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MINIMAL RANK OF UNIVERSAL LATTICES AND NUMBER OF

INDECOMPOSABLE ELEMENTS IN REAL MULTIQUADRATIC FIELDS

SIU HANG MAN

Abstract. We establish an upper bound on the number of real multiquadratic fields that admit a
universal quadratic lattice of a given rank, or contain a given amount of indecomposable elements
modulo totally positive units, obtaining density zero statements. We also study the structure
of indecomposable elements in real biquadratic fields, and compute a system of indecomposable
elements modulo totally positive units for some families of real biquadratic fields.

1. Introduction

The question of which integers can be represented by a given quadratic form is a long-standing
topic in number theory, which fascinated numerous mathematicians since ancient times. One par-
ticularly interesting question is that whether a positive definite quadratic form is universal, i.e.
represents all positive integers. The first important result in this direction is Lagrange’s four-
squares theorem, which says the quadratic form x2+ y2+ z2+w2 is universal. Much work has been
done since then, including the renowned 15- and 290-theorems of Conway-Schneeberger [Bha00] and
Bhargava-Hanke [BH11].

In a more general setting, when we are given a totally real number field F and their ring of integers
OF , we may ask whether a totally positive definite quadratic form is universal, i.e. represents all
totally positive elements in OF . As a starting point, Maaß [Maa41] showed that the sum of three
squares is universal over the ring of integers of Q(

√
5), using theta series. Conversely, Siegel [Sie45]

proved that the sum of any number of squares is universal only over F = Q,Q(
√
5). Siegel’s proof

made heavy use of the notion of indecomposable elements (under the name “extremal elements”),
i.e. totally positive algebraic integers in F that cannot be written as the sum of two other totally
positive integers in F .

For a more precise description, we consider totally positive definite quadratic OF -lattices (Λ, Q)
over a totally real number field F , that is, finitely generated OF -modules Λ equipped with a qua-
dratic form Q such that all the values Q(v) 6= 0 for 0 6= v ∈ Λ are totally positive elements in
OF . Such a lattice is called universal if it represents all the totally positive integers. A convenient
assumption that we will often use is that (Λ, Q) is classical, that is, all the values in the associated
symmetric bilinear form lie in OF . Since it has been shown that universal classical lattices exist
over every totally real number field [HKK78], we can denote by Rcls(F ) the minimal rank of a uni-
versal classical lattice over F , and R(F ) the minimal rank of a universal lattice over F without the
classical assumption. Here the rank of a quadratic lattice (Λ, Q) over F is defined as the dimension
of FΛ as an F -vector space.

One can then ask about how the minimal ranks R(F ) and Rcls(F ) behave in a collection of totally
real number fields F . In general, it is widely expected that the minimal rank of universal lattices
is usually high, as illustrated by an influential conjecture of Kitaoka (see [CKR96]), which claims
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that there are only finitely many totally real number fields F with a ternary universal lattice (i.e.
with R(F ) ≤ 3).

For specific cases more is known. For instance, it is known that there are only finitely many real
quadratic fields F with R(F ) ≤ 7 [KKP22], while there are infinitely many real quadratic fields
with R(F ) = Rcls(F ) = 8 [Kim00]. Nevertheless, it is known that for most real quadratic fields the
minimal ranks of universal lattices are large [KYŻ23]. Meanwhile, Kala and Svoboda [KS19, Kal23]
showed that higher degree fields for which R(F ) is large are also quite easy to find.

In many instances, the minimal rank of universal lattices over a totally real number field F is
closely related to the number of indecomposable elements up to multiplication of totally positive
units (denoted by ι(F )), the rough idea being that every totally positive integer is a sum of in-
decomposable elements, while indecomposable elements themselves are quite difficult to represent.
Using this idea, Kala and Tinková [KT23] showed that the minimal rank of universal lattices is
bounded above in terms of the number of indecomposable elements. In the other direction, by
proving the existence of sufficiently many indecomposable elements satisfying certain properties,
one can show that in such fields the minimal rank of universal lattices is high; there are numerous
literature tackling different cases, see for example [BK15, BK18, Kal16, KYŻ23] about quadratic
fields, and [ČLS+19, KS19, KT23, KTZ20] about number fields of higher degrees.

In this paper, we generalise the results in [KYŻ23], and show that for most real multiquadratic
fields K, the minimal rank R(K) of a universal lattice is large. For n ∈ N, and X ≥ 1 a positive
parameter, let K(n,X) denote the set of real multiquadratic fields K of degree 2n with discriminant
∆K ≤ X. Note that by a result of Wright [Wri89] we have #K(n,X) ≍ X21−n

(logX)2
n−2 (see

Theorem 2.3).

Theorem 1.1. Let n ∈ N be fixed, and ε > 0. Then for almost all real multiquadratic fields of
degree 2n we have

Rcls(K) ≥







∆
1
72

−ε

K for n = 2,

∆
1

12(2n−1)2
−ε

K otherwise,
and R(K) ≥







∆
1
24

−ε

K for n = 1,

∆
1

12(2n−1)(2n+1
−1)

−ε

K otherwise.

Theorem 1.2. Let n ∈ N be fixed, and ε > 0. Then for almost all real multiquadratic fields of
degree 2n we have

ι(K) ≥







∆
1
72

−ε

K for n = 2,

∆
1

12(2n−1)2
−ε

K otherwise.

Here, by “almost all” we mean that the set of such fields has natural density 1, with respect to
the ordering of real multiquadratic fields of degree 2n by discriminant.

Theorems 1.1 and 1.2 follow from our main results below, whose proofs involve a wide variety of
tools. To state our main results, we work on a slightly more general setting, considering quadratic
lattices that represent all multiples of a fixed positive integer m. We say that a totally positive
definite quadratic lattice (Λ, Q) over a totally real number field F is mOF -universal if (Λ, Q)
represents all elements of mO+

F , i.e. all the totally positive multiples of m. This allows us to
convert an arbitrary universal quadratic lattice (Λ, Q) into a 2OF -universal classical quadratic
lattice (Λ, 2Q), which is convenient because classical lattices are often easier to work with.

Our first main result gives an explicit upper bound on the number of real multiquadratic fields
K which admits an mOK -universal classical lattice of a given rank.

Theorem 1.3. Let n,m ∈ N be fixed. For R ∈ N and X ≥ 1 we define

Kuniv(n,X,R,m) := {K ∈ K(n,X) | ∃ mOK-universal quadratic lattice of rank R} .
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Then, for any ε > 0 and X ≫ (C(2nR, 2n−1m) logX)
4(2n−1)2

2n−2n−4
−1 for a sufficiently large constant

depending only on n, we have

#Kuniv(n,X,R,m) ≪n,ε C(2nR, 2n−1m)
3
2X

21−n
(

1− 2n−4

2n−1

)

+ε
+ C(2nR, 2n−1m)3X

21−n
(

1− 2n−3

2n−1

)

+ε
,

where C(2nR, 2n−1m) is an explicit constant defined in (3.3).

Here we give the brief strategy to the proof, assuming m = 1 for simplicity. From [KT23], we know
that for real quadratic fields F , we may find a totally positive element δ ∈ O∨,+

F in the codifferent
such that there are w indecomposable elements α1, . . . , αw ∈ O+

F satisfying TrF/Q(δαi) = 1. In
a multiquadratic field K of degree 2n containing F , these elements satisfy TrK/Q(δαi) = 2n−1.
Viewing OK as a Z-lattice Λ equipped with the δ-twisted trace form, we obtain a set of lattice
points v ∈ Λ of norm 2n−1. However, the number of such points in a totally positive definite Z-
lattice of rank R is bounded (see [KYŻ23, Theorem 3.1] and [RSD23, Theorem 1.1]). This gives
an upper bound to the size of w. Meanwhile, [KYŻ23, Corollary 2.13] says that w is usually large.
Combining these estimates, we are able to show that few real multiquadratic fields admit universal
quadratic lattices of rank R.

Using the linkage between universal lattices and indecomposable elements in [KT23], we obtain as
a consequence of Theorem 1.3 that for given R ∈ N, few multiquadratic fields K satisfies ι(K) ≤ R.

Theorem 1.4. Let n ∈ N. For R ∈ N and X ≥ 1 we define

Kindec(n,X,R) := {K ∈ K(n,X) | ι(K) ≤ R} .

Then, for any ε > 0 and X ≫ (C(2nR, 2n−1) logX)
4(2n−1)2

2n−2n−4
−1 for a sufficiently large constant

depending only on n, we have

#Kindec(n,X,R) ≪n,ε C(2nR, 2n−1)
3
2X

21−n
(

1− 2n−4

2n−1

)

+ε
+ C(2nR, 2n−1)3X

21−n
(

1− 2n−3

2n−1

)

+ε
,

where C(2nR, 2n−1) is an explicit constant defined in (3.3).

The linkage between universal lattices and indecomposable elements also suggests that we study
the structure of indecomposable elements in totally real number fields. While this is well understood
for real quadratic fields, little is known about the structure of indecomposable elements in other
cases. For example, for totally real cubic fields we have an explicit description of the indecomposable
elements only for Shank’s family of simplest cubic fields [GMT22, KT23]. In the second part of the
paper we study the structure of indecomposable elements in biquadratic fields. Since biquadratic
fields contain quadratic subfields, it is then natural to ask whether the indecomposable elements in
the quadratic subfields, which are well understood, remain indecomposable in the biquadratic field.
In general the answer is no, but the following theorem says that the answer is yes for at least two
of the three quadratic subfields.

Theorem 1.5. Let K be a real biquadratic field, with quadratic subfields K1,K2,K3. Then, for at
least two of the quadratic subfields Kj, j ∈ {1, 2, 3}, the indecomposable elements in O+

Kj
remain

indecomposable in O+
K .

Theorem 1.5 represents an improvement to the result in [ČLS+19] which established the inde-
composability of indecomposable elements from quadratic subfields subject to a criterion involving
continued fractions, and answers a conjecture in [KTZ20]. The proof relies on the correspondence
between indecomposable elements in real quadratic fields and best one-sided Diophantine approxi-
mations. Since it is known that real quadratic fields F with ι(F ) ≤ R has density zero, Theorem 1.5
yields an alternative proof that real biquadratic fields K with ι(K) ≤ R has density zero.

In Section 5 we compute the structure of indecomposable elements for a few families of real
biquadratic fields. The families of biquadratic fields K chosen here are special in the sense that
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each quadratic subfield F ⊆ K has ι(F ) = 1. In view of Theorem 1.5, these families represent likely
candidates for which ι(K) is small. The following theorem says that ι(K) may still grow within
such a family.

Theorem 1.6. Let n ≥ 6 be an integer such that

p = (2n− 1)(2n + 1), q = (2n − 1)(2n + 3), r = (2n + 1)(2n + 3)

are squarefree integers, and let K = Q(
√
p,
√
q). A complete set of indecomposable elements in O+

K
modulo totally positive units is given by

1,
ε−1
p + εr

2
, µ :=

(

n+
3

2

)

+
1

2

√
p+

1

2

√
q +

1

2

√
r,

1 + εp + t(µ− 1),
1 + εpεr

2
+ εp + t(µ − 1) (3 ≤ t ≤ 2n− 2),

1 + ε−1
q + t(µ − 1),

1 + εrεp
2

+ ε−1
q + t(µ− 1) (4 ≤ t ≤ 2n− 1),

ε−1
r + εp

2
+ t(µ− 2) (2 ≤ t ≤ 2n− 1).

Here, εp, εq, εr stand for the fundamental units of Q(
√
p),Q(

√
q), Q(

√
r) respectively, chosen such

that εp, εq, εr > 1. In particular, we have ι(K) = 10n − 15.

Remark. The infinitude of the family in Theorem 1.6 is equivalent to that the polynomial f(n) =
(2n − 1)(2n + 1)(2n + 3) takes infinitely many squarefree values. Since f(n) is a product of linear
terms, such a statement can be conveniently proved using standard sieve arguments, see for example
[Erd53, Section 2].

In analogous Theorems 5.3 and 5.4, we compute the set of indecomposable elements in two other
one-parameter families of biquadratic fields, and show that ι(K) also grows within such families. In
Section 5.9 we compute ι(K) for a number of real biquadratic fields K with small discriminants. The
computations suggest that the one-parameter families in Theorems 5.3 and 5.4 are among the fields
for which ι(K) is the smallest. In view of this observation, we formulate the following conjecture.

Conjecture 1.7. For any R ∈ N, there are only finitely many real biquadratic fields K for which
we have ι(K) ≤ R.

The paper is organised as follows. In Section 2 we recall basic results on multiquadratic fields,
as well as the theory of indecomposable elements for real quadratic fields. In Section 3 we prove
Theorems 1.1 to 1.4. In Section 4 we prove Theorem 1.5 (as Theorem 4.3). Finally, in Section 5 we
compute the structure of indecomposable elements for a few families of biquadratic fields, proving
Theorem 1.6 and its analogues.

Notations. Here we recollect the notations used in the paper which are possibly non-standard.
Throughout, F stands for a totally real number field.

∆F the discriminant of F
OF (resp. O+

F ) the ring of integers (resp. the set of totally positive integers) of F
O×

F (resp. O×,+
F ) the group of units (resp. totally positive units) in OF

R(F ) the minimal rank of universal lattices over F
Rcls(F ) the minimal rank of classical universal lattices over F

ι(F ) the number of indecomposable elements in O+
F modulo totally positive units

K(n,X) the set of real multiquadratic fields of degree 2n with discriminant ≤ X
Kuniv(n,X,R,m) the set of fields K ∈ K(n,X) admitting mOK -universal classical lattice of rank R

Kindec(n,X,R) the set of fields K ∈ K(n,X) with ι(K) ≤ R
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Throughout the article, we use the following asymptotic notations. For real functions f(x), g(x),
we write f ≪ g or g ≫ f if there are c > 0 and x0 such that |f(x)| ≤ cg(x) for all x ≥ x0; we may
write f ≪y g to emphasise that the constant c depends on y. We write f ≍ g if f ≪ g and g ≫ f .

Acknowledgement

The author would like to thank Vítězslav Kala and Błażej Żmija for the helpful discussions, and
the referee for the useful suggestions that improved the presentation and simplified some proofs.

2. Preliminaries

2.1. Multiquadratic fields. Let F be a totally real number field. We denote by OF the ring
of integers of F . An element α ∈ F is called totally positive if σ(α) > 0 for every embedding
σ : F →֒ R. This is denoted by α ≻ 0. We denote by O+

F the set of totally positive elements in
OF . An element α ∈ O+

F is called indecomposable if it cannot be written as a sum α = β + γ

with β, γ ∈ O+
F . It is well-known that there are finitely many indecomposable elements up to

multiplication by totally positive units. For an easy proof of this fact, we note that there exists
some constant cF such that NF/Q(α) ≤ cF if α ∈ O+

F is indecomposable (see [DS82]), and that up
to multiplication by totally positive units there are only finitely many α ∈ O+

F with NF/Q(α) ≤ cF
(see [Neu99, I.7.2]). Throughout the article, we shall denote by ι(F ) the number of indecomposable
elements up to multiplication by totally positive units. When no confusion may arise, we simply
call ι(F ) the number of indecomposable elements of OF .

We let K = Q(
√
A20 ,

√
A21 , . . . ,

√
A2n−1) be a multiquadratic field of degree [K : Q] = 2n, where

n ≥ 2, and A20 , . . . , A2n−1 are squarefree integers. By picking different generators of K, one
can impose some congruence conditions on A20 , . . . , A2n−1 , which is helpful in narrowing down the
number of cases to consider. It was shown in [Cha73, Sch89] that every multiquadratic field K can
be written in a way so that we have

A2k ≡ 1 (mod 4), 0 ≤ k ≤ n− 3, and

(A2n−2 , A2n−1) ≡ (1, 1), (1, 2), (1, 3), or (2, 3) (mod 4).
(2.1)

We will always assume that the integers A2k are of the form above.
The field K contains 2n − 1 quadratic subfields. To describe them, it is helpful to establish some

notations. For 0 ≤ j ≤ 2n − 1, we define integers Aj ∈ Z as follows. We set A0 := 1. Then, if

j = 2k + j′ with 0 ≤ j′ ≤ 2k − 1, we define Aj :=
A

2k
Aj′

d2
k,j

, where dk,j is a greatest common divisor of

A2k and Aj′ . Replacing dk,j by −dk,j when necessary, we may assume dk,j ≡ 1 (mod 4). We note
that the integers Aj are squarefree by construction. The 2n − 1 quadratic subfields of K are then
given by Q(

√

Aj), for 1 ≤ j ≤ 2n − 1.
The ring of integers OK of K is a free Z-module, hence admits a Z-basis. Let α0 = 1, and

α2k =
√

A2k , for 0 ≤ k ≤ n − 1. If j = 2k + j′, where 1 ≤ j′ ≤ 2k − 1, we define αj =
α
2k

αj′

dk,j
,

where dk,j is defined as above. A Z-basis of OK is then given in the following theorem of Chatelain
[Cha73].

Theorem 2.1 ([Cha73]). Let K = Q(
√
A20 ,

√
A21 , . . . ,

√
A2n−1) be a multiquadratic field of degree

2n, where n ≥ 2, and A20 , . . . , A2n−1 are squarefree integers satisfying (2.1). Assuming the notations
above, a Z-basis of OK is given as follows:

(1) Suppose (A2n−2 , A2n−1) ≡ (1, 1) (mod 4). Define E := 2−n
∑2n−1

j=0 αj. Then a Z-basis of

OK is given by the set {σ(E) | σ ∈ Gal(K/Q)}.
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(2) Suppose (A2n−2 , A2n−1) ≡ (1, 2) or (1, 3) (mod 4). Define

E1 := 2−n+1
2n−1−1
∑

j=0

αj , E2 := 2−n+1
2n−1
∑

j=2n−1

αj .

Then a Z-basis of OK is given by the set
{

σ(Ei)
∣

∣ σ ∈ Gal(K/Q(
√
A2n−1)), i = 1, 2

}

.
(3) Suppose (A2n−2 , A2n−1) ≡ (2, 3) (mod 4). Define

E1 := 2−n+2
2n−2−1
∑

j=0

αj , E2 := 2−n+2
2n−1−1
∑

j=2n−2

αj ,

E3 := 2−n+2
3·2n−2−1
∑

j=2n−1

αj , E4 = 2−n+1





2n−1−1
∑

j=2n−2

αj +

2n−1
∑

j=3·2n−2

αj



 .

Then a Z-basis of OK is given by the set
{

σ(Ei)
∣

∣ σ ∈ Gal(K/Q(
√
A2n−2 ,

√
A2n−1)), i = 1, 2, 3, 4

}

.

We shall not need the explicit shape of the integral basis of OK beyond the biquadratic case
in this article. But Theorem 2.1 gives the following convenient corollary on the discriminant of
multiquadratic fields (see [Cha73, Sch89]).

Corollary 2.2 ([Sch89, Satz 2.1]). Assume the settings above. Then the discriminant of the multi-
quadratic field K is given by

∆K = (2r rad (A20A21 · · ·A2n−1))2
n−1

= 22
n−1r

2n−1
∏

j=1

Aj ,

where rad(x) denotes the radical of x ∈ Z, and

r =











0 if (A2n−2 , A2n−1) ≡ (1, 1) (mod 4),

2 if (A2n−2 , A2n−1) ≡ (1, 2) or (1, 3) (mod 4),

3 if (A2n−2 , A2n−1) ≡ (2, 3) (mod 4).

(2.2)

We shall also need an asymptotic formula on the number of multiquadratic fields of degree 2n

with bounded discriminant. For this we recall a result of Wright [Wri89], applied to multiquadratic
fields.

Theorem 2.3 ([Wri89, Theorem I.2]). Let X ≥ 1, and let K(n,X) denote the set of real multi-
quadratic fields of degree 2n with discriminant ∆K ≤ X. Then we have

#K(n,X) ≍ X21−n

(logX)2
n−2.

Remark. Strictly speaking, Wright’s result gives an asymptotic formula to the set of multiquadratic
fields of degree 2n with discriminant ∆K ≤ X, without distinguishing whether they are real.
Through the mapping Q(

√
A20 , . . . ,

√
A2n−1) 7→ Q(

√

|A20 |, . . . ,
√

|A2n−1 |), it is easy to see that
the subset of real fields also satisfy the same asymptotic formula. An alternative proof of the
statement is also given in Section 3.2.

2.2. Indecomposable elements in real quadratic fields. The structure of the indecomposables
in real quadratic fields is well understood. We give a brief overview of the theory here, for it is used
in our proofs. All the results here can be found in [BK18, Section 2.1]. Let F = Q(

√
D) be a real

quadratic field, where D ≥ 2 is a squarefree integer. Define

ωD :=

{√
D if D ≡ 2, 3 (mod 4),

1+
√
D

2 if D ≡ 1 (mod 4).
(2.3)
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Then {1, ωD} forms a Z-basis of OF . We denote by ωD the Galois conjugate of ωD. We know that
−ωD has an eventually periodic continued fraction of the form

−ωD = [u0;u1, u2, . . . , us−1, us] .

For i ∈ N0, we define the i-th convergent of −ωD to be
si
ti

= [u0;u1, . . . , ui].

As a convention, we shall also define s−1 := 1, t−1 := 0. By a semiconvergent of −ωD we mean a
fraction of the form

si,l
ti,l

:=
si + lsi+1

ti + lti+1
,

with i ≥ −1 and 0 ≤ l ≤ ui+2.
Next we define the elements αi := si + tiωD and αi,l := si,l + ti,lωD = αi + lαi+1 in OF . By an

abuse of notation, we shall also call αi (resp. αi,l) the convergents (resp. semiconvergents) of −ωD.
By a classical theorem (see [DS82, Theorem 2]), the set of indecomposable elements in O+

F is then
given precisely by αi,l with i ≥ −1 odd, and their Galois conjugates. The fundamental unit ε of OF

is given by αs−1, which is totally positive if and only if s is even.
The set of indecomposable elements in O+

F is closed under multiplication by totally positive units.
A complete list of indecomposable elements of O+

F up to multiplication by totally positive units is
given by

{αi,l | −1 ≤ i < s− 1 odd, 0 ≤ l < ui+2} if s is even,

{αi,l | −1 ≤ i < 2s− 1 odd, 0 ≤ l < ui+2} if s is odd.
(2.4)

3. Density results

In this section, we prove Theorems 1.1 to 1.4.

3.1. Short lattice vectors and continued fractions. To state the proof of Theorem 1.3, we
need the following theorem from [RSD23], which gives an upper bound to the number of vectors in
a totally positive classical quadratic Z-lattice with a given norm.

Theorem 3.1 ([RSD23, Theorem 1.1]). Let (Λ, Q) be a positive definite classical quadratic Z-lattice
of rank R, and m ∈ N. Let N(Λ,Q)(m) denote the number of vectors of norm m in Λ, that is, the
number of elements v ∈ Λ such that Q(v) = m. Then we have

N(Λ,Q)(m) ≤ 2

(

R+ 2m− 2

2m− 1

)

. (3.1)

Actually, the theory of root systems yields the following bound for m = 2 [Mar03, Theorem 4.10.6,
Proposition 4.10.7], which is better than the bound (3.1) when R ≥ 11:

N(Λ,Q)(2) ≤ max {480, 2R(R − 1)} . (3.2)

For convenience, we define for R,m ∈ N

C(R,m) :=

{

max {480, 2R(R − 1)} if m = 2,

2
(

R+2m−2
2m−1

)

otherwise.
(3.3)

Proposition 3.2. Let n,m ∈ N, and K = Q(
√
A20 , . . . ,

√
A2n−1) be a real multiquadratic field of

degree [K : Q] = 2n, where A20 , . . . , A2n−1 are squarefree positive integers. Let Q(
√

Aj), 1 ≤ j ≤
2n − 1, be the quadratic subfields of K as constructed in Section 2.1. Let ωj := ωAj

be defined as in
(2.3), and let

−ωj = [uj,0;uj,1, . . . , uj,sj ]
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be the periodic continued fraction of −ωj, and u := max {uj,2i+1 | 1 ≤ j ≤ 2n − 1, i ∈ N0}. Suppose
(Λ, Q) is an mOK-universal classical quadratic OK-lattice of rank R. Then

u <
1

2
C(2nR, 2n−1m),

where C(R,m) is defined in (3.3).

Proof. Suppose u = uj,2i+1. As in Section 2.2, we let si
ti
= [uj,0;uj,1, . . . , uj,i] be the i-th convergent

of −ωj, αi = si + tiωj, and consider the semiconvergents βl := α2i−1 + lα2i, 0 ≤ l ≤ u2i+1 = u.
From [KT23, Section 3], we can find a totally positive element δ ∈ O∨,+

Q(
√

Aj)
in the codifferent such

that Tr
Q(
√

Aj)/Q
(δβl) = 1 for 0 ≤ l ≤ u. It follows that TrK/Q(δβl) = 2n−1 for 0 ≤ l ≤ u. By

fixing a Z-basis of OK , we can identify Λ with a classical Z-lattice of rank 2nR via an isomorphism
ϕ : Λ

∼−→ Z2nR, and equip it with a quadratic form q(v) := TrK/Q(δQ(ϕ−1(v))). Since δ ∈ O∨,+
Q(
√

Aj)

is totally positive, the quadratic form q on Z2nR is positive definite.
From our assumptions, Q represents all of mO+

K . In particular, we can find vectors wl ∈ Λ
such that Q(wl) = mβl. For the corresponding vector vl := ϕ(wl), we have q(±vr) = q(vr) =
TrK/Q(δQ(wr)) = TrK/Q(mδβl) = 2n−1m. Thus the number N(Z2nR,q)(2

n−1m) of vectors of norm
2n−1m in the lattice (Z2nR, q) satisfies N(Z2nR,q)(2

n−1m) ≥ 2(u+1) > 2u. Finally, we use (3.1) and
(3.2) to conclude that u < 1

2C(2nR, 2n−1m). �

We also make use of the following proposition from [KYŻ23] about the behaviour of the continued
fraction representation of −ωD.

Proposition 3.3 ([KYŻ23, Corollary 2.13]). Let B ≥ 2 be an integer, and X ≥ 2 a parameter
satisfying X > B4(logX)4. Then we have

# {1 ≤ D ≤ X | −ωD mod 1 = [0;u1, u2, . . .], u2i−1 ≤ B for all i ∈ N}
< 50B

3
2X

7
8 (logX)

3
2 + 23B3X

3
4 (logX)2.

3.2. Proof of Theorem 1.3. For X sufficiently large, we prove an upper bound to the number
of multiquadratic fields K with ∆K ≤ X which admits an mOK -universal classical quadratic OK-
lattice of rank R, using Proposition 3.2 and Proposition 3.3. The case n = 1 is essentially [KYŻ23,
Theorem 1.2], so we may assume n ≥ 2. It is more convenient to count the four types of multi-
quadratic fields in (2.1) separately, so the quantity r defined in (2.2) remains stable in the following
arguments; the arguments themselves do not depend on the type, however. So we fix a type, and
bound the number of fields of that type satisfying the conditions above. We recall that for such
multiquadratic fields K, the discriminant of K is given by ∆K = (2r rad(A20 · · ·A2n−1))2

n−1
, where

r is given in (2.2), depending on the type.
For the counting, we need an alternative parametrisation of K = Q(

√
A20 , . . . ,

√
A2n−1). For

1 ≤ j ≤ 2n−1, we write

j =

n−1
∑

k=0

2kǫj,k, ǫj,k ∈ {0, 1}

for the binary representation of j. Let p be a prime dividing A20 · · ·A2n−1 , and let L(p) denote the
subset of {0, 1, . . . , n− 1} so that p | A2k if and only if k ∈ L(p). Since Aj is constructed as the
squarefree part of the product

∏

ǫj,k=1 A2k , it follows that p | Aj if and only if an odd number of
the A2k ’s in the product

∏

ǫj,k=1 A2k are divisible by p. In other words, we have p | Aj if and only
if the binary representation of j satisfies

∑

k∈L(p)
ǫj,k ≡ 1 (mod 2).
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This gives a partition of the primes dividing A20 · · ·A2n−1 into 2n − 1 classes, labelled by nonempty
subsets of {0, 1, . . . , n− 1}, which correspond bijectively to the set of integers {1, . . . , 2n − 1} via
the binary representation. So we may define pairwise coprime integers γ1, . . . , γ2n−1 ∈ N by

γi :=
∏

p prime
L(p)={k | ǫi,k=1}

p.

By construction, we have
∏2n−1

j=1 γj = rad(A20 · · ·A2n−1), and for 1 ≤ i ≤ 2n − 1, we have

Ai =
∏

j∈I(i)
γj , I(i) :=















1 ≤ j ≤ 2n − 1

∣

∣

∣

∣

∣

∣

∣

∣

∑

0≤k≤n−1
ǫi,k=1

ǫj,k ≡ 1 (mod 2)















. (3.4)

In this parametrisation, the condition ∆K ≤ X becomes
2n−1
∏

j=1

γj ≤ 2−rX21−n

=: X0. (3.5)

Let K′
X denote the set of multiquadratic fields K of the given type, with discriminant ∆K ≤ X.

Using (3.5), the problem of finding #K′
X reduces to that of counting tuples of pairwise coprime

squarefree integers (ignoring order) with a bounded product and satisfy some congruence condi-
tions. The number of tuples satisfying (3.5) can be estimated by the volume under the hyperplane
∏2n−1

j=1 γj = X0. Thus we obtain the asymptotic estimate

#K′
X ≍ X0(logX0)

2n−2.

Note that this also gives an alternative proof of Theorem 2.3.
Next we consider some dyadic blocks of multiquadratic fields. Our strategy is to cover most of K′

X
with these dyadic blocks, and show that in each block there are few fields admitting mOK-universal
quadratic lattices of rank R.

To define the dyadic blocks, let Y ≪ X0 be a sufficiently large parameter, and for 1 ≤ j ≤ 2n− 2,
let Γj ≥ 1 be parameters satisfying

∏2n−2
j=1 Γj ≪ X0. Let K′(Γ1, . . . ,Γ2n−2;Y ) denote the dyadic

block of multiquadratic fields K of the given type satisfying

Γj

2
< γj ≤ Γj (1 ≤ j ≤ 2n − 2), and

Y

2
<

2n−1
∏

j=1

γj ≤ Y. (3.6)

The fields in the set K′(Γ1, . . . ,Γ2n−2;Y ) are then represented by tuples (γj)1≤j≤2n−1 satisfying
(3.6). By counting the number of such integer tuples, we see that #K′(Γ1, . . . ,Γ2n−2;Y ) ≍ Y .
Writing Γ2n−1 := Y/

∏2n−2
j=1 Γj, the relations (3.4) say that for K ∈ K′(Γ1, . . . ,Γ2n−2;Y ) we have

Ai ≍
∏

j∈I(i)
Γj.

Since γj appears in exactly 2n−1 of the Ai’s, it follows that
2n−1
∏

i=1

Ai ≍
2n−1
∏

j=1

Γ2n−1

j = Y 2n−1
.

In particular, this implies that for any fixed set of parameters Γ1, . . . ,Γ2n−2, we can find some i
such that we have

∏

j∈I(i)
Γj ≫ Y

2n−1

2n−1 . (3.7)
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We fix this index i, and let Ai denote the set of possible values of Ai for K ∈ K′(Γ1, . . . ,Γ2n−2;Y ),
namely

Ai :=







Ai =
∏

j∈I(i)
γj

∣

∣

∣

∣

∣

∣

(γj)1≤j≤2n−1 ∈ K′(Γ1, . . . ,Γ2n−2;Y )







.

Next we count, for fixed Ai ∈ Ai, the number of tuples (γj)1≤j≤2n−1 (and hence multiquadratic
fields) in K′(Γ1, . . . ,Γ2n−2;Y ) with

∏

j∈I(i) γj = Ai. Since the divisor function τ(x) satisfies τ(x) ≪
xε for every ε > 0 (see [HW08, Theorem 317]), there are ≪ Y ε tuples (γj)j∈I(i) which satisfy
∏

j∈I(i) γj = Ai. Meanwhile, the number of subtuples (γj)j 6∈I(i) occuring in K′(Γ1, . . . ,Γ2n−2;Y )

has size ≍ ∏

j 6∈I(i) Γj. Therefore, for fixed Ai ∈ Ai we have

#







(γj)1≤j≤2n−1 ∈ K′(Γ1, . . . ,Γ2n−2;Y )

∣

∣

∣

∣

∣

∣

∏

j∈I(i)
γj = Ai







≪ Y ε
∏

j 6∈I(i)
Γj. (3.8)

On the other hand, applying Proposition 3.3 (with X =
∏

j∈I(i) Γj) yields for B ≥ 2 and
∏

j∈I(i) Γj > B4(
∑

j∈I(i) log Γj)
4 the bound

# {Ai ∈ Ai | −ωi mod 1 ≡ [0;u1, u2, . . .], u2j−1 ≤ B for all j ∈ N}

≪ B
3
2

∏

j∈I(i)
Γ

7
8
+ε

j +B3
∏

j∈I(i)
Γ

3
4
+ε

j . (3.9)

Combining (3.7), (3.8) and (3.9), we conclude for Y ≫ (B log Y )
2n−1

2n−3 that

#
{

K ∈ K′(Γ1, . . . ,Γ2n−2;Y )
∣

∣ −ωi mod 1 ≡ [0;u1, u2, . . .], u2j−1 ≤ B for all j ∈ N
}

≪



Y ε
∏

j 6∈I(i)
Γj







B
3
2

∏

j∈I(i)
Γ

7
8
+ε

j +B3
∏

j∈I(i)
Γ

3
4
+ε

j





≪ B
3
2Y 1+ε

∏

j∈I(i)
Γ
− 1

8
+ε

j +B3Y 1+ε
∏

j∈I(i)
Γ
− 1

4
+ε

j

≪ B
3
2Y 1− 2n−4

2n−1
+ε +B3Y 1− 2n−3

2n−1
+ε.

Finally, we observe that the fields in K′
X with discriminant X1− 2n−4

2n−1 < ∆K ≤ X can be
covered by ≍ log(X0)

2n−2 such dyadic blocks by varying the parameters Γj and Y ; there are

≪ X
1− 2n−4

2n−1

0 log(X0)
2n−2 fields remaining with discriminant ∆K ≤ X1− 2n−4

2n−1 . It follows that for

X0 ≫ (B logX0)
(2n−1)2

2n−3(2n−2n−4
−1) we have

#
{

K ∈ K′
X

∣

∣ −ωi mod 1 ≡ [0;u1, u2, . . .], u2j−1 ≤ B ∀j ∈ N, 1 ≤ i ≤ 2n − 1
}

≪ B
3
2X

1− 2n−4

2n−1
+ε

0 +B3X
1− 2n−3

2n−1
+ε

0 .

Theorem 1.3 then follows once we put B = 1
2C(2nR, 2n−1m) and apply Proposition 3.2.

3.3. Number of indecomposable elements. For a totally real number field F , the minimal
rank of a universal OF -lattice gives a convenient lower bound to the number of indecomposable
elements ι(F ). Using Theorem 1.3, this gives a proof that there are few multiquadratic fields with
few indecomposable elements.

To state the proof of Theorem 1.4, we recall that the Pythagoras number of a ring R is defined as
the smallest integer s(R) such that every sum of squares of elements of R can be expressed as the



UNIVERSAL LATTICES AND INDECOMPOSABLE ELEMENTS IN REAL MULTIQUADRATIC FIELDS 11

sum of s(R) squares; if such an integer does not exist, we set s(R) := ∞. For a totally real number
field F , it is well-known that the Pythagoras number s(OF ) is finite, and that s(OF ) ≤ f(d) where
f(d) is a function that depends only on the degree d = [F : Q] of F [KY21, Corollary 3.3]. The
following proposition gives a construction of a classical universal OF -lattice, using indecomposable
elements of OF .

Proposition 3.4 ([KT23, Proposition 7.1]). Let F be a totally real number field, and s = s(OF )
the Pythagoras number of OF . Let S = S(OF ) denote a set of indecomposable elements in O+

F up

to multiplication by squares of units (O×
F )

2. Then the diagonal quadratic form
∑

σ∈S
σ
(

x21,σ + x22,σ + . . .+ x2s,σ
)

defines a universal OF -lattice of rank s ·#S.

Proof of Theorem 1.4. We apply Proposition 3.4 to our multiquadratic field K. Consider the in-
clusion (O×

K)2 ⊆ O×,+
K ⊆ O×

K . Since we have [O×
K : (O×

K)2] = 2[K:Q] = 22
n

and [O×
K : O×,+

K ] ≥ 2

(because of the element −1), it follows that the set S(OK) has size #S(OK) ≤ 22
n−1ι(K). On the

other hand, we have seen that the Pythagoras number s(OK) is bounded by a function depending
only on n. From Proposition 3.4, it follows that

Rcls(K) ≤ s(OK) ·#S(OK) ≪n ι(K).

The theorem then follows immediately from Theorem 1.3. �

3.4. Proof of Theorems 1.1 and 1.2. Having established Theorems 1.3 and 1.4, we are ready to
prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let X be a sufficiently large parameter. To obtain density results for Rcls(K),
we choose the parameter R such that Theorem 1.3 gives

Kuniv(n,X,R, 1) ≪n,ε C(2nR, 2n−1)
3
2X

21−n
(

1− 2n−4

2n−1

)

+ε
+ C(2nR, 2n−1)3X

21−n
(

1− 2n−3

2n−1

)

+ε ≪ X21−n−ε.

From (3.3), we see that for fixed m ∈ N, we have as R → ∞

C(R,m) ≪
{

R2 if m = 2,

R2m−1 otherwise.
(3.10)

It follows that we may take R = X
1
72

−ε when n = 2, and R = X
1

12(2n−1)2
−ε

otherwise. Note that for

these choices, the condition X ≫ (C(2nR, 2n−1) logX)
4(2n−1)2

2n−2n−4
−1 in Theorem 1.3 is always satisfied.

This proves the density results for Rcls(K).
Meanwhile, to obtain density results for R(K), we note that if (Λ, Q) is a (possibly) non-classical

universal lattice, then (Λ, 2Q) is a classical 2OK -universal lattice of the same rank. Hence, in this
case we choose the parameter R such that Theorem 1.3 gives

Kuniv(n,X,R, 2) ≪n,ε C(2nR, 2n)
3
2X

21−n
(

1− 2n−4

2n−1

)

+ε
+ C(2nR, 2n)3X

21−n
(

1− 2n−3

2n−1

)

+ε ≪ X21−n−ε.

By (3.10), we may take R = X
1
24

−ε when n = 1, and R = X
1

12(2n−1)(2n+1
−1)

−ε
otherwise. Again, for

these choices the condition X ≫ (C(2nR, 2n) logX)
4(2n−1)2

2n−2n−4
−1 in Theorem 1.3 is always satisfied.

This proves the density results for R(K). �

Proof of Theorem 1.2. The proof is completely analogous to that of Theorem 1.1, the only difference
being that we use Theorem 1.4 instead of Theorem 1.3. �
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4. Preservation of indecomposability

In Sections 4 and 5, we focus on biquadratic fields. First we establish the notations used in these
sections.

4.1. The setup. Let p and q to be distinct squarefree positive integers, and K := Q(
√
p,
√
q) a

biquadratic field. Given p and q, we fix r = pq
gcd(p,q)2

. The biquadratic field K has three quadratic
subfields, namely Kp := Q(

√
p), Kq := Q(

√
q), and Kr := Q(

√
r). There are four embeddings of K

into R. Writing α = x+ y
√
p + z

√
q + w

√
r ∈ K, with x, y, z, w ∈ Q, the embeddings are given as

follows:

σ1(α) = x+ y
√
p+ z

√
q + w

√
r, σ2(α) = x− y

√
p+ z

√
q − w

√
r,

σ3(α) = x+ y
√
p− z

√
q − w

√
r, σ4(α) = x− y

√
p− z

√
q + w

√
r.

Swapping p, q, r if necessary, every biquadratic field belongs to exactly one of the following types:

(1) p ≡ 2 (mod 4), q ≡ 3 (mod 4),
(2) p ≡ 2, 3 (mod 4), q ≡ 1 (mod 4),
(3) p ≡ q ≡ 1 (mod 4), gcd(p, q) ≡ 1 (mod 4),
(4) p ≡ q ≡ 1 (mod 4), gcd(p, q) ≡ 3 (mod 4).

Note that in all cases, we have p ≡ r (mod 4), so p and r are interchangeable, and we may always
assume p < r. Moreover, for biquadratic fields of types (3) and (4), p, q, r are all interchangeable,
and we may further assume p < q < r. For each of the types above, an integral basis of OK is given
by (also see [Wil70, Theorem 2])

(1)
{

1,
√
p,
√
q,

√
p+

√
r

2

}

,

(2)
{

1,
√
p,

1+
√
q

2 ,
√
p+

√
r

2

}

,

(3)
{

1,
1+

√
p

2 ,
1+

√
q

2 ,
1+

√
p+

√
q+

√
r

4

}

,

(4)
{

1,
1+

√
p

2 ,
1+

√
q

2 ,
1−√

p+
√
q+

√
r

4

}

.

4.2. Diophantine approximations. For the proof of Theorem 1.5, we also need some results on
Diophantine approximations.

Let α ∈ R, and s
t ∈ Q, with s ∈ Z, t ∈ N. We say s

t is a best Diophantine approximation of the
second kind of α if we have

|s− tα| <
∣

∣s′ − t′α
∣

∣

for all (s′, t′) 6= (s, t), with s′ ∈ Z, t′ ∈ N, t′ ≤ t. In a similar fashion, we consider one-sided
Diophantine approximations. We say s

t is a best upper bound of the second kind of α if we have

s′ − t′α > 0 =⇒ 0 < s− tα < s′ − t′α

for all (s′, t′) 6= (s, t), with s′ ∈ Z, t′ ∈ N, t′ ≤ t. Analogously, we say s
t is a best lower bound of the

second kind of α if we have

s′ − t′α < 0 =⇒ s′ − t′α < s− tα < 0

for all (s′, t′) 6= (s, t), with s′ ∈ Z, t′ ∈ N, t′ ≤ t.
Remark. In the following arguments, we often say that a fraction s′

t′ is a “better Diophantine
approximation of the second kind” of α than another fraction s

t ; by this we mean |s′ − t′α| < |s− tα|.
In particular, when s

t is a best Diophantine approximation of the second kind of α, then this
implies t′ > t. The phrases “better upper (resp. lower) bound of the second kind” are interpreted
analogously.
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These Diophantine approximations are well understood in terms of continued fractions. A survey
in these topics can be found in [Per77, Chapter II] and [HT19, Section 4]. Let

α = [u0;u1, u2, . . .]

be the continued fraction representation of α. For i ∈ N0, the i-th convergent of α is given by
si
ti

:= [u0;u1, . . . , ui].

As a convention, we shall also define s−1 := 1, t−1 := 0. Note that for i ∈ N0 we have si
ti

≥ α when
i is odd, and si

ti
≤ α when i is even. Accordingly, we call these the upper (resp. lower) convergents

of α respectively. The numbers si, ti satisfy the relation

si−1ti − siti−1 = (−1)i, i ≥ 0. (4.1)

The semiconvergents of α are given by
si,l
ti,l

:=
si + lsi+1

ti + lti+1
, (0 ≤ l ≤ ui+2 − 1).

Since the semiconvergents si,l
ti,l

lie between si
ti

and si+2

ti+2
, we have si,l

ti,l
≥ α when i is odd, and si,l

ti,l
≤ α

when i is even. Accordingly, we call these the upper (resp. lower) semiconvergents of α respectively.
Note that we always have gcd(si,l, ti,l) = 1. We have the following well-known theorems (see [HT19,
Theorem 4.5]).

Theorem 4.1. (1) The set of best Diophantine approximation of the second kind of α is given
precisely by the set of convergents si

ti
for i ≥ 0.

(2) The set of best upper bounds of the second kind of α is given precisely by the set of upper
semiconvergents

si,l
ti,l

for i ≥ −1 odd, except for the pair (i, l) = (−1, 0).

(3) The set of best lower bounds of the second kind of α is given precisely by the set of lower
semiconvergents

si,l
ti,l

for i ≥ 0 even.

Corollary 4.2. Let
si,l
ti,l

be a semiconvergent of α that is not a convergent. If s′ ∈ Z, t′ ∈ N, t′ ≤ ti,l
satisfy

∣

∣s′ − t′α
∣

∣ < |si,l − ti,lα| ,
then s′

t′ =
si+1

ti+1
.

Proof. Suppose si,l
ti,l

is an upper semiconvergent. From Theorem 4.1, si,l
ti,l

is a best upper bound of the

second kind. This implies s′

t′ ≤ α is a lower bound. Since s′

t′ is a better Diophantine approximation
of the second kind of α than the i-th convergent si

ti
, we have t′ ≥ ti. But there is a unique best lower

bound of the second kind of α with denominator between ti and ti,l = ti+lti+1, namely the (i+1)-th
convergent si+1

ti+1
. The proof for the case of a lower semiconvergent is completely analogous. �

Finally, we note that the notions of convergents and semiconvergents in Section 2.2 match the
constructions of convergents and semiconvergents here. This allows us to apply techniques from
Diophantine approximations to study indecomposable elements and prove Theorem 1.5.

4.3. Proof of Theorem 1.5. Here we prove Theorem 1.5, in the form of the following theorem.

Theorem 4.3. Let p, q be squarefree positive integers satisfying the congruences given in Section 4.1.
Let K = Q(

√
p,
√
q) be a real biquadratic field, and r = pq

gcd(p,q)2
.

(1) Suppose K is a biquadratic field of type (1) or (2), and p < r. Then the indecomposable
elements in O+

Kp
and O+

Kq
remain indecomposable in O+

K .

(2) Suppose K is a biquadratic field of type (3) or (4), and p < q < r. Then the indecomposable
elements in O+

Kp
and O+

Kq
remain indecomposable in O+

K .
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We shall prove Theorem 4.3 using the Propositions 4.4 to 4.6, which deal with the cases separately.

Proposition 4.4. Let K be a biquadratic field of type (1) or (2), and p < r. Then the indecompos-
able elements in O+

Kp
remain indecomposable in O+

K .

Proof. For a biquadratic field K of these types, we have ωp =
√
p, so OKp = Z[

√
p]. Let β =

x + y
√
p ∈ O+

Kp
be an indecomposable element in O+

Kp
. We shall exclude the trivial case β = 1,

which is always indecomposable. By taking Galois conjugates, we may assume y > 0. Note that this
implies β = x− y

√
p ≤ 1. We also note that x

y is a best upper bound of the second kind of
√
p; this

follows from the characterisation of indecomposable elements (see Section 2.2) and Theorem 4.1.
Suppose β admits in O+

K a decomposition

β = β1 + β2, βi = xi + yi
√
p+ zi

√
q + wi

√
r ∈ O+

K .

Clearly we have z2 = −z1, and w2 = −w1. From the shape of the integral basis of OK given in
Section 4.1, we see that xi, yi, zi, wi ∈ 1

2Z. We consider the equation

2β = 2x− 2y
√
p = (2x1 − 2y1

√
p) + (2x2 − 2y2

√
p) = σ2(β1 + β2) + σ4(β1 + β2).

Since β1, β2 are totally positive, it follows that both E1 := 2x1 − 2y1
√
p and E2 := 2x2 − 2y2

√
p

are positive. Without loss of generality, we may assume 2x1 − 2y1
√
p ≤ x− y

√
p. Since x

y is a best
upper bound of the second kind of

√
p, this implies 2y1 ≥ y, and 2x1 ≥ x.

Now we claim that 2x1 +2y1
√
p is indecomposable in O+

Kp
. Suppose to the contrary that there is

a decomposition
2x1 + 2y1

√
p = (x1a + y1a

√
p) + (x1b + y1b

√
p).

Since x
y is a best upper bound of the second kind of

√
p, and

x1a − y1a
√
p, x1b − y1b

√
p < 2x1 − 2y1

√
p ≤ x− y

√
p,

we deduce that y1a, y1b ≥ y, and hence 2y1 ≥ 2y, and 2x1 ≥ 2x. But this implies 2x2 ≤ 0, which
contradicts to the assumption that β2 is totally positive. So the claim is established. From the
characterisation of the indecomposable elements in O+

Kp
, this says 2x1 + 2y1

√
p = α2i−1,l is an

upper semiconvergent of
√
p.

Now we find the possible decompositions of β = x + y
√
p in O+

K , that is, find z1 and w1. From
the shape of the integral basis of OK given in Section 4.1, we see that

(i) x1 + z1, y1 + w1 ∈ Z.
Meanwhile, β1 being totally positive implies

(ii)
∣

∣z1
√
q
∣

∣ < x1, |w1
√
r| < x1, and

(iii)
∣

∣2z1
√
q − 2w1

√
r
∣

∣ < 2x1 − 2y1
√
p = E1.

Using condition (iii), we see that z1 and w1 have the same sign, and we may assume both of them
are positive. Rewriting condition (iii) yields the condition

∣

∣2z1
√
q − 2w1

√
r
∣

∣ < E1 ⇐⇒
∣

∣

∣

∣

2z1 − 2w1

√
r√
q

∣

∣

∣

∣

=

∣

∣

∣

∣

2z1 − 2w1

√
p

gcd(p, q)

∣

∣

∣

∣

<
E1√
q

⇐⇒ |2 gcd(p, q)z1 − 2w1
√
p| < gcd(p, q)E1√

q
.

The assumption p < r implies gcd(p, q) <
√
q, so we have |2 gcd(p, q)z1 − 2w1

√
p| < E1. On the

other hand, condition (ii) says 2w1
√
r < 2x1 ≤ 2y1

√
p+ 1. Since p < r, and y1, w1 ∈ 1

2Z, it follows
that we have w1 ≤ y1. This says 2 gcd(p,q)z1

2w1
is a better Diophantine approximation of the second

kind of
√
p than 2x1

2y1
, with 2w1 ≤ 2y1. If 2x1 + 2y1

√
p = α2i−1 is a convergent, then such z1, w1

cannot exist, and the indecomposability of β in O+
K is established. If 2x1 + 2y1

√
p = α2i−1,l is not
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a convergent, we use Corollary 4.2 to deduce that 2 gcd(p, q)z1 +2w1
√
p = kα2i is a multiple of the

convergent α2i.
Writing αj = sj + tj

√
p for the convergents of

√
p, we have

2 gcd(p, q)z1 + 2w1
√
p = kα2i = ks2i + kt2i

√
p, (4.2)

and
2x1 + 2y1

√
p = α2i−1,l = (s2i−1 + ls2i) + (t2i−1 + lt2i)

√
p.

Suppose the biquadratic field K is of type (1). From the shape of the integral basis of OK given
in Section 4.1, we see that x1, z1 ∈ Z. Since we have gcd(2x1, 2y1) = 1, it follows that y1 ∈ 1

2 + Z,
and thus w1 ∈ 1

2 + Z by condition (i). It follows that 2w1 = kt2i is odd, and 2 gcd(p, q)z1 = ks2i is
even. This implies s2i is even. Using (4.1), we deduce that s2i−1 is odd. But then 2x1 = s2i−1+ ls2i
is odd, a contradiction. So β is indecomposable in O+

K in this case.
Now suppose the biquadratic field K is of type (2). Since gcd(2x1, 2y1) = 1, it follows that x1, y1

cannot both be integers. From condition (i) we see that there are three possibilities.
(i) Suppose x1, z1 ∈ Z, and y1, w1 ∈ 1

2 + Z. Then the argument above also applies, so β is
indecomposable in O+

K .
(ii) Suppose x1, z1 ∈ 1

2+Z, and y1, w1 ∈ Z. Since gcd(p, q) is odd, it follows from (4.2) that s2i is
odd, and t2i is even. Using (4.1) we deduce that t2i−1 is odd. This implies 2y1 = t2i−1+ lt2i
is odd, a contradiction. So β is indecomposable in O+

K .
(iii) Suppose x1, y1, z1, w1 ∈ 1

2+Z. Since gcd(p, q) is odd, it follows from (4.2) that both s2i, t2i are
odd. Using (4.1), we see that exactly one of s2i−1, t2i−1 is even. But then 2x1 = s2i−1+ ls2i
and 2y1 = t2i−1 + lt2i cannot both be odd, a contradiction. So β is indecomposable in O+

K .
This finishes the proof for biquadratic fields of type (2). �

Proposition 4.5. Let K be a biquadratic field of type (3) or (4), and p < r. Then the indecompos-
able elements in O+

Kp
remain indecomposable in O+

K .

Proof. For a biquadratic field K of these types, we have ωp =
1+

√
p

2 , so OKp = Z[
1+

√
p

2 ]. Let

β = x + y
1+

√
p

2 be an indecomposable element in O+
Kp

. Again we shall exclude the trivial case
β = 1. By taking Galois conjugates, we may assume y > 0. We also note that x

y is a best upper

bound of the second kind of −ωp =
−1+

√
p

2 ; this follows from the characterisation of indecomposable

elements (see Section 2.2) and Theorem 4.1. Note that this implies β = x+ y
1−√

p
2 ≤ 1. Suppose β

admits in O+
K a decomposition

β = β1 + β2, βi = xi + yi
1 +

√
p

2
+ zi

√
q + wi

√
r ∈ O+

K .

Again we have z2 = −z1, and w2 = −w1. From the shape of the integral basis of OK given in
Section 4.1, we see that xi, yi ∈ 1

2Z, and zi, wi ∈ 1
4Z. We consider the equation

2β = 2x+ 2y
1−√

p

2
=

(

2x1 + 2y1
1−√

p

2

)

+

(

2x2 + 2y2
1−√

p

2

)

= σ2(β1 + β2) + σ4(β1 + β2).

Since β1, β2 are totally positive, it follows that both E1 := 2x1+2y1
1−√

p
2 and E2 := 2x2+2y2

1−√
p

2

are positive. Without loss of generality, we may assume 2x1 + 2y1
1−√

p
2 ≤ x+ y

1−√
p

2 . Since x
y is a

best upper bound of the second kind of −1+
√
p

2 , this implies 2y1 ≥ y, and 2x1 ≥ x. Using the same

argument as above for K of types (1) and (2), we conclude that 2x1 + 2y1
1+

√
p

2 is indecomposable

in O+
Kp

. This says 2x1 + 2y1
1+

√
p

2 = α2i−1,l is an upper semiconvergent of −1+
√
p

2 .

Now we find the possible decompositions of β = x+ y
1+

√
p

2 in O+
K , that is, find z1 and w1. Total

positivity of β1 implies



16 SIU HANG MAN

(i)
∣

∣z1
√
q
∣

∣ < x1 +
y1
2 , |w1

√
r| < x1 +

y1
2 , and

(ii)
∣

∣2z1
√
q − 2w1

√
r
∣

∣ < 2x1 + 2y1
1−√

p
2 = E1.

Using condition (ii), we see that z1 and w1 have the same sign, and we may assume both of them
are positive. Rewriting condition (ii) yields the condition

∣

∣2z1
√
q − 2w1

√
r
∣

∣ < E1 ⇐⇒
∣

∣

∣

∣

2z1 − 2w1

√
r√
q

∣

∣

∣

∣

=

∣

∣

∣

∣

2z1 − 2w1

√
p

gcd(p, q)

∣

∣

∣

∣

<
E1√
q

⇐⇒ |2 gcd(p, q)z1 − 2w1
√
p| =

∣

∣

∣

∣

(2 gcd(p, q)z1 − 2w1) + 4w1
1−√

p

2

∣

∣

∣

∣

<
gcd(p, q)E1√

q
.

The assumption p < r implies gcd(p, q) <
√
q, so we have |(2 gcd(p, q)z1 − 2w1) + 4w1

1−√
p

2 | < E1.
On the other hand, using condition (i), we have

2w1
√
r < 2x1 + y1 =

(

2x1 + 2y1
1−√

p

2

)

+ y1
√
p ≤ y1

√
p+ 1.

Since p < r, and y1, 2w1 ∈ 1
2Z, it follows that we have 2w1 ≤ y1. Noting that 2 gcd(p, q)z1 − 2w1 is

always an integer, we see that 2 gcd(p,q)z1−2w1

4w1
is a better Diophantine approximation of the second

kind of −1+
√
p

2 than 2x1
2y1

, with 2w1 ≤ 2y1. If 2x1+2y1
1+

√
p

2 = α2i−1 is a convergent, then such z1, w1

cannot exist, and the indecomposability of β in O+
K is established. If 2x1 + 2y1

1+
√
p

2 = α2i−1,l is

not a convergent, we use Corollary 4.2 to deduce that (2 gcd(p, q)z1 − 2w1) + 4w1
1+

√
p

2 = kα2i is a
multiple of the convergent α2i.

Writing αj = sj + tj
1+

√
p

2 for the convergents of −1+
√
p

2 , we have

(2 gcd(p, q)z1 − 2w1) + 4w1
1 +

√
p

2
= kα2i = ks2i + kt2i

1 +
√
p

2
, (4.3)

and

2x1 + 2y1
1 +

√
p

2
= α2i−1,l = (s2i−1 + ls2i) + (t2i−1 + lt2i)

1 +
√
p

2
.

Suppose the biquadratic field K is of type (3). Then we have gcd(p, q) ≡ 1 (mod 4). Since
gcd(2x1, 2y1) = 1, it follows that x1, y1 cannot both be integers, so there are three possibilities.

(i) Suppose x1 ∈ Z, y1 ∈ 1
2 +Z. In this case, β1 ∈ OK implies z1, w1 ∈ 1

4 +
1
2Z, and z1−w1 ∈ Z.

Using (4.3) and that gcd(p, q) ≡ 1 (mod 4), we deduce that 2 gcd(p, q)z1 − 2w1 = ks2i is
even, and 4w1 = kt2i is odd. This implies t2i is odd, and s2i is even. Using (4.1), we
deduce that s2i−1 is odd. This implies 2x1 = s2i−1 + ls2i is odd, a contradiction. So β is
indecomposable in O+

K .
(ii) Suppose x1 ∈ 1

2Z, y1 ∈ Z. In this case, β1 ∈ OK implies z1, w1 ∈ 1
2Z, and z1 − w1 ∈ 1

2 + Z.
Using (4.3), we deduce that 2 gcd(p, q)z1 − 2w1 = ks2i is odd, and 4w1 = kt2i is even. This
implies s2i is odd, and t2i is even. Using (4.1), we deduce that t2i−1 is odd. This implies
2y1 = t2i−1 + lt2i is odd, a contradiction. So β is indecomposable in O+

K .
(iii) Suppose x1, y1 ∈ 1

2 +Z. In this case, β1 ∈ OK implies z1, w1 ∈ 1
4 +

1
2Z, and z1−w1 ∈ 1

2 +Z.
Using (4.3) and that gcd(p, q) ≡ 1 (mod 4), we deduce that both s2i, t2i are odd. Using
(4.1), we deduce that exactly one of s2i−1, t2i−1 is even. But then 2x1 = s2i−1 + ls2i and
2y1 = t2i−1 + lt2i cannot both be odd, a contradiction. So β is indecomposable in O+

K .
Finally, suppose the biquadratic field K is of type (4). Then we have gcd(p, q) ≡ 3 (mod 4).

Again, x1, y1 cannot both be integers, and there are three subcases, which can be treated completely
analogously as above. �

Proposition 4.6. (i) Suppose K is a real biquadratic field of type (1) or (2). Then the inde-
composable elements in O+

Kq
remain indecomposable in O+

K .
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(ii) Suppose K is a real biquadratic field of type (3) or (4), and q < r. Then the indecomposable
elements in O+

Kq
remain indecomposable in O+

K .

Proof. The first statement is contained in [ČLS+19, Theorem 2.1]. For biquadratic fields K of type
(3) and (4), the numbers p, q, r are all interchangeable. By swapping p and q, the second statement
follows from Proposition 4.5. �

Proof of Theorem 4.3. Propositions 4.4 and 4.5 show that indecomposable elements in O+
Kp

remain
indecomposable in O+

K , and Proposition 4.6 shows that indecomposable elements in O+
Kq

remain
indecomposable in O+

K . �

For cases not described by Theorem 4.3, indecomposable elements in a quadratic subfield need
not stay indecomposable in O+

K . We give several examples.
Example 4.7. Let p = 14, q = 91, r = 26. Then K = Q(

√
p,
√
q) is of type (1). Then 26+5

√
26 ∈

O+
Kr

is indecomposable in O+
Kr

, but admits a decomposition

26 + 5
√
26 =

(

13 +
5

2

√
14 +

√
91 +

5

2

√
26

)

+

(

13− 5

2

√
14−

√
91 +

5

2

√
26

)

in O+
K .

Example 4.8. Let p = 5, q = 13, r = 65. Then K = Q(
√
p,
√
q) is of type (3). Then 25+3

√
65

2 ∈ O+
Kr

is indecomposable O+
Kr

, but admits a decomposition

25 + 3
√
65

2
=

25 + 5
√
5 + 3

√
13 + 3

√
65

4
+

25− 5
√
5− 3

√
13 + 3

√
65

4

in O+
K .

5. Indecomposable elements in some families of real biquadratic fields

Here we restrict our attention to some specific one-parameter families of real biquadratic fields
K, and give a complete characterisation of the indecomposable elements in O+

K .
First we consider the one-parameter family of biquadratic fields described in Theorem 1.6. Let

n ≥ 6 be an integer such that

p = (2n − 1)(2n + 1), q = (2n − 1)(2n + 3), r =
pq

gcd(p, q)2
= (2n + 1)(2n + 3),

are squarefree integers. Then K = Q(
√
p,
√
q) is a biquadratic field of type (2). We have continued

fractions
√
p = [2n − 1; 1, 4n − 2],

−1 +
√
q

2
= [n− 1; 1, 2n − 1],

√
r = [2n+ 1; 1, 4n + 2].

Using results from Section 2.2, it follows that the fundamental units of the quadratic subfields
Kp,Kq,Kr are given respectively by

εp = 2n +
√
p, εq =

2n + 1 +
√
q

2
, εr = (2n + 2) +

√
r.

Note that all the fundamental units above are totally positive, and by (2.4) we have ι(Kp) = ι(Kq) =
ι(Kr) = 1, so the totally positive units are the only indecomposable elements in O+

Kp
,O+

Kq
, and O+

Kr
.

Now we find a system of generators for the group of totally positive units O×,+
K . We shall use

some results from [Kub56]. Let F be a real quadratic field, and ε ∈ O×,+
F be a totally positive unit.

Then there exist a unique, squarefree rational integer δ = δF (ε) such that δε ∈ F 2. In fact, we
may take δ to be the squarefree part of TrF/Q(ε+ 1). Observing that εTrF/Q(ε + 1) = (ε + 1)2, it
follows that

√
δε ∈ O+

F . Now let K be a real biquadratic field, with quadratic subfields K1,K2,K3,
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and with respective fundamental units ε1, ε2, ε3. Suppose ε1, ε2, ε3 are all totally positive. Then
[Kub56, Hilfssatz 11] says that for i1, i2, i3 ∈ {0, 1}, we have

εi11 ε
i2
2 ε

i3
3 ∈ K2 if and only if δK1(ε1)

i1δK2(ε2)
i2δK3(ε3)

i3 ∈ K2.

For our family of biquadratic fields, we have

δp = δKp(εp) = 4n+ 2, δq = δKq(εq) = 2n + 3, δr = δKr(εr) = 4n + 6.

Using the assumption that p, q, r are squarefree, it is straightforward to verify, using the criterion
above, that a system of fundamental units for O×

K is given by εp, εq,
√
εpεr. On the other hand, we

note that
√

δpεp
√
δrεr =

√

δpδr
√
εpεr ∈ O+

K is totally positive, while δpδr = 4(2n+1)(2n+3) is not
a rational square, so √

εpεr is not totally positive. We thus conclude that the group O×,+
K of totally

positive units is generated by εp, εq, εr. We have O×
K/O×,+

K =
{

±1,±√
εpεr

}

and in particular
[O×

K : O×,+
K ] = 4. We will make use of this fact in Section 5.8.

Now we compute a complete set of indecomposable elements of O+
K modulo totally positive units,

following the strategy outlined in [KT23]. We consider the embedding

σ : K → R4, α 7→ (σ1(α), σ2(α), σ3(α), σ4(α))

of K into the Minkowski space. The images of the totally positive elements in K then lie inside the
positive octant R4,+ = {(x1, . . . , x4) | xi > 0 for i = 1, . . . , 4}. We further consider a fundamental
domain F for the action of multiplication by (the images of) totally positive units ε ∈ O×,+

K on R4.
By [DF14, Theorem 1], the fundamental domain F is covered by the simplicial cones

Cxyz := R≥0 〈1, εx, εxεy, εxεyεz〉 ,
where {x, y, z} is a permutation of {p, q, r}. To verify that there is no overlap between the interiors
of the cones, it suffices to check that the expression

sgn(σ) · sgn
(

det
(

1, εσ(p), εσ(p)εσ(q), εσ(p)εσ(q)εσ(r)
))

has the same sign for all permutations σ of {p, q, r} (see [Col88, DF14]). Given the explicit charac-
terisations of the units εp, εq, εr above, this is straightforward computation.

To ease the computations below, we translate the cone Cxyz by ε−1
x , and consider instead the

cones
C ′
xyz := R≥0

〈

ε−1
x , 1, εy , εyεz

〉

.

Note that all the indecomposable elements lying in the cone C ′
xyz actually lie in the parallelepiped

Pxyz := [0, 1]
〈

ε−1
x , 1, εy , εyεz

〉

.

Moreover, except for the units ε−1
x , 1, εy , εyεz, all indecomposable elements lying in the parallelepiped

Pxyz has all the coordinates (with respect to the basis ε−1
x , 1, εy , εyεz) strictly less than 1.

For the computations below, we also need explicit expressions for the following units:

ε−1
p = 2n −√

p, ε−1
q =

(

n+
1

2

)

− 1

2

√
q, ε−1

r = (2n+ 2)−
√
r,

εpεq = (2n2 + n) +

(

n+
1

2

)√
p+ n

√
q +

(

n− 1

2

)√
r,

εpεr = (4n2 + 4n) + (2n+ 2)
√
p+ (2n+ 1)

√
q + 2n

√
r,

εqεr = (2n2 + 3n + 1) +

(

n+
3

2

)√
p+ (n+ 1)

√
q +

(

n+
1

2

)√
r.

Note that the biquadratic field K is of type (2) as per the classification in Section 4.1. Thus we
have

x+ y
√
p+ z

√
q + w

√
r ∈ OK ⇐⇒ x, y, z, w ∈ 1

2
Z, x+ z, y +w ∈ Z. (5.1)
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For the computations, it is also convenient to have good rational approximations of
√
p,
√
q,
√
r,

coming from the continued fractions given above:
8n2−2n−1

4n−1 <
√
p < 2n, 2n2+n−1

n <
√
q < 4n2+4n−1

2n+1 , 8n2+14n+5
4n+3 <

√
r < 2n+ 2. (5.2)

5.1. The parallelepiped Ppqr. We first consider the parallelepiped Ppqr spanned by ε−1
p , 1, εq, εqεr.

Let
α = aε−1

p + b+ cεq + dεqεr = x+ y
√
p+ z

√
q + w

√
r ∈ OK , 0 ≤ a, b, c, d < 1

be an integral point in the semi-open parallelepiped. Since εqεr is the only basis element of the
parallelepiped with a nonzero coefficient in

√
r, we use (5.1) and the condition 0 ≤ d < 1 to conclude

that d = t
2n+1 for some t ∈ {0, . . . , 2n}. Also, (5.1) implies a − d, c + d, b − a ∈ Z. The condition

0 ≤ a, b, c < 1 then gives

(a, b, c, d) =

{

(0, 0, 0, 0), or
( t
2n+1 ,

t
2n+1 , 1 − t

2n+1 ,
t

2n+1) (1 ≤ t ≤ 2n).

Define

µ :=
1

2n+ 1

(

ε−1
p + 1− εq + εqεr

)

=

(

n+
3

2

)

+
1

2

√
p+

1

2

√
q +

1

2

√
r. (5.3)

Then the integral points α lying in this semi-open parallelepiped are given by

α = 0, or α = εq + tµ (1 ≤ t ≤ 2n).

Using (5.2), we verify that µ is totally positive. It follows that none of the totally positive elements
lying in this semi-open parallelepiped are indecomposable.

5.2. The parallelepiped Pprq. Now we consider the parallelepiped Pprq spanned by ε−1
p , 1, εr, εrεq.

Let
α = aε−1

p + b+ cεr + dεrεq = x+ y
√
p+ z

√
q + w

√
r ∈ OK , 0 ≤ a, b, c, d < 1

be an integral point in the semi-open parallelepiped. Since εrεq is the only basis element of the
parallelepiped with a nonzero coefficient in

√
q, we use (5.1) and the condition 0 ≤ d < 1 to conclude

that d = t
2n+2 for some t ∈ {0, . . . , 2n + 1}. Also, (5.1) implies 2a− d, 2c− d, a− c, 2a− b ∈ Z. The

condition 0 ≤ a, b, c < 1 then gives

(a, b, c, d) =

{

( t
4n+4 ,

t
2n+2 ,

t
4n+4 ,

t
2n+2 ) (0 ≤ t ≤ 2n+ 1),

(12 + t
4n+4 ,

t
2n+2 ,

1
2 +

t
4n+4 ,

t
2n+2) (0 ≤ t ≤ 2n+ 1).

It follows that the integral points α lying in this semi-open parallelepiped are given by

α = tµ (0 ≤ t ≤ 2n+ 1), or α =
ε−1
p + εr

2
+ tµ (0 ≤ t ≤ 2n+ 1),

where µ is as in (5.3). Since µ is totally positive, we see that only µ and ε−1
p +εr

2 can be indecom-
posable. We show that this is indeed the case.

Proposition 5.1. The elements µ,
ε−1
p +εr

2 ∈ O+
K are indecomposable.

Proof. We prove µ is indecomposable; the proof for ε−1
p +εr

2 is similar. Suppose we have a decompo-
sition

µ = β1 + β2, βi = xi + yi
√
p+ zi

√
q + wi

√
r ∈ O+

K .

Since w1 + w2 =
1
2 and w1, w2 ∈ 1

2Z, we may assume w1 ≥ 1
2 . Since β1 is totally positive, we have

2x1 − 2w1

√
r > 0.
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As x1 < n + 3
2 , this forces w1 = 1

2 , and x1 = n + 1. But then we have w2 = 0, and x2 = 1
2 . The

integrality condition (5.1) implies z2 ∈ 1
2 + Z. Meanwhile, β2 being totally positive implies

x2 − |z2|
√
q = 1

2 − |z2|
√
q > 0,

which is impossible, because |z2| ≥ 1
2 , and

√
q > 1. �

5.3. The parallelepiped Pqpr. Now we consider the parallelepiped Pqpr spanned by ε−1
q , 1, εp, εpεr.

Let
α = aε−1

q + b+ cεp + dεpεr = x+ y
√
p+ z

√
q + w

√
r ∈ OK , 0 ≤ a, b, c, d < 1

be an integral point in the semi-open parallelepiped. Since εpεr is the only basis element of the
parallelepiped with a nonzero coefficient in

√
r, we use (5.1) and the condition 0 ≤ d < 1 to

conclude that d = t
4n for some t ∈ {0, . . . , 4n − 1}. Also, (5.1) implies a − 2d, c + 2d, a + 2b ∈ Z.

Then condition 0 ≤ a, b, c < 1 then gives

(a, b, c, d) =



















(0, 0, 0, 0),

( t
2n , 1− t

4n , 1− t
2n ,

t
4n) (1 ≤ t ≤ 2n− 1),

(0, 12 , 0,
1
2),

( t
2n ,

1
2 − t

4n , 1− t
2n ,

1
2 +

t
4n) (1 ≤ t ≤ 2n− 1).

It follows that the integral points α lying in this semi-open parallelepiped are given by

α =



















0,

1 + εp + t(µ− 1) (1 ≤ t ≤ 2n− 1),
1+εpεr

2 ,
1+εpεr

2 + εp + t(µ− 1) (1 ≤ t ≤ 2n− 1),

where µ is as in (5.3). Note that µ− 1 is not totally positive. We have explicit decompositions for
the following elements:

1 + εp + (µ − 1) = 1 + (εp + µ− 1) ,

1 + εp + 2(µ − 1) = µ+ (εp + µ− 1) ,

1 + εp + (2n − 1)(µ − 1) = εpεq + ε−1
q ,

1 + εpεr
2

+ εp + (µ − 1) =
1 + εpεr

2
+ (εp + µ− 1) ,

1 + εpεr
2

+ εp + 2(µ − 1) =

(

1 + εpεr
2

+ µ− 1

)

+ (εp + µ− 1) ,

1 + εpεr
2

+ εp + (2n − 1)(µ − 1) = (εpεr − µ− 1) + ε−1
q .

Meanwhile, we have 1+εpεr
2 = εp

( ε−1
p +εr

2

)

, so 1+εpεr
2 is equivalent to the indecomposable element

ε−1
p +εr

2 found in Proposition 5.1. The following proposition says the remaining elements are inde-
composable.

Proposition 5.2. For 3 ≤ t ≤ 2n− 2, the elements 1+ εp + t(µ− 1) and
1+εpεr

2 + εp + t(µ− 1) are
indecomposable.

Proof. We prove that 1 + εp + t(µ − 1) is indecomposable for 3 ≤ t ≤ 2n − 2; the argument for
1+εpεr

2 + εp + t(µ − 1) is similar. Throughout the proof, we keep in mind of the assumption that
n ≥ 6 and 3 ≤ t ≤ 2n − 2. Write

γt := 1 + εp + t(µ− 1) = (t+ 2)

(

n+
1

2

)

+

(

t

2
+ 1

)√
p+

t

2

√
q +

t

2

√
r,
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and suppose we have a decomposition

γt = β1 + β2, βi = xi + yi
√
p+ zi

√
q + wi

√
r ∈ O+

K .

Total positivity of β1, β2 implies

xi − |yi|
√
p > 0, xi − |zi|

√
q > 0, xi − |wi|

√
r > 0. (5.4)

Since xi ≤ (t+ 2)(n + 1
2)− 1

2 , this implies

|yi| ≤
t

2
+ 1, |zi| ≤

t

2
+ 1, |wi| ≤

t+ 1

2
. (5.5)

It follows that
0 ≤ yi ≤ t

2 + 1, −1 ≤ zi ≤ t
2 + 1, −1

2 ≤ wi ≤ t+1
2 .

Total positivity of β1, β2 also implies

x1 − y1
√
p−

∣

∣z1
√
q − w1

√
r
∣

∣ > 0, x2 − y2
√
p−

∣

∣z2
√
q − w2

√
r
∣

∣ > 0, (5.6)

and
x1 + y1

√
p−

∣

∣z1
√
q + w1

√
r
∣

∣ > 0, x2 + y2
√
p−

∣

∣z2
√
q + w2

√
r
∣

∣ > 0. (5.7)

Now we claim that |zi − wi| ≤ 1
2 . To see this, we suppose to the contrary that |zi − wi| ≥ 1; by

swapping indices, we may assume w1 − z1 ≥ 1. Then, using (5.6) we have

(t+ 2)

(

n+
1

2

)

−
(

t

2
+ 1

)√
p = (x1 + x2)− (y1 + y2)

√
p >

∣

∣z1
√
q − w1

√
r
∣

∣+
∣

∣z2
√
q − w2

√
r
∣

∣ .

Meanwhile, using that w1 ≥ z1 + 1 ≥ 0, we obtain the inequality
∣

∣z1
√
q − w1

√
r
∣

∣ =
∣

∣(z1 − w1)
√
q − w1

(√
r −√

q
)∣

∣ ≥ √
q.

This implies

2n ≥ (t+ 2)

(

n+
1

2

)

−
(

t

2
+ 1

)

(2n − 1) > (t+ 2)

(

n+
1

2

)

−
(

t

2
+ 1

)√
p

>
∣

∣z1
√
q − w1

√
r
∣

∣+
∣

∣z2
√
q − w2

√
r
∣

∣ >
√
q,

a contradiction. So the claim is established, and we are left with two possibilities, namely zi = wi,
and |zi − wi| = 1

2 .
First we consider the case zi = wi. We note that our assumptions above imply xi ≥ 2nyi. To

see this, we suppose to the contrary that xi ≤ 2nyi − 1
2 . Then (5.4) gives (2n −√

p)yi >
1
2 . Using

(5.2), this gives yi
4n−1 > 1

2 , hence yi ≥ 2n > t
2 + 1, which contradicts (5.5). So we may write

xi + yi
√
p = x′i + yi(2n +

√
p), with x′i ≥ 0.

Next we claim that x′i ≥ |zi|. Suppose this is not the case, and we have x′i ≤ |zi| − 1 (note that
we have x′i − zi ∈ Z). Then (5.6) says

yi (2n −√
p) > |zi|

(√
r −√

q
)

− x′i ≥ |zi|
(√

r −√
q − 1

)

+ 1 ≥ 1.

Using (5.2), we get yi > (2n − √
p)−1 > 4n − 1, which contradicts (5.5). So we have x′i ≥ |zi| as

claimed. Since x′1 + x′2 = t
2 + 1 = z1 + z2 + 1, and x′i − zi ∈ Z, it follows that x′i = |zi| or |zi|+ 1.

By swapping indices, we may actually assume that (x′1, x
′
2) = (|z1| , |z2|) or (|z1|+ 1, |z2|).

(i) Suppose (x′1, x
′
2) = (|z1| , |z2|). Then we use (5.6) and obtain the inequality

yi (2n−√
p) > |zi|

(√
r −√

q
)

− x′i = |zi|
(√

r −√
q − 1

)

, i ∈ {1, 2} .
Using (5.2), this yields

yi > |zi|
√
r −√

q − 1

2n−√
p

> |zi|
(

3− 16n + 14

8n2 + 10n + 3

)

.
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For n ≥ 6, we verify that this inequality implies

yi ≥
{

3 |zi| if |zi| ≤ 3,

3 |zi| − 1 otherwise.
(5.8)

(ii) Now suppose (x′1, x
′
2) = (|z1|+1, |z2|). In this case, the bound (5.8) still holds for i = 2. On

the other hand, we use (5.7) and obtain the inequality

y1 (2n+
√
p) > |z1|

(√
r +

√
q
)

− x′1 = |z1|
(√

r +
√
q − 1

)

− 1.

Using (5.2), this yields

y1 > |z1|
√
r +

√
q − 1

2n +
√
p

− 1

2n+
√
p
> |z1|

(

1 +
8n2 + n− 3

16n3 + 12n2

)

− 4n− 1

16n2 − 4n− 1
.

This implies

y1 ≥
{

|z1| if |z1| ≤ 1
2 ,

|z1|+ 1 otherwise.

After excluding the trivial decomposition (x′i, yi, zi, wi) = (0, 0, 0, 0), we conclude in each of the
cases that when |z1| + |z2| ≥ 3

2 , we always have y1 + y2 ≥ |z1| + |z2| + 2 > t
2 + 1, a contradiction.

So no decomposition of γt with zi = wi exists.
Now we consider the case |zi − wi| = 1

2 . We may actually assume w1 = z1 − 1
2 . Then (5.5) says

0 ≤ z1 ≤ t
2 + 1. For 3 ≤ t ≤ 2n− 2, we check using (5.2) that

z1
√
q −

(

z1 −
1

2

)√
r > 0,

(

t

2
− z1

)√
q −

(

t+ 1

2
− z1

)√
r < 0.

It follows that

∣

∣z1
√
q − w1

√
r
∣

∣+
∣

∣z2
√
q −w2

√
r
∣

∣ =

∣

∣

∣

∣

z1
√
q −

(

z1 −
1

2

)√
r

∣

∣

∣

∣

+

∣

∣

∣

∣

(

t

2
− z1

)√
q −

(

t+ 1

2
− z1

)√
r

∣

∣

∣

∣

=
√
r +

(

t

2
− 2z1

)

(√
r −√

q
)

≥
(

t

2
+ 2

)√
q −

(

t

2
+ 1

)√
r.

Using (5.6), we get
(

t

2
+ 1

)

(2n + 1−√
p) >

(

t

2
+ 2

)√
q −

(

t

2
+ 1

)√
r,

which can be checked using (5.2) that it is not solvable for n ≥ 6 and 3 ≤ t ≤ 2n− 3. Therefore, for
3 ≤ t ≤ 2n − 3, no decomposition of γt with |zi − wi| = 1

2 exists. Now let t = 2n − 2. Then (5.6)
implies

(

t

2
+ 1

)

(2n + 1−√
p) >

√
r +

(

t

2
− 2z1

)

(√
r −√

q
)

,

which implies z1 =
t
2 + 1 using (5.2). But then (5.7) and (5.2) implies

4n2 + n > n (2n + 1 +
√
p) > (n+ 1)

√
q + n

√
r >

16n4 + 32n3 + 14n2 − 4n− 3

4n2 + 3n

which does not hold for n ≥ 6. So γ2n−2 is also indecomposable. This finishes the proof of the
proposition. �
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5.4. The parallelepiped Pqrp. Now we consider the parallelepiped Pqrp spanned by ε−1
q , 1, εr , εrεp.

Let
α = aε−1

q + b+ cεr + dεrεp = x+ y
√
p+ z

√
q + w

√
r ∈ OK , 0 ≤ a, b, c, d < 1

be an integral point in the semi-open parallelepiped. Since εrεp is the only basis element of the
parallelepiped with a nonzero coefficient in

√
p, we use (5.1) and the condition 0 ≤ d < 1 to

conclude that d = t
4n+4 for some t ∈ {0, . . . , 4n+ 3}. Also,(5.1) implies a + 2d, c − 2d, a − 2b ∈ Z.

The condition 0 ≤ a, b, c < 1 then gives

(a, b, c, d) =



















(0, 0, 0, 0),

(1− t
2n+2 , 1− t

4n+4 ,
t

2n+2 ,
t

4n+4) (1 ≤ t ≤ 2n+ 1),

(0, 12 , 0,
1
2 ),

(1− t
2n+2 ,

1
2 − t

4n+4 ,
t

2n+2 ,
1
2 +

t
4n+4) (1 ≤ t ≤ 2n+ 1).

It follows that the integral points α lying in this semi-open parallelepiped are given by

α =



















0,

1 + ε−1
q + t(µ− 1) (1 ≤ t ≤ 2n + 1),

1+εrεp
2 ,

1+εrεp
2 + ε−1

q + t(µ− 1) (1 ≤ t ≤ 2n + 1),

where µ is as in (5.3). The element 1+εrεp
2 = εp

( ε−1
p +εr

2

)

is equivalent to the indecomposable element
ε−1
p +εr

2 found in Proposition 5.1. For the other elements, we check using arguments analogous to
Proposition 5.2 that 1 + ε−1

q + t(µ − 1) and 1+εrεp
2 + ε−1

q + t(µ − 1) for 4 ≤ t ≤ 2n − 1 are the
indecomposable elements.

5.5. The parallelepiped Prpq. Now we consider the parallelepiped Prpq spanned by ε−1
r , 1, εp, εpεq.

Let
α = aε−1

r + b+ cεp + dεpεq = x+ y
√
p+ z

√
q + w

√
r ∈ OK , 0 ≤ a, b, c, d < 1

be an integral point in the semi-open parallelepiped. Since εpεq is the only basis element of the
parallelepiped with a nonzero coefficient in

√
q, we use (5.1) and the condition 0 ≤ d < 1 to conclude

that d = t
2n for some t ∈ {0, . . . , 2n− 1}. Also, (5.1) implies 2a+ d, 2c + d, a − c, 2a + b ∈ Z. The

condition 0 ≤ a, b, c < 1 then gives

(a, b, c, d) =











(0, 0, 0, 0),

(1− t
4n ,

t
2n , 1− t

4n ,
t
2n) (1 ≤ t ≤ 2n − 1),

(12 − t
4n ,

t
2n ,

1
2 − t

4n ,
t
2n) (0 ≤ t ≤ 2n − 1).

It follows that the integral points α lying in this semi-open parallelepiped are given by

α =











0,

ε−1
r + εp + t(µ− 2) (1 ≤ t ≤ 2n − 1),
ε−1
r +εp

2 + t(µ− 2) (0 ≤ t ≤ 2n − 1),

where µ is as in (5.3). Note that µ−2 is not totally positive. The element ε−1
r +εp

2 = εpε
−1
r

(ε−1
p +εr

2

)

is

equivalent to the indecomposable element ε−1
p +εr

2 found in Proposition 5.1. For the other elements,

we check using arguments analogous to Proposition 5.2 that ε−1
r +εp

2 + t(µ − 2) for 2 ≤ t ≤ 2n − 1
are the indecomposable elements.
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5.6. The parallelepiped Prqp. Now we consider the parallelepiped Prqp spanned by ε−1
r , 1, εq , εqεp.

Let
α = aε−1

r + b+ cεq + dεqεp = x+ y
√
p+ z

√
q + w

√
r ∈ OK , 0 ≤ a, b, c, d < 1

be an integral point in the semi-open parallelepiped. Since εqεp is the only basis element of the
parallelepiped with a nonzero coefficient in

√
p, we use (5.1) and the condition 0 ≤ d < 1 to conclude

that d = t
2n+1 for some t ∈ {0, . . . , 2n}. Also, (5.1) implies a + d, c − d, a + b ∈ Z. The condition

0 ≤ a, b, c < 1 then gives

(a, b, c, d) =

{

(0, 0, 0, 0), or
(1− t

2n+1 ,
t

2n+1 ,
t

2n+1 ,
t

2n+1) (1 ≤ t ≤ 2n).

It follows that the integral points α lying in this semi-open parallelepiped are given by

α = 0, or α = ε−1
r + t(µ − 2) (1 ≤ t ≤ 2n),

where µ is as in (5.3). For 1 ≤ t ≤ 2n, we check that ε−1
r + t(µ− 2)− εq ∈ O+

K . It follows that none
of the totally positive elements lying in this semi-open parallelepiped are indecomposable.

Combining the computations above, we obtain a complete set of indecomposable elements in O+
K

modulo totally positive units. The proof of Theorem 1.6 is thus finished.

5.7. More families. We apply analogous arguments and compute the indecomposable elements
for some other families of biquadratic fields.

Consider the family K = Q(
√
p,
√
q), with p = (2n − 1)(2n + 1), q = (4n − 3)(4n + 1), where

9 ≤ n ∈ N is chosen such that p, q are coprime and squarefree. Then we have r = pq = (8n2 − 2n−
3)(8n2 − 2n − 1). We have continued fractions

√
p = [2n − 1; 1, 4n − 2],

−1 +
√
q

2
= [2n− 2; 1, 4n − 3],

√
r = [8n2 − 2n− 3; 1, 16n2 − 4n− 6].

Using results from Section 2.2, the fundamental units of the quadratic subfields Kp,Kq,Kr are given
respectively by

εp = 2n+
√
p, εq =

4n− 1 +
√
q

2
, εr = (8n2 − 2n− 2) +

√
r.

All the fundamental units above are totally positive, and by (2.4) we have ι(Kp) = ι(Kq) = ι(Kr) =
1, so the totally positive units are the only indecomposable elements in O+

Kp
,O+

Kq
, and O+

Kr
. Using

Kubota’s criterion, we verify that O×,+
K is generated by εp, εq, εr. Via analogous computations we

obtain the following theorem.

Theorem 5.3. Let n ≥ 9 be an integer such that p = (2n − 1)(2n + 1), q = (4n − 3)(4n + 1) are
coprime, squarefree integers. Let K = Q(

√
p,
√
q), and r = pq. A complete set of indecomposable

elements of O+
K modulo totally positive units is given by

1,
ε−1
p + εr

2
+ t

(

εq − ε−1
p

)

(0 ≤ t ≤ 2n− 2),
(

ε−1
p − εq

)

+ t (εpεq − 1) (1 ≤ t ≤ 2n− 1).

In particular, we have ι(K) = 4n− 1.

Next we consider the family K = Q(
√
p,
√
q), with p = (2n − 1)(2n + 1), q = (4n − 1)(4n + 3),

where 2 ≤ n ∈ N is chosen such that p, q are coprime and squarefree. Then we have r = pq =
(8n2 + 2n− 3)(8n2 + 2n − 1). We have continued fractions

√
p = [2n − 1; 1, 4n − 2],

−1 +
√
q

2
= [2n− 1; 1, 4n − 1],

√
r = [8n2 + 2n− 3; 1, 16n2 + 4n− 6].
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Using results from Section 2.2, the fundamental units of the quadratic subfields Kp,Kq,Kr are given
respectively by

εp = 2n+
√
p, εq =

4n+ 1 +
√
q

2
, εr = (8n2 + 2n− 2) +

√
r.

Again, all the fundamental units above are totally positive, and by (2.4) we have ι(Kp) = ι(Kq) =
ι(Kr) = 1, so the totally positive units are the only indecomposable elements in O+

Kp
,O+

Kq
, and O+

Kr
.

Using Kubota’s criterion, we verify that O×,+
K is generated by εp, εq, εr. Via analogous computations

we obtain the following theorem.

Theorem 5.4. Let n ≥ 2 be an integer such that p = (2n − 1)(2n + 1), q = (4n − 1)(4n + 3) are
coprime, squarefree integers. Let K = Q(

√
p,
√
q), and r = pq. A complete set of indecomposable

elements of O+
K modulo totally positive units is given by

1,
ε−1
p + εr

2
,

εp + εr
2

+ t
(

εp − ε−1
q

)

(0 ≤ t ≤ 2n− 2),
(

ε−1
q − εp

)

+ t (εpεq − 1) (1 ≤ t ≤ 2n− 1).

In particular, we have ι(K) = 4n.

Remark. The families in Theorems 5.3 and 5.4 are also infinite. This can be proved using sieve
arguments (see the remark after Theorem 1.6).

5.8. Minimal rank of universal lattices. Using Proposition 3.4, we can derive easy upper bounds
on the minimal rank of universal lattices for real biquadratic fields. It is known that for a biquadratic
field K the Pythagoras number s(OK) of K is at most 7 [KY21, Corollary 3.3]. It follows from the
proof of Theorem 1.4 that we have R(K) ≤ Rcls(K) ≤ 56ι(K).

For the one-parameter families above, we are able to further improve this bound, because we can
explicitly compute the size of the quotient [O×,+

K : (O×
K)2], using Kubota’s criterion [Kub56].

Corollary 5.5. Assume the setup in Theorem 1.6. Then we have R(K) ≤ Rcls(K) ≤ 28(10n−15).

Proof. For this family, we have seen in the beginning of the section that [O×
K : O×,+

K ] = 4. It follows
that [O×,+

K : (O×
K)2] = 4. Combining this result with Theorem 1.6 and Proposition 3.4 yields the

bound. �

For the families in Theorems 5.3 and 5.4, similar computations show that [O×,+
K : (O×

K)2] = 4 as
well. So we have the following:

Corollary 5.6. Assume the setup in Theorem 5.3. Then we have R(K) ≤ Rcls(K) ≤ 28(4n − 1).

Corollary 5.7. Assume the setup in Theorem 5.4. Then we have R(K) ≤ Rcls(K) ≤ 112n.

5.9. Some computational results. Here we compute ι(K) for some real biquadratic fields K =

Q(
√
p,
√
q) with small discriminant. We also provide the ratio log(ι(K))

log(∆K) as reference. For the fields
marked with an asterisk, there are “extra” totally positive units which are not products of totally
positive units in the quadratic subfields. This partly accounts for their relatively low number of
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indecomposable elements compared to other fields of similar discriminants.

(p, q, r) ι(Kp) ι(Kq) ι(Kr) ι(K) log(ι(K))
log(∆K)

(2, 3, 6)∗ 2 1 2 5 0.2532
(2, 5, 10)∗ 2 1 6 14 0.3577
(2, 7, 14)∗ 2 2 2 4 0.1722
(3, 5, 15) 1 1 1 3 0.1342
(3, 21, 7) 1 1 2 15 0.3056
(2, 11, 22)∗ 2 3 6 79 0.4879
(2, 13, 26)∗ 2 3 10 56 0.4334
(2, 15, 30) 2 1 2 28 0.3480
(6, 5, 30) 2 1 2 16 0.2896
(6, 15, 10)∗ 2 1 6 12 0.2595
(10, 3, 30)∗ 6 1 2 21 0.3180
(3, 33, 11) 1 4 3 59 0.4175
(2, 17, 34)∗ 2 5 2 24 0.3235
(7, 5, 35) 2 1 1 11 0.2426
(2, 19, 38)∗ 2 7 6 111 0.4687
(3, 13, 39)∗ 1 3 4 13 0.2540
(2, 21, 42)∗ 2 1 2 2 0.0676
(6, 7, 42) 2 2 2 64 0.4058
(6, 21, 14) 2 1 2 48 0.3778
(14, 3, 42) 2 1 2 40 0.3600
(3, 17, 51)∗ 1 5 7 47 0.3620
(11, 5, 55)∗ 3 1 4 9 0.2037
(3, 57, 19) 1 7 7 243 0.5059
(5, 13, 65)∗ 1 3 9 35 0.3197
(2, 33, 66) 2 4 8 198 0.4742

(p, q, r) ι(Kp) ι(Kq) ι(Kr) ι(K) log(ι(K))
log(∆K)

(6, 11, 66) 2 3 8 170 0.4605
(6, 33, 22)∗ 2 4 6 120 0.4293
(22, 3, 66) 6 1 8 226 0.4861
(3, 69, 23)∗ 1 2 2 7 0.1731
(2, 35, 70)∗ 2 1 6 13 0.2276
(10, 7, 70) 6 2 6 232 0.4833
(10, 35, 14) 6 1 2 114 0.4203
(14, 5, 70) 2 1 6 76 0.3843
(7, 77, 11)∗ 2 1 3 16 0.2419
(2, 39, 78) 2 4 2 150 0.4362
(6, 13, 78)∗ 2 3 2 22 0.2691
(6, 39, 26) 2 4 10 136 0.4277
(26, 3, 78) 10 1 2 102 0.4027
(5, 17, 85)∗ 1 5 9 51 0.3373
(3, 29, 87) 1 5 3 45 0.3252
(19, 5, 95)∗ 7 1 2 13 0.2159
(2, 51, 102)∗ 2 7 10 111 0.3917
(6, 17, 102)∗ 2 5 10 116 0.3954
(6, 51, 34) 2 7 2 222 0.4494
(34, 3, 102) 2 1 10 130 0.4049
(3, 105, 35)∗ 1 3 1 3 0.0909
(5, 21, 105) 1 1 3 14 0.2185
(7, 105, 15) 2 3 1 115 0.3928
(15, 21, 35) 1 1 1 5 0.1332
(2, 55, 110) 2 4 2 132 0.4011

The examples above suggest that biquadratic fields tend to have more indecomposable elements,
if their quadratic subfields do. Based on this observation, we compile another list of biquadratic
fields K, for which every quadratic subfield F ⊆ K satisfies ι(F ) = 1, and does not lie in the
aforementioned families:

(p, q, r) ι(K) log(ι(K))
log(∆K)

(3, 5, 15) 3 0.1342
(35, 357, 255) 38 0.2050
(35, 285, 399) 32 0.1929

(143, 1365, 1155) 98 0.2083
(143, 1221, 1443) 92 0.2044
(195, 8645, 399) 120 0.2073
(255, 13685, 483) 150 0.2086
(195, 1085, 8463) 150 0.2080
(323, 3021, 2703) 158 0.2069
(323, 3021, 2703) 152 0.2047
(399, 1085, 8835) 179 0.2089
(195, 957, 20735) 166 0.2057

(p, q, r) ι(K) log(ι(K))
log(∆K)

(483, 12765, 1295) 174 0.2017
(255, 1221, 34595) 212 0.2070
(899, 8277, 7743) 278 0.2043
(899, 7917, 8463) 272 0.2031
(483, 1677, 89999) 353 0.2111
(1023, 24645, 2915) 256 0.1995
(1295, 11877, 11235) 338 0.2033
(1295, 11445, 12099) 332 0.2024
(1155, 7917, 20735) 338 0.2026
(1443, 3965, 33855) 401 0.2083
(1023, 164021, 1443) 480 0.2130
(1023, 5621, 47523) 450 0.2099

As a comparison, the biquadratic fields from Theorems 5.3 and 5.4 satisfy ι(K) ≍ ∆
1/8
K . This

suggests that these fields are among those for which ι(K) are the smallest.
In view of the trends we found above, we expect Conjecture 1.7 to be true. This however appears

to be out of reach with current techniques, mainly because very little is known about the structure
of indecomposable elements in biquadratic fields, and there is no known algorithm which finds these
indecomposable elements efficiently.
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