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ON THE POWER OF GRAPH NEURAL NETWORKS AND THE

ROLE OF THE ACTIVATION FUNCTION

SAMMY KHALIFE AND AMITABH BASU

Abstract. In this article we present new results about the expressivity of
Graph Neural Networks (GNNs). We prove that for any GNN with piecewise

polynomial activations, whose architecture size does not grow with the graph
input sizes, there exists a pair of non-isomorphic rooted trees of depth two such
that the GNN cannot distinguish their root vertex up to an arbitrary number
of iterations. In contrast, it was already known that unbounded GNNs (those
whose size is allowed to change with the graph sizes) with piecewise polyno-
mial activations can distinguish these vertices in only two iterations. It was
also known prior to our work that with ReLU (piecewise linear) activations,
bounded GNNs are weaker than unbounded GNNs [ACI+22]. Our approach
adds to this result by extending it to handle any piecewise polynomial activa-
tion function, which goes towards answering an open question formulated by
Grohe [Gro21] more completely. Our second result states that if one allows
activations that are not piecewise polynomial, then in two iterations a single
neuron perceptron can distinguish the root vertices of any pair of nonisomor-
phic trees of depth two (our results hold for activations like the sigmoid, hy-
perbolic tan and others). This shows how the power of graph neural networks
can change drastically if one changes the activation function of the neural net-
works. The proof of this result utilizes the Lindemann-Weierstrauss theorem
from transcendental number theory.

1. Introduction

Graph Neural Networks (GNNs) form a popular framework for a variety of com-
putational tasks involving network data, with applications ranging from analysis of
social networks, structure and functionality of molecules in chemistry and biological
applications, computational linguistics, simulations of physical systems, techniques
to enhance optimization algorithms, to name a few. The interested reader can
look at [ZAL18, BBL+17, DZC+19, DBV16, SGT+08, Ham20, DMI+15, KDZ+17,
SYS+20, ZCH+20, BPL+16, CCK+21, SGGP+20], which is a small sample of a
large and actively growing body of work.

Given the rise in importance of inference and learning problems involving graphs
and the use of GNNs for these tasks, significant progress has been made in recent
years to understand their computational capabilities. See the excellent recent sur-
vey [Jeg22] for an exposition of some aspects of this research. One direction of inves-
tigation is on their so-called separation power which is the ability of GNNs to distin-
guish graphs with different structures. In this context, it becomes natural to com-
pare their separation power to other standard computation models on graphs, such
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2 ON THE POWER OF GRAPH NEURAL NETWORKS

as different variants of the Wesfeiler-Lehman algorithm [CFI92, XHLJ18, HV21],
and the very closely related color refinement algorithm [Gro21]. These investi-
gations are naturally connected with descriptive complexity theory, especially to
characterizations in terms of certain logics; see [Gro17, Gro21] for introductions to
these different connections. A closely related line of work is to investigate how well
general functions on the space of graphs can be approximated using functions rep-
resented by GNNs; see [AL21, KP19, MFSL19, GR22] for a sample of work along
these lines. Our work in this paper focuses on improving our understanding of the
separation power of GNNs.

At a high level, the computational models of GNNs, Wesfeiler-Lehman/color re-
finement type algorithms and certain logics in descriptive complexity are intimately
connected because they all fall under the paradigm of trying to discern something
about the global structure of a graph from local neighborhood computations. Infor-
mally, these algorithms iteratively maintain a state (a.k.a. “color”) for each vertex
of the graph and in every iteration, the state of a vertex is updated by performing
some predetermined set of operations on the set of current states of its neighbors
(including itself). The different kinds of allowed states and allowed operations deter-
mine the computational paradigm. For instance, in GNNs, the states are typically
vectors in some Euclidean space and the operations for updating the state are func-
tions that can be represented by deep neural networks. As another example, in
the color refinement algorithm, the states are multisets of some predetermined fi-
nite class of labels and the operations are set operations on these multisets. A
natural question then arises: Given two of these models, which one is more pow-
erful, or equivalently, can one of the models always simulate the other? Several
mathematically precise answers to such questions have already been obtained. For
instance, it has been proved independently by [MRF+19] and [XHLJ18] that the
color refinement algorithm precisely captures the expressiveness of GNNs in the
sense that there is a GNN distinguishing two nodes of a graph (by assigning them
different state vectors) if and only if color refinement assigns different multisets
to these nodes. Such a characterization holds for unbounded GNNs, i.e. GNNs
for which the underlying neural network sizes can grow with the size of the input
graphs. This implies a characterization of the distinguishability of nodes by GNNs
as being equivalent to what is known as Graded Modal Counting Logic (GC2); see
[BKM+20] for some recent, quantitatively precise results in this direction.

Reviewing these equivalences in a recent survey [Gro21], Grohe emphasizes the
fact that the above mentioned equivalence between the separation power of GNNs
and the color refinement algorithm has only been established for unbounded GNNs
whose neural network sizes are allowed to grow as a function of the size of the input
graphs. Question 1 on his list of important open questions in this topic asks what
happens if one considers bounded GNNs, i.e., the the size of the neural networks
is fixed a priori and cannot change as a function of the size of the input graphs.
Do bounded GNNs have the same separation power as unbounded GNNs and color
refinement? In [ACI+22], the authors provide a negative answer to this question
in the case of Rectified Linear Unit (ReLU) activations, by proving lower bounds
on the size of the GNNs with ReLU activations that are needed to simulate color
refinement. Their approach combines results from communication complexity and
properties of ReLU neural networks, including upper bounds on the number of their
linear regions. In this article, we answer this question in the negative in the more
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general case of piecewise polynomial activations . Given any bounded GNN with
such activations, we explicitly construct two non isomorphic rooted trees of depth
two such that their root nodes cannot be distinguished by the GNN. Interestingly,
only the sizes of the trees depend on the GNN, but their depth does not. This re-
sult is stated formally in Theorem 3 and it holds for bounded GNNs with piecewise
polynomial activations (this includes, e.g., ReLU activations). We prove a second
result that shows how the activation function dramatically impacts the expressivity
of bounded size GNNs: if one allows activation functions that are not piecewise
polynomial, all root nodes of rooted trees of depth two can be distinguished by a
single neuron perceptron. This result is formally stated in Theorem 4. [AGA+24]
provide a more general result for analytic non polynomial activation functions: it
is possible to simulate color refinement on any graph if one allows analytic non
polynomial functions. [BKR24] also showed that among GNNs with analytic non
polynomial activations, those with one dimensional embeddings at every iteration
are sufficient to simulate color-refinement. In contrast with approaches presented
in [AGA+24, BKR24], our proof does not use the analytic properties of the activa-
tion function, but linear independence over the integers of the activation function
evaluated at distinct integers.

The rest of this article is organized as follows. In Section 2 we present the main
definitions and formal statement of our results. In Section 3 we give an overview
of the proofs. Sections 4 and 5 fill in the technical details.

2. Formal statement of results

We assume graphs to be finite, undirected, simple, and vertex-labelled: a graph
is a tuple G = (V (G), E(G), P1(G), ..., Pℓ(G)) consisting of a finite vertex set V (G),
a binary edge relation E(G) ⊂ V (G)2 that is symmetric and irreflexive, and unary
relations P1(G), · · · , Pℓ(G) ⊂ V (G) representing ℓ > 0 vertex labels. In the follow-
ing, we suppose that the Pi(G)’s form a partition of the set of vertices of G, i.e.
each vertex has a unique label. Also, the number ℓ of labels, which we will also call
colors, is supposed to be fixed and does not grow with the size of the input graphs.
When there is no ambiguity about which graph G is being considered, N(v) refers
to the set of neighbors of v in G not including v. |G| will denote the number of
vertices of G. We use simple curly brackets for a set X = {x ∈ X} and double
curly brackets for a multiset Y = {{y ∈ Y }}. For a set X , |X | is the cardinal of
X . When m is a positive integer, Sm is the set of permutations of {1, · · · ,m}. We
will also need the following basic notions from algebra. Given any ring (R,+,×),
R[X1, . . . , Xm] will denote the polynomial ring in m indeterminates with coeffi-
cients in R. An (additive) subgroup generated by σ1, · · · , σq ∈ R is the smallest
(inclusion-wise) additive subgroup of R that contains σ1, · · · , σq. Equivalently, it
corresponds to the set {λ1σ1 + · · ·+ λqσq : λ ∈ Z

q}.

Definition 1 (Piecewise polynomial). Let m be a positive integer. A function f :
R

m → R is piecewise polynomial iff there exist multivariate polynomials P1, · · · , Pr ∈
R[X1, · · · , Xm] such that for any x ∈ R

m, there exists i ∈ {1, · · · , r} such that
f(x) = Pi(x). A polynomial region A of f is a set such that there exists i ∈ [r] such
that A ⊆ {x ∈ R

m : f(x) = Pi(x)}. The degree of a piecewise polynomial function
f is deg(f) := max{deg(P1), · · · , deg(Pr)}. The number of polynomial pieces of a
piecewise polynomial f is the smallest r such that f can be represented as above.
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Definition 2 (Finitely generated polynomial). Let q be a positive integer. A mul-
tivariate polynomial P is q-generated provided there exist reals σ1, · · · , σq such that
P =

∑

α∈S γαX
α, where γα belongs to the additive subgroup of R generated by

σ1, · · · , σq, and S is the set of exponents of P . Under these conditions, we say that
P is q-generated by the reals σ1, · · · , σq.

Definition 3 (Embedding, equivariance, and refinement). Given a set X, an em-
bedding ξ is a function that takes as input a graph G and a vertex v ∈ V (G), and
returns an element ξ(G, v) ∈ X. An embedding is equivariant if and only if for
any pair of isomorphic graphs G,G′, and any isomorphism f from G to G′, it holds
that ξ(G, v) = ξ(G′, f(v)). We say that ξ refines ξ′ if and only if for any graph G

and any v ∈ V (G), ξ(G, v) = ξ(G, v′) =⇒ ξ′(G, v) = ξ′(G, v′). When the graph G

is clear from context, we use ξ(v) as shorthand for ξ(G, v).

Definition 4 (Color refinement). Given a graph G, and v ∈ V (G), let (G, v) 7→
col(G, v) be the function which returns the color of the node v. The color refinement
refers to a procedure that returns a sequence of equivariant embeddings crt, computed
recursively as follows:

- cr0(G, v) = col(G, v)
- For t ≥ 0, crt+1(G, v) := (crt(G, v), {{crt(G,w) : w ∈ N(v)}})
In each round, the algorithm computes a coloring that is finer than the one

computed in the previous round, that is, crt+1 refines crt. For some t ≤ n := |G|,
this procedure stabilises: the coloring does not become strictly finer anymore.

Remark 1. We refer the reader to the seminal work [CFI92, Sections 2 and 5]
for comments about the history and connections between the color refinement and
Weisfeiler-Lehman algorithms.

Definition 5 (Graph Neural Network (GNN)). A GNN is a recursive embedding
of vertices of a labelled graph by relying on the underlying adjacency information
and node features. Each vertex v is attributed an indicator vector ξ0(v) of size ℓ,
encoding the color of the node v: the colors being indexed by the palette {1, · · · , ℓ},
ξ0(v) = ei (the i-th canonical vector) if the color of the vertex v is i. The GNN is
fully characterized by:

◦ A combination function comb : R
2ℓ −→ R

ℓ which is a feedforward neural
network with given activation function σ : R −→ R.

◦ The update rule of the GNN at iteration t ∈ N for any labelled graph G and
vertex v ∈ V (G), is given as follows:

ξ0(v) is the indicator vector of the color of v, ξt+1(v) = comb(ξt(v),
∑

w∈N(v)

ξt(w))

Remark 2. This type of GNN is sometimes referred to as a recurrent GNN.
The general definition (cf. for instance [Gro21]) usually considers a sequence of
combine and aggregation functions which may depend on the iteration t. The ag-
gregation functions replace the sum over the neighborhood, i.e. at each iteration
comb(ξt(v), agg({{ξt(w) : w ∈ N(v)}})) is the new embedding for vertex v. It has
been proved in [XHLJ18] that for any agg function, there is a GNN (of potentially
larger size) whose aggregation function is the summation and which refines any
GNN with this aggregation function. The results of this article extend to GNNs
whose combination and aggregation functions are allowed to be different in different
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iterations, but are multivariate piecewise polynomials. For ease of presentation, we
restrict to recurrent GNNs.

Given these definitions, we can now formally state the previously known results
about the expressivity of unbounded GNNs (Theorems 1 and 2). Namely, in Theo-
rem 2, the size of the GNN is allowed to grow with n.

Theorem 1. [Gro21, XHLJ18, MRF+19] Let d ≥ 1, and let ξd be an embedding
computed by a GNN after d iterations. Then crd refines ξ, that is, for all graphs
G,G′ and vertices v ∈ V (G), v′ ∈ V (G′), crd(v) = crd(v′) =⇒ ξd(G, v) =
ξd(G′, v′).

Theorem 2. [Gro21, Theorem VIII.4][XHLJ18, MRF+19] Let n ∈ N. Then there
is a recurrent GNN such that for all t = 0, · · · , n, the vertex invariant ξt computed
in the t-th iteration of the GNN refines crt on all graphs of order at most n.

In contrast, we prove Theorems 3 and 4 for bounded GNNs:

Theorem 3. For any GNN, i.e., choice of combination function, represented by a
feedforward neural network with piecewise polynomial activation, and any natural
number I ∈ N, there exists a pair of rooted trees T and T ′ (unicolored, i.e. ℓ = 1)
of depth two with root nodes s and s′ respectively such that:

• cr2(T, s) 6= cr2(T ′, s′), i.e. s and s′ can be distinguished with color refine-
ment in two iterations.

• ξt(T, s) = ξt(T ′, s′) for all t ≤ I, i.e., s and s′ cannot be distinguished by
the GNN until iteration I + 1.

Theorem 4. In two iterations, a single neuron perceptron with an activation σ ∈
{exp, sigmoid, cosh, sinh, tanh} can distinguish the root nodes of any pair of non-
isomorphic rooted trees of depth two.

3. Overview of the proofs

To establish our first result, we will use rooted trees of the form shown in Figure 1
which is a tree of depth two whose depth one vertices have prescribed degrees
k1, . . . , km, with k1, . . . , km ≥ 1. Given a GNN with piecewise polynomial activation
and a natural number I ∈ N, we will show that there exist two sets of integers
k1, · · · , km and k′1, · · · , k

′
m that are not the same up to permutations, such that for

the corresponding rooted trees T [k1, · · · , km] and T [k′1, · · · , k
′
m], the GNN cannot

distinguish s and s′ for the first I iterations, i.e. ξt(T, s) = ξt(T ′, s′) for any
t ∈ {1, · · · , I}. Note that the natural numbers m, and k1, · · · , km and k′1, · · · , k

′
m

will depend on I, the activation and the size of the neural network considered.
The proof of the first result is structured as follows. Since the trees are pa-

rameterized by m-tuples of integers k1, . . . , km, the embedding of the root node
computed by the GNN at any iteration is a function of these m integers. Since the
activations are piecewise polynomials, these embeddings of the root node are also
piecewise multivariate polynomial functions of k1, . . . , km. We further prove that
the complexity of its polynomial pieces can be controlled uniformly in the sense
of Definition 2: the number of generators of such polynomial is independent of
m, but depends only on the number of iterations of the GNN and the underlying
neural network (Lemma 3 and 4). Then, we show that there exists a large enough
region of Rm on which this piecewise polynomial function is evaluated by the same
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polynomial. This region is large enough in the following sense: we prove that for
a dimension m that is sufficiently large, the region contains more integral vectors
than the number of possible values a q-generated polynomial with degree at most q
can take on these vectors, even after identifying vectors up to permutations of the
coordinates (Lemmas 1 and 2). This implies that the polynomial piece will take the
same value on two distinct integral vectors whose coordinates are not identical up to
permutations. When translating this result back to the world of GNNs, this means
that the two embeddings of the root nodes of the trees corresponding to these two
vectors will coincide. To conclude a separation between bounded and unbounded
GNNs, we justify that the unbounded ones can seperate these two vertices. This
is based on the previous result (Theorem 2) stating that unbounded GNNs refine
color refinement.

Our second result states that for activations that are not piecewise polynomial,
a one neuron perceptron GNN can distinguish the root nodes of any pair of non-
isomorphic trees of depth two. In particular, we prove this when the activation
function is the exponential, the sigmoid or the hyperbolic sine, cosine or tangent
functions. This is done by showing that the condition ξ2(s) = ξ2(s) corresponds to a
relation between the exponentials of the integers k1, · · · , km and k′1, · · · , k

′
m. Apply-

ing the Lindemann-Weirstrass Theorem in transcendental number theory (Lemma
5 and Theorem 5) leads to the conclusion that k′1, . . . , k

′
m must be a permutation

of k1, . . . , km, showing that the trees are isomorphic.

s

x1 x2 xm

k1 − 1 vertices k2 − 1 vertices · · · km − 1 vertices

Figure 1. T [k1, · · · , km]

4. Collision with piecewise polynomial activations

Lemma 1. Let m, q and T be positive integers. For any natural number M ,
let FM be the box {(k1, · · · , km) ∈ Z

m : ∀i 1 ≤ ki ≤ M} and let σ1, · · · , σq

be q reals. Let P1, · · · , PT be T polynomials of total degree less than q, and q-
generated by σ1, · · · , σq. Then the number of values taken by the function x 7→
(P1(x), · · · , PT (x)) on FM is at most

(

2

(

max
i∈[q],j∈[T ],α∈S

|λj
α,i|

)

M q

(
m+ q − 1

q

)

+ 1

)qT

where S is the union of the set of exponents of the Pj’s and the λ
j
α,i are the coeffi-

cients in the decomposition of their coefficients over the generators σ1, · · · , σq.
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Proof. Note that if every Pj is a polynomial with integer coefficients, i.e., each Pj

is generated by 1, and has degree less than q, then the proof follows by considering
the maximum and the minimum of the Pj ’s over FM , as each of them takes only
integer values. To deal with the finitely generated case, we reduce it to the integer
case. If S is the union of the set of exponents of P1, . . . , PT , by assumption there
exist integers (λj

α,i)(α,i)∈S×{1,··· ,q} such that

Pj =
∑

α∈S

γα,jX
α =

∑

α∈S

(
q
∑

i=1

λ
j
α,iσi

)

Xα

=

q
∑

i=1

(
∑

α∈S

λ
j
α,iσiX

α

)

=

q
∑

i=1










∑

α∈S

λ
j
α,iX

α

︸ ︷︷ ︸

:=fi,j










σi

fi,j is a polynomial of degree less than q with integer coefficients. As we wish
to upper-bound the number of values of φ : x 7→ (P1(x), · · · , PT (x)) on FM , we
consider

Φ : FM −→ Z
qT

x 7→ ( fi,j(x) )i∈[q],j∈[T ]

The number of values of Φ on FM controls the number of values of φ on FM as
each of the coordinates of φ is a linear combination of the coordinates of Φ with
fixed linear coefficients σ1, . . . , σq. We use the fact that each coordinate of Φ(x) is
a multivariate polynomial with integer coefficients:

|φ(FM )| ≤ |Φ(FM )| ≤
∏

i∈[q],j∈[T ]

(|max
x∈FM

fi,j(x) − min
x∈FM

fi,j(x)| + 1)

≤
∏

i∈[q],j∈[T ]

(2 max
x∈FM

|fi,j(x)|+ 1)

≤

(

2

(

max
i∈[q],j∈[T ],α∈S

|λj
α,i|

)

M q

(
m+ q − 1

q

)

+ 1

)qT

where the last inequality follows from the fact that
(
m+q−1

q

)
is an upper-bound on

the number of monomials of fi,j . �

Lemma 2. Let q be a positive integer, let I be a finite subset of N, and let
(ft,m : Rm → R)(t,m)∈I×N be a double sequence of piecewise polynomial functions
satisfying:

i) deg(ft,m) ≤ q for all (t,m) ∈ I × N (bounded degree condition).
ii) for any m ∈ N and t ∈ I, ft,m is q-generated.

Then, there exists m ∈ N and two integral vectors (k1, · · · , km) ∈ N
m and (k′1, · · · , k

′
m) ∈

N
m that are not equal up to a permutation such that for any t ∈ I, ft,m(k1, · · · , km) =

ft,m(k′1, · · · , k
′
m).
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Proof. Let q be a positive integer, I be a finite subset of N and (ft,m : Rm →
R)(t,m)∈I×N be a double sequence of piecewise polynomial satisfying the assump-

tions of the lemma. Let m be any natural number such that m > q2|I|. For any
positive integer M , let FM be the box {(k1, · · · , km) ∈ Z

m : ∀i 1 ≤ ki ≤ M}.
There are

(
M+m−1

m

)
multisets of size m that can be formed from {1, · · · ,M}.

One can find that many elements of FM that are not equal up to a permutation.
Let r be an upperbound on the number of pieces of ft,m for every t, i.e. r :=
max{number of pieces of ft,m : t ∈ I}: note that r exists since I is finite, but

may depend on m. Then, there exists a subset of FM with at least 1
r|I|

(
M+m−1

m

)

integral vectors that are not equal up to a permutation where for every t, ft,m is
a polynomial Pt,m of degree at most q, and Pt,m is q-generated. This is true as

the collection of piecewise polynomial functions (fi,m)i∈I divide FM in at most r|I|

regions, where in each region, for every i ∈ I, fi,m is polynomial.
Due to Lemma 1, the pigeonhole principle gives us that all polynomials will

be equal on some vectors (k1, · · · , km) and (k′1, · · · , k
′
m) of FM not equal up to a

permutation as soon as:

(1)
1

r|I|

(
M +m− 1

m

)

︸ ︷︷ ︸

number of multisets formed
from a region of FM where

each ft,m is polynomial

>

(

2 max
i∈[q],t∈I

( max
α∈Sm,t

|λm,t
α,i |)M

q

(
m+ q − 1

q

)

+ 1

)q|I|

︸ ︷︷ ︸

number of values (P1,m, P2,m, · · · , P|I|,m)
can take at most on FM

where the λ
m,t
α,i are integers in the decomposition of the polynomials ft,m over gen-

erators σm
1 , · · · , σm

q ∈ R for the monomial Xα.

Such a value of M can be found by noticing that
(
M+m−1

m

)
is a polynomial of M of

degree m whereas the right hand side is a polynomial of M of degree q2|I|. Since we
chose m to be greater than q2|I|, there exists M ∈ N such that Equation (1) holds.
Hence there exist k and k′ whose coordinates are not equal up any permutation
and such that fi,m(k1, · · · , km) = fi,m(k′1, · · · , k

′
m) for any i ∈ I. �

Lemma 3. Let q be a positive integer. Let F : Rd2 → R be a piecewise multivariate
polynomial whose pieces are all q generated. Let G : Rd1 → R

d2 be a function whose
coordinates are piecewise polynomial functions whose pieces are all q-generated.

Then the pieces of the piecewise polynomial F ◦G : Rd1 → R are all q̃-generated,
where q̃ depends only on q and the degree of the pieces of F and G.

Proof. We first make the following observation. Let A1, · · · , Ar1 ⊆ R
d2 be polyno-

mial regions of F and B1, · · · , Br2 ⊆ R
d1 be polynomial regions of G that union

to R
d2 and R

d1 respectively (such always exist, cf. Definition 1). For each i ∈ [r1],
and j ∈ [r2], let Zij := (Bi ∩G−1(Aj)). Then:

• G and F ◦G are polynomial on each Zij , as Zij ⊆ Bi, and G(Zij) ⊆ Aj .
• The Zij union to R

d1 , as
⋃

i∈[r2],j∈[r1]
Zij =

⋃

j∈[r1]

⋃

i∈[r2]
Bi ∩G−1(Aj) =

⋃

j∈[r1]










G−1(Aj)
⋂




⋃

i∈[r2]

Bi





︸ ︷︷ ︸

Rd1










=
⋃

j∈[r1]
G−1(Aj) = R

d1 . The last

equality follows from
⋃

i∈[r1]
Ai = R

d2 =⇒
⋃

i∈[r1]
G−1(Ai) = R

d1 .
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Hence, a polynomial piece of F ◦G is of the form Fi ◦Gj where F1, · · · , Fr1 are the
polynomial pieces of F , and G1, · · · , Gr2 are the polynomials pieces of G.

If Fi =
∑

α∈SFi
γαX

α and Gj =
∑

β∈SGj
νβX

β with γα and βν integers then

(Fi ◦Gj)(X) =
∑

α∈SFi

γα




∑

β∈SGj

νβX
β





α

=
∑

α∈SFi

(
q
∑

k=1

λk,ασk

)


∑

β∈SGj

(
q
∑

k=1

ηk,ασk

)

Xβ





α

After expansion, the polynomial (Fi ◦ Gj) has coefficients that are linear combina-
tions of multivariate monomials of σ1, · · · , σq (of total degree at most the degree of
Fj+1 in this case) with integer coefficients, as the λ and η coefficients are supposed
to be integers. This shows that Fi ◦Gj is q̃-generated, where q̃ depends only on p,
the degree of Fi and Gj . �

Lemma 4. For positive integers m, k1, · · · , and km, let T [k1, · · · , km] designate
the rooted tree illustrated in Figure 1. For any vertex v ∈ V (T [k1, · · · , km]), Let
ξt(T [k1, · · · , km], v) be the embedding of the vertex v ∈ V obtained via a GNN with
piecewise activation functions after t iterations (where ξ0(u) = 1 for any vertex
u of T [k1, · · · , km]). Then, for any iteration t, there exists an integer q such that
for any integer m, and any vertex v ∈ V , there exists a symmetric multivariate
piecewise polynomial function Fm such that

• ξt(T [k1, . . . , km], v) = Fm(k1, · · · , km).
• deg(Fm) ≤ q

• each piece of Fm is q-generated

Proof. We first prove all properties of ξt(T [k1, . . . , km], v) by induction on t.

Base case: for t = 0 this is trivial since all vertices are initialised with the con-
stant polynomial 1, whose degree does not depend on m, and is finitely generated.

Induction step: Suppose the property is true at iteration t, i.e there exists an
integer qt such that for each vertex w, and for every integer m, ξt(T [k1, . . . , km], w)
is a multivariate polynomial of the ki’s whose degree is upperbounded by qt, and is
qt generated. For every vertex v of T [k1, · · · , km]

ξt+1(T [k1, . . . , km], v) = φ(ξt(T [k1, . . . , km], v),
∑

w∈N(v)

ξt(T [k1, . . . , km], w))

where φ is a piecewise bivariate polynomial (as a Neural NetworkR
2 → R with piece-

wise polynomial activation). By composition ξt+1(T [k1, . . . , km], v) is a piecewise
multivariate polynomial of k1, · · · , km such that for every integer m, deg(ξt+1(T [k1,
. . . , km], v)) ≤ qt · deg(φ). Furthermore, since for every m and every vertex u,
ξt(T [k1, . . . , km], u) is supposed to be qt generated, then using the above update
rule, Lemma 3 gives us that by composition, ξt+1(T [k1, . . . , km], v) is q̃t generated,
where q̃t depends only on the degre of φ and qt.

Setting qt+1 := max(qt · deg(φ), q̃t) gives us the desired properties (for every
vertex v and every integer m, ξt+1(T [k1, · · · , km], v) has degree at most qt+1 and is
qt+1 generated), and ends the induction on t. �
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Proof of Theorem 3. We already know [Gro21] that color refinement refines any
recurrent GNN (even with an architecture of unbounded size). We prove the exis-
tence of pairs of graphs that can be separated by the color refinement algorithm,
but cannot be separated by a recurrent GNN of fixed (but arbitrary) size. We use
T [k1, · · · , km] to refer to the tree illustrated in Figure 1. This tree has depth two,
a root node s, and contains m nodes at depth one. Each vertex i at depth 1 has
exactly ki − 1 “children” at depth two (and therefore ki neighbors, where ki is a
positive integer). In the following, all vertices have color label 1.

Claim: Let T [k1, · · · , km] and T ′[k′1, · · · , k
′
m] be two rooted trees given by Figure

1. If the ki’s and k′i’s are not equal up to a permutation, the color refinement
distinguishes s and s′ after two iterations, i.e. cr2(s) 6= cr2(s′).

Proof of claim. Simply note that

cr2(s) = (cr1(s), {{cr1(x1), · · · , cr
1(xm)}})

where cr1(s) = ( 1
︸︷︷︸

cr
0(s)

, {{1, · · · , 1
︸ ︷︷ ︸

m times

}})

and ∀i ∈ {1, · · · ,m} cr1(xi) = ( 1
︸︷︷︸

cr
0(xi)

, {{1, · · · , 1
︸ ︷︷ ︸

ki times

}})

hence cr2(s) is uniquely determined by the multiset {{k1, · · · , km}}. �

Let T > 0 be a positive integer, and for 0 ≤ t ≤ T , let ft,m(k1, · · · , km) :=
ξt(T [k1, . . . , km], s) be the value returned by a GNN with piecewise polynomial ac-
tivation after t iterations (note that the embeddings are one-dimensional because
only one color is used). Using Lemma 4, there exists an integer q such that the dou-
ble sequence (ft,m)t∈{0,··· ,T},m∈N of piecewise multivariate polynomials has degree
at most q and such that every ft,m is q-generated. Lemma 2 with I = {0, · · · , T }
tells us that there exists m ∈ N, and two vectors k ∈ N

m and k′ ∈ N
m whose

coordinates are not equal up to permutations, such that for any t ∈ {0, · · · , T },
ft,m(k1, · · · , km) = ft,m(k′1, · · · , k

′
m). �

Remark 3. Note that in Theorem 3, depth two is minimal: for any pair of non
isomorphic rooted trees of depth one, any GNN with one neuron perceptron, an
injective activation function, weights set to one, and zero bias can distinguish their
root vertex in one iteration. Indeed, in that case, ξ1(s) = σ(1 + deg(s)) if the GNN
is recurrent with a combine function given by φ : R2 → R, (x1, x2) 7→ σ(x1 + x2).
Hence, ξ1(s) 6= ξ1(s′) as soon as σ is injective and s and s′ have distinct degree.

5. Activations that are not piecewise polynomial

In this Section we present a proof of Theorem 4. We prove that for any pair of
non isomorphic rooted trees of depth two, i.e. trees of the form T [k1, · · · , km] and
T ′[k′1, · · · , k

′
n] (here the ki’s and k′i’s are all greater than or equal to 1, cf. Figure

1) can be distinguished by a bounded GNN with any of the following activation
functions: exponential, sigmoid, or a hyperbolic sine, cosine or tangent function.
Consider the following 1-neuron perceptron φ with activation function σ, φ : R2 →
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R, φ(x1, x2) = σ(x1 + x2). Then it is easy to see that:

∀v ∈ V (T [k1, · · · , km]) ξ1(v) = σ(ξ0(v) +
∑

w∈N(v)

ξ0(w)) = σ(1 + deg(v))

ξ2(v) = σ(σ(1 + deg(v)) +
∑

w∈N(v)

σ(1 + deg(w))

In particular ξ2(s) = σ(σ(1+m)+
∑m

i=1 σ(ki+1)). Now suppose σ is either injective
on R, or nonnegative and injective on R

+ (this is the case for the exponential, the
sigmoid, the hyperbolic tan, and the hyperbolic cosine and sine), s and s′ are
vertices of two trees with potentially different number of leaves m and n, then

(2) ξ2(s) = ξ2(s′) ⇐⇒
m∑

i=0

σ(ki + 1) =

n∑

i=0

σ(k′i + 1)

where k0 := 1 +m and k′0 := 1 + n. The goal of the remainder of this section is to
prove that the right hand side equality of (2) implies m = n and ki’s are the same
as k′i’s, up to a permutation, for the activation functions σ of Theorem 4.

Theorem 5 (Lindemann-Weierstrass Theorem, 1885). If α1, · · · , αn are distinct
algebraic numbers, then the exponentials eα1 , · · · , eαn are linearly independent over
the algebraic numbers.

Lemma 5. Let n and m be positive integers, and α1, · · · , αn and α′
1, · · · , α

′
m be

algebraic numbers. Then
∑n

i=1 e
αi =

∑m
i=1 e

α′
i if and only if m = n and the αi’s

and α′
i’s are equal up to a permutation.

Proof. (⇐=) is clear. For (=⇒), by contradiction suppose that the αi’s and α′
i’s

are not equal up to a permutation. First, if the αi’s (resp. α′
i’s) are not distinct

one can group them by their number of occurrences in both sums. Then, we would
have a linear dependence with integer coefficients of exponentials of integers. This
contradicts Theorem 5 (Linderman-Weirstrass). �

Proof of Theorem 4. Without loss of generality, suppose the ki’s and k′i’s are or-
dered in increasing order. For ease of notation, let α and α′ be the vectors defined
as αi = ki + 1 for all i ∈ {1, · · · ,m} and α′

i = k′i + 1 for all i ∈ {1, · · · , n}. We will
now prove that (2) implies α = α′ in each case.

- σ ∈ {sigmoid, tanh}. In the case of the sigmoid, (2) yields the following equation
after multiplication by the the product of the denominators:
(
∑m

i=1 e
αi

(
∏m

j=1
j 6=i

(1 + eαj )

))
∏n

i=1(1 + eα
′
i) =

(
∑n

i=1 e
α′

i

(
∏n

j=1
j 6=i

(1 + eα
′
j )

))
∏m

i=1(1 + eαi)

After developing and grouping each hand side into linear combinations of exponen-
tials we obtain an equation of the form:

(3)
∑

S⊆{1,··· ,m}
T⊆{1,··· ,n}

γS,T exp(αS + α′
T ) =

∑

S⊆{1,··· ,m}
T⊆{1,··· ,n}

γS,T exp(α′
S + αT )

where for S ⊆ {1, · · · ,m}, αS :=
∑

i∈X αi (resp. for T ⊆ {1, · · · , n}, α′
T :=

∑

i∈X α′
i). All γS,T are integers, hence algebraic and γ∅,T = 0 for all subsets

T ⊆ {1, . . . , n}.
We will prove by strong induction on max(m,n) that

∑m

i=1 σ(αi) =
∑n

i=1 σ(α
′
i) =⇒

m = n and α = α′.
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Base case: If max(m,n) = 1 and
∑m

i=1 σ(αi) =
∑n

i=1 σ(α1), then, either m =
n = 0, or m = n = 1. In the first case, this is vacuously true. In the second case,
we have that σ(α1) = σ(α′

1), and then α1 = α′
1 follows from the injectivity of the

sigmoid.

Induction step: We suppose that for some given positive integer p, and any
nonnegative integers α1, · · · , αm and α′

1, · · · , α
′
n, such that max(m,n) ≤ p, then

∑m
i=1 σ(αi) =

∑n
i=1 σ(α

′
i) =⇒ m = n and α = α′.

Let α and α′ be vector of integers of size m and n such that max(m,n) =
p + 1, and

∑m

i=1 σ(αi) =
∑n

i=1 σ(α
′
i). We saw that (3) can be derived from this

equality, where γS,T are algebraic numbers satisfying γ∅,T = 0 for all T ⊆ {1, . . . , n}.
Moreover, the coordinates of α and α′ are ordered, hence the smallest term on the
left hand side is exp(α1) and the smallest term on the right hand side is exp(α′

1).
Using Lemma 5, this implies that α1 = α′

1. Therefore, σ(α1) = σ(α′
1). In turn, this

implies
∑m

i=2 σ(αi) =
∑m

i=2 σ(α
′
i). We can apply the induction hypothesis on the

vectors (α2, · · · , αm) and (α2, · · · , α′
n) which both have size ≤ p. Hence, we obtain

that m − 1 = n − 1 and (α2, · · · , αm) = (α′
2, · · · , α

′
m). This in turn proves that

m = n, and α = α′, which ends the induction.

If σ = tanh = exp(2·)+1
exp(2·)−1 . After multiplication by the product of the denomina-

tors, (2) yields:
(
∑n

i=1(e
2αi − 1)

∏n

j=1,j 6=i(e
2αj + 1)

)
∏m

j=1(1 + e2α
′
j ) =

(
∑m

i=1(e
2α′

i − 1)
∏m

j=1,j 6=i(e
2α′

j + 1)
)
∏n

j=1(1 + e2αj )

After developing into a linear combination of exponentials on each side, the argu-
ments containing αT with T 6= ∅ on the left hand side and α′

T with T 6= ∅ on the
right hand side have positive algebraic coefficients. There are also arguments of
the form α′

T on the left hand side and αT on the right hand side (in other words,
γ∅,T 6= 0, unlike the sigmoid case). However, note that the coefficients correspond-
ing to these terms are (algebraic and) negative. Hence, as a consequence of Lemma
5, the arguments with negative coefficients in front of the exponentials must match
up on each side, and we are left with an equation similar to (3) (the arguments have
a factor 2), where again γ∅,T = 0. We can apply the same reasoning by induction
as for the sigmoid case, to prove that α = α′.

- σ ∈ {sinh, cosh}. If σ = cosh, then (2) yields:




n∑

j=1

exp(αj)−
m∑

j=1

exp(α′
j)



+





n∑

j=1

exp(−α′
j)−

m∑

j=1

exp(−αj)



 = 0

Due to Lemma 5, this can only happen if m = n and for all j ∈ {1, · · · , n},
αj = α′

j , because αj , α
′
j are algebraic for any j ∈ {1, · · · , n}, and the αj ’s and α′

j ’s

are ordered and positive. We conclude that α = α′. The case σ ∈ {sinh} can be
treated similarly. �
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