Scatter outperforms the Scatter operation in Cray MPI by 28.7×,
while NCCL lacks a Scatter implementation. In a nutshell, our work
not only addresses the concerns of previous related efforts, such as
inefficient GPU utilization, significant compression-related over-
heads, and inferior performance but also provides a groundwork
for further studies in this domain. Our future work will evaluate
our gZCCL framework with more collective operations and we
plan to extend gZCCL to more hardware such as FPGAs and AI
accelerators.
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