
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JAN, 2024 1

LIO-GVM: an Accurate, Tightly-Coupled
Lidar-Inertial Odometry with Gaussian Voxel Map

Xingyu Ji1 , ShengHai Yuan1, Pengyu Yin1, Lihua Xie1

Abstract—This letter presents a probabilistic voxel-based Li-
DAR Inertial Odometry framework for accurate and robust
pose estimation. The framework addresses the correspondence
mismatching issue by representing the LiDAR points as a set of
Gaussian distributions and evaluating the divergence in variance
for outlier rejection. Based on the fitted distributions, a new
residual metric is proposed for the filter-based Lidar inertial
odometry by incorporating both the distance and variance dis-
parities, further enriching the comprehensiveness and accuracy
of the residual metric. With the strategic design of the residual,
we propose a simple yet effective voxel-solely mapping scheme,
which only requires the maintenance of one centroid and one
covariance matrix for each voxel. Experiments on different
datasets demonstrate the robustness and high accuracy of our
framework for various data inputs and environments. To the
benefit of the robotics society, we open-source the code at
https://github.com/Ji1Xingyu/lio gvm.

Index Terms—LiDAR inertial odometry, SLAM, probabilistic
feature association, voxel map

I. INTRODUCTION

THE vital requirement for an autonomous robot is to esti-
mate its ego-motion and build a map of the environment

without prior knowledge, which is widely known as Simulta-
neous Localization and Mapping (SLAM). In particular, the
LiDAR and IMU sensors are commonly employed together
[1]–[6] in SLAM problem to form a LiDAR Inertial Odom-
etry (LIO) because of their complementary ability: LiDAR
contributes accurate range measurements for the environment,
while IMU provides precise and surrounding-insensitive short-
term motion information [7]. Because of the temporal and
computational efficiency, filter-based LIO [3]–[6] has been
investigated in the recent few years. The performance of a
LiDAR odometry is predominantly influenced by two com-
ponents: point cloud registration and mapping scheme [8]. In
this letter, we aim to enhance the performance of a filter-based
LIO system by addressing improvements to the shortcomings
of the existing works in these two areas.

Point cloud registration refers to aligning the source LiDAR
scan with a target map together, namely, to estimate the
optimal transformation between their local coordinates. Early
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Fig. 1. The top image illustrates the global map built by LIO-GVM aligned
with the Google map. The bottom image shows the runtime voxel map of LIO-
GVM inside the rectangle. For better visualization, we model the distributions
within each voxel as surfels. The blue, red, green, and white surfels denote
the ground, wall, pole, and other types of voxels respectively.

works extract the geometric feature points from the input scan
and match them with the nearest point in the target map [9]–
[11]. A limitation of these methods is their deterministic target
map representation, which cannot account for measurement
uncertainties, resulting in inaccuracies in mapping and pose
estimation. To address this issue, subsequent works model
the target map in a probabilistic way, such as planes [12]
or surfels [13]–[15]. The matched correspondences with large
uncertainty will be depressed in the pose estimation phase.
Nevertheless, they still employ the nearest correspondence
matching. The key limitation of this matching scheme is its
inability to reject false positive correspondences, which occurs
when the source point is matched with the wrong target feature
but identified as a valid pair. This issue can negatively affect
the pose estimation accuracy.

The mapping scheme acts as the interdependent component
with point cloud registration, which maintains the target map
for efficient environment representation. A common method is
to maintain the target map with a k-d tree [9]–[11] as it can
provide strict K nearest neighbor (k-NN) search for the cor-
respondence matching. The time complexity for the deletion,
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insertion, and query operations of the k-d tree is O(logN),
which can impact real-time performance when dealing with a
significantly large target map. To address this problem, some
systems opt to govern the target map with hash-based voxels
[5], [12], [16], with O(1) the time complexity for element
operation. However, due to the requirement of the front end,
these voxel-based maps need to embed a supplemental data
structure (k-d tree, Hilbert Curve, etc.) within voxels, which
cannot reach the optimal operation speed.

To cope with the problem of mismatch in point cloud
registration, we represent the points in both the source and
target clouds as Gaussian distributions [17]–[19] and evaluate
the matched correspondences by the disparity in variance.
Moreover, based on the distribution assumption, we propose a
new residual metric for filter-based LIO. The formula accesses
both the distance and variance disparities, further enriching the
comprehensiveness and accuracy of the residual metric. For
the mapping side, instead of storing all the points, we propose
an incremental voxel map without any additional structures,
which only maintains a centroid and covariance matrix for
each voxel and achieves O(1) time complexity.

In conclusion, we implement the proposed point cloud
registration and mapping scheme to a filter-based LIO system
denoted as LIO-GVM. The contributions can be summarized
as follows:

• We propose a new correspondence matching method
and residual metric for filter-based LIO. This matching
scheme can reject false positive correspondences. Addi-
tionally, the metric measures not only distance but also
variance disparity, enhancing the comprehensiveness and
accuracy of the residual formulation.

• We propose a simple yet efficient mapping scheme. The
map only necessitates the maintenance of the centroid
and covariance matrix for each voxel, which can achieve
O(1) time complexity for element operation.

• We implement the two key techniques into a filter-based
LIO system and evaluate its robustness and efficiency
through various experiments (see Fig. 1). To the benefit
of the robotics community, our implementation code is
open-sourced at https://github.com/Ji1Xingyu/lio gvm.

II. RELATED WORK

For point cloud registration, LOAM [9] first proposes to
extract planar and edge features from the source and target
clouds for fast registration and achieves accurate results.
LeGO-LOAM [10] performs Euclidean cluster first to extract
the ground plane and restrict the correspondence match in the
same cluster. Instead of extracting the geometric features from
the source scan, some systems directly register the raw source
cloud into the target map [3], [4]. SuMa [13] and SLICT [14]
render points in the target map into surfels and consider the
point-to-surfel distance as residual. Similarly, VoxelMap [12]
proposes to maintain a probabilistic plane-based target map
and register the point in the source scan to the map. These
point-to-surfel (or plane) residuals consider the noise in the
target map and thus can depress the influence of matched pairs
with high uncertainty in the pose estimation phase. Never-
theless, they cannot handle the false positive correspondence

TABLE I
NOTATIONS OF THIS LETTER

Notation Explanation

G, I, L The Global, IMU, and LiDAR frame
tk The end time of the kth LiDAR scan
τi The sample time of ith IMU input, N.B. τi ∈ [tk−1, tk]
GTI The transformation matrix of I w.r.t. G
GRI ,

GpI The rotation matrix and translation vector of I w.r.t. G
Lkpj The jth point coordinate with reference to L at time tk
Gvi The coordinate of the ith voxel with reference to G
Gµi,

GCi The centroid vector and covariance matrix of voxel at Gvi

[p]× ,pT The skew-symmetric matrix and transpose of vector p

problem. On the contrary, our proposed matching scheme can
evaluate the similarity of the matched distributions and reject
the false positive pairs.

The proposed residual metric is a weighted distribution-to-
distribution (D2D) distance and is similar to the D2D residual
in GICP [18] and D2D-NDT [20]. The key distinction lies in
the proposed similarity-based weighting scheme, which can
adjust the weight of the residual for matched correspondences
based on their divergence in covariance. Subsequently, the
proposed residual metric can provide a more comprehensive
and accurate pose estimation. Similarly, LiTAMIN2 [21] in-
troduces symmetric KL-Divergence to the residual metric for
divergence evaluation. However, their proposed formulation
cannot be directly deployed in filter-based pose estimation.

For mapping schemes, a common method is to maintain the
target map with a k-d tree [9], [11]. The conventional k-d tree
needs to rebuild the entire tree for the map update, which is
inefficient and time-consuming. FAST-LIO2 [4] uses the ikd-
Tree [22], a dynamic k-d tree that can incrementally update
the map. VoxelMap, Faster-LIO [5], and SuperOdom [16]
govern the target map with hash-based voxels. However, due
to the requirement of the front end, these voxel-based mapping
schemes need to embed a supplemental data structure within
voxels to form a hierarchical structure for the maintenance
of the raw points. Instead, the proposed mapping scheme only
requires the maintenance of the centroid and covariance matrix
for each voxel, resulting in a time complexity of O(1) for
element operation.

III. PRELIMINARY

A. Notation

The important notations used in this letter are listed in Tab. I.
Besides, we assume a static calibrated extrinsic matrix LTI =
(LRI ,

LpI) from IMU frame to LiDAR frame.

B. System Description

The proposed LIO-GVM is modeled as a discrete-time
dynamical system sampled at the IMU rate. Its state x is
defined on manifold M as:

M = SO(3)× R15,

x
.
=

[
GRT

I
GpT

I
GvT

I bT
ω bT

a
GgT

]T
,

(1)

where GvI and Gg are the velocity of IMU and gravity vector
with reference to the global frame, bω and ba are the bias

https://github.com/Ji1Xingyu/lio_gvm
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Fig. 2. System Workflow.

vectors of gyroscope and accelerometer of the IMU. The true
state x of the system can be divided into two states:

xk = x̂k ⊞ δxk,

δxk = xk ⊟ x̂k =
[
GδrTIk

GδpT
Ik

GδvT
Ik

δbT
ωk

δbT
ak

GδgT
k

]T
,

(2)
where δxk ∈ R18 is the error state, x̂k ∈ M is the nominal
state, ⊟ and ⊞ are encapsulated operators that represent a bi-
jective mapping between the manifold M and its local tangent
space R18 [23]; GδrIk = GRIk ⊟ GR̂I = Log(GRIk

GR̂−1
Ik

)
is the minimal representation of the error rotation. In this way,
we can use the iterative error state Kalman filter (IESKF)
to estimate the error state δxk on Euclidean space and then
project it back to the manifold using (2) for the maintenance
of the true state xk.

IV. METHODOLOGY

Given the estimate of the last scan: x̄k−1 and P̄k−1, we
will detail the system workflow in the following subsections.

A. IMU Process

Recalling the state defined in (1), we have the following
discrete model based on continuous kinematics equations [23]:

xi+1 = xi ⊞ f(xi,ui,wi), (3)

where ui, wi, and f are the system input, system noise, and
kinematics function respectively. Please refer to Appendix A
for the detailed formulations. Firstly, the mean of the nominal
state x̂i will be predicted without considering the noise wi:

x̂i+1 = x̂i ⊞ f(x̂i,ui,0); x̂0 = x̄k−1. (4)

Consequently, this will result in the accumulation of inaccu-
racies. To cope with the problem, wi is taken into account in
the prediction of the error state δxi:

δxi+1 ≈ Fδxδxi + Fwwi; δx0 = δx̄k−1 = 0, (5)

where Fδx and Fw are the Jacobian matrices of f() w.r.t.
δxi and wi [4]. In the implementation, the system noise wi

is considered as Gaussian white noise following the normal
distribution N (0,W), where W is the covariance matrix.
The error state δxi is an independent random vector with
multivariate normal distribution: δxi ∼ N (0,Pi). As a
consequence, the predicted covariance matrix P̂i+1 of δxi+1

can be calculated as the linear transformation:

P̂i+1 = FδxP̂iF
T
δx + FwWFT

w; P̂0 = P̄k−1. (6)

The IMU process module utilizes the state estimate from the
previous scan as the initial condition and recursively predicts
x̂i+1, δxi+1 and P̂i+1 till the end time of the current LiDAR
scan tk.

B. LiDAR Process
All the LiDAR points Ljpj with timestamps γj ∈ [tk−1, tk]

are cached to form a point cloud Pk. For most commercial
LiDAR, the points are sampled under different timestamps,
which will introduce motion distortion to the cloud Pk. We
seek to compensate for the distortion by projecting all the
points in Pk to Lk, the LiDAR frame at tk. To this end, we
adopt the backward propagation proposed in [3] to obtain the
relative motion between IMU frames sampled at γj and tk:
IkTIj . The point Ljpj can thus be projected to Lk as:

Lkpj =
IT−1

L
IkTIj

ITL
Ljpj . (7)

Moreover, a representative descriptor for the point is required
for robust correspondence matching. Thus, we represent the
deskewd points as a collection of Gaussian distributions. For
each point Lkpj , we collect its nearest y neighbors and fit them
to a Gaussian distribution N (Lkµj ,

LkCj) [17]. Eventually,
the LiDAR process module outputs a collection of the fitted
Gaussian distributions for all the points: {Lkµj ,

LkCj}.
C. Iterated State Estimation

Upon completion of the IMU and LiDAR processes, the
following steps for the IESKF-based LIO system involve
correspondence matching, residual formulation, and Kalman
update. However, existing filter-based LIO systems [3], [5], [6]
typically adopt the nearest correspondence matching strategy
and treat the ensuing point-to-feature distance as the residual.
This strategy involves projecting Lkpj to the global frame as:

Gp̂j =
GT̂Ik

ITL
Lkpj =

GT̄Ik−1

Ik−1T̂Ik
ITL

Lkpj . (8)

For long-term odometry, the inevitable accumulation of local-
ization drifts introduces errors to GT̄Ik−1

. Simultaneously, the
presence of spike noise, a common issue in low-cost IMUs,
leads to inaccuracies in Ik−1T̂Ik . These factors prevent Lkpj

from being projected to its exact corresponding feature, gen-
erating mismatches (see Fig. 3). Besides, matching the nearest
feature in the map could be computationally intensive if the
map size grows too large in long-term odometry. To cope with
these issues, we propose a new residual formulation for IESKF,
which can mitigate incorrectly matched correspondences while
maintaining computational efficiency (see Fig. 3). The details
are described in the following subsections.
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Fig. 3. Directly registering the source points to the nearest target points
would generate mismatches (shown in the left image). Instead, we: (a).
Voxelize the target cloud and fit the points within each voxel with a Gaussian
distribution. (b). Fit each source point and its nearest y neighbors with a
Gaussian distribution and match it with the near & similar target distributions.

Fig. 4. The different neighbor set Vj of a given voxel Gvn
j .

1) Correspondence Matching: Suppose the iterated state
estimation module is under the nth iteration and the corre-
sponding state estimation is x̂n

k , δx
n
k . We first project the fitted

distributions into the global frame as:

Gµ̂n
j = GT̂n

Lk

Lkµj ,

GĈn
j = GR̂n

Lk

LkCj
GR̂n

Lk

T
.

(9)

For each projected distribution
(
Gµ̂n

j ,
GĈn

j

)
, we aim to find

its near and similar correspondence in the global voxel map.
Each voxel contains one Gaussian distribution

(
Gµi,

GCi

)
(details of the global map is presented in Section IV-D).
Hellinger distance is a statistical measure that quantifies the
divergence between two probability distributions. Its value is
dominated by two terms: a similarity term and a distance term.
The similarity term captures the resemblance between two
probability distributions, while the distance term quantifies the
separation. For the correspondence evaluation, we extract the
similarity term from the squared Hellinger distance [24] and
denote it as the similarity metric sj,i:

sj,i =

√
(detCj detCi)

1/2

det (Cj/2 +Ci/2)
. (10)

The larger the sj,i is, the more similar the two distributions
are. The correspondence matching procedure can now be
conceptualized as follows: We first find the voxel coordinate
Gvn

j in the global map in which Gµ̂n
j occupies. Then, we

define a neighbor set of the occupied voxel as Vj (the selection
for Vj is illustrated in Fig. 4). After that, we calculate the
similarity sj,i between the source distribution and the target
distribution in Gvi (Gvi ∈ Vj) and discard the pairs with sj,i
smaller than a threshold st. Empirically, the selection for st is

influenced by the noise level of the LiDAR and IMU: the larger
the noise is, the smaller the st should be selected. Generally,
st should not be selected in a strict manner, as the noise
inherent in the LiDAR sampling and deskewing procedures
could potentially have an adverse impact on similarity.

2) Residual Formulation: Before presenting the new resid-
ual metric, it is necessary to explain the observation model
and state estimation scheme for IESKF. This will provide the
rationale behind the proposed residual metric. The observation
function of the system is:

znk = h (x̂n
k ⊞ δxn

k ) + vk, (11)

where vk is the measurement noise satisfying vk ∼ n (0,Vk),
h () is the observation function that maps the state space to
the observation space. Since the error state is quite small, we
can linearize the observation at x̂n

k :

znk ≈ h (x̂n
k ) +Hnδxn

k + vk, (12)

where Hn is the Jacobian matrix of h (x̂n
k ⊞ δxn

k ) w.r.t. δxn
k .

As δxk and δxn
k lie in different tangent space of the manifold

M (the tangent space of x̂k and x̂n
k respectively), we need to

project δxk to δxn
k in the tangent space as:

δxk = (x̂n
k ⊞ δxn

k )⊟ x̂k = x̂n
k ⊟ x̂k + (Jn)

−1
δxn

k , (13)

where Jn is the inverse of the Jacobian matrix of (x̂n
k ⊞ δxn

k )⊟
x̂k w.r.t. xn

k . Readers may refer to Appendix A for the detailed
formulation of Jn. Combining (12) and (13), following the
Bayesian rule, we have the maximum a posterior (MAP)
problem:

δxn
k = argmin

δxn
k

(
∥δxk∥2P̂−1

k

+ ∥h (x̂n
k ) +Hnδxn

k∥2V−1
k

)
.

(14)
Given that the matched correspondences are Gaussian dis-

tribution pairs, we aim to design a residual metric such that the
second term in (14) can represent both the distance and the
variance disparity. Let’s consider the weighted Mahalanobis
distance presented as follows:
m∑
j=0

(snj,i)
2
(
Gµ̂n

j − Gµi

)T
(Ĉn

j +Ci + αI)−1
(
Gµ̂n

j − Gµi

)
,

(15)
where m is the number of matched correspondences, αI
(α > 0) is a constant diagonal matrix to avoid the singularity
issue. The Mahalanobis distance is weighted by the similarity
of the matched correspondences, ensuring that the pairs with
higher similarity and closer distance contribute more to the
estimation process, which aligns with our objective. Adopting
this formula, the resulting residual metric for

(
Gµ̂n

j ,
GĈn

j

)
would be:

znk,j = snj,iD
n
j

(
Gµ̂n

j − Gµi

)
. (16)

Appendix B exhibits the detailed derivation and definition.
3) State Update: The Jacobian matrix Hn

k,j of znk,j w.r.t.
δxn

k is:

Hn
k,j =

[
−sjDj

[
Iqj

]
× sjDj 03×15

]
. (17)

Please refer to Appendix A for the derivation and definition
details. With the Jacobian matrix, the optimal solution of the
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MAP problem (14) can be solved by the Kalman update [25]
described in Appendix A.

D. Incremental Global Map

The global map is composed of voxels stored as a hash
table: Z3 → R3 × R3×3, which builds a map from the
voxel coordinate Gvi to its centroid Gµi and the covariance
matrix GCi. This structure demonstrates significant efficiency
in querying, achieving an optimal O(1) time complexity for
correspondence matching. This structure is similar to that
of VGICP [19]. In contrast to VGICP, which only supports
pair-wise registration and requires repeated voxelization of
the source scan, our approach offers a complete solution for
insert, update, and delete operations within a global target map.
We also address the variable LiDAR sampling rate problem
(e.g. the ground voxels are undersampled in the distance and
degrade from the ”plane” to ”line” feature) by introducing
an update scheme to ensure the continuous and accurate
maintenance of the map.

For the initialization, the first scan is regarded as the global
frame G = L0. Each point in the scan is subsequently
fitted to a Gaussian distribution as the procedure in IV-B to
obtain

(
Gp̂j ,Cj

)
. Consequently, the scan is voxelized with

voxel size r. Suppose we have the voxel with coordinate
Gvi encompassing a set of points {Gpm}, the centroid and
covariance matrix Gµi,

GCi will be calculated as the average
of the distributions within. Once the current estimate x̄k

is acquired, the current scan contributes to the global map.
Since the projected Gaussian distributions have been obtained
during the state estimation phase, we proceed to voxelize the
current scan following (18), resulting in a temporary voxel map
Gvj → (µ̄j , C̄j). For each voxel present in this temporary
voxel map, we query its coordinate Gvj in the global map. If
the global map doesn’t contain the voxel, we directly insert the
voxel into the global map. This operation is time-efficient since
the insert operation for a hash table has a time complexity of
O(1). Otherwise, the global map will be updated as:

Gµj =
MGµj +NGµ̄j

M +N
,

GCj =
MGCj +NGC̄j

M +N
,

(18)

where M is the recorded point number of voxel Gvj in
the global map, N is the corresponding one in the temporary
voxel map. In this way, the global map only necessitates the
maintenance of the centroid and covariance matrix for each
voxel, which is considerably efficient in terms of memory
usage and time efficiency compared to maintaining a tree
structure storing all points [4] or embedding additional struc-
tures into the voxels [5], [16]. Specifically, M is updated
using the formula M = max(M,N). This is motivated by
the goal of maintaining a continuously updated voxel scheme.
This approach ensures that M is constrained by the maximum
number of points that can be sampled by LiDAR within a
voxel. Otherwise, recalling (18), an unbounded M would lead
to M ≫ N after a few scans, thus preventing the update of
voxel parameters. Consequently, this enables an incremental
update of the global map without the necessity to delete voxels

Fig. 5. The position error of different methods on sequence ntu 13. We find
that the position error is most significant along the z axis, due to the severe
elevation changes.

from the map. Nevertheless, the mapping scheme also provides
the option to remove voxels out of the effective range of the
LiDAR for operation in exceptionally large environments.

V. EXPERIMENT

In this section, the proposed system will be evaluated in
terms of accuracy, temporal efficiency, and storage efficiency.
All the experiments are conducted on a laptop with a 2.3
GHz AMD Ryzen 7 6800H CPU and 16 GB RAM. We
chose 9 sequences from two representative datasets for the
evaluation. The first 5 sequences, denoted as nc *, are selected
from Newer College dataset [26], with an OS1-64 LiDAR
at a scan rate of 10Hz and a built-in 6-axis IMU sampled
at 100Hz. The rest sequences are selected from the MCD
VIRAL dataset [27], collected by an OS1-128 LiDAR sampled
at 10Hz, a Livox Mid-70 LiDAR, and a VectorNav VN100
9-axis IMU sampled at 800 Hz. In order to evaluate the
influence of IMU on the odometry accuracy, we perform
experiments on different IMUs for the same sequences from
MCD VIRAL dataset: ntu * denoting OS1-128 LiDAR with
VN100 IMU, ntuo * denoting OS1-128 LiDAR with its built-
in IMU. The ground truth poses for both datasets are generated
by registering each LiDAR scan to a highly accurate prior map
using an ICP method.

A. Evaluation of Odometry Accuracy

We evaluate the accuracy by comparing the KITTI metric
[28]: the average translation error (ATE), and the average
rotation error (ARE). We compare LIO-GVM with three state-
of-the-art LiDAR (-inertial) odometry algorithms: DLO [29],
VoxelMap [12], LIO-SAM [1], and FAST-LIO2 [4]. DLO is a
GICP-based LO, VoxelMap is a probabilistic voxel-based LO
while LIO-SAM and FAST-LIO2 are LIO systems. Parameters
for all methods are kept constant across sequences for consis-
tency. For LIO-GVM, the voxel size, st, and α are empirically
set as 1.0 m, 0.70 and 10−6, respectively. Additionally, the
neighbor searching scheme is set as 7-neighbors searching.

Two variations of the proposed system denoted as LIO-
GVM(w/o s) and LIO-GVM(plane) are tested for ablation
study. LIO-GVM(w/o s) is implemented without the outlier
rejecting scheme proposed in Sec. IV-C1. LIO-GVM(plane)
replaces the proposed new residual metric with the point-to-
plane distance [4]. As shown in Tab. II, both LIO-GVM(w/o
s) and LIO-GVM(plane) turn worse compared to the original
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TABLE II
EVALUATION AND COMPARISON OF ODOMETRY ACCURACY ON ALL THE SEQUENCES

ntu 02 ntu 04 ntu 10 ntu 13 ntuo 02 ntuo 04 ntuo 10 ntuo 13 nc 01 nc 02 nc 05 nc 06 nc 07

DLO 6.46/0.43 3.65/0.11 7.65/0.51 3.98/0.20 6.46/0.43 3.75/0.11 7.65/0.51 3.98/0.20 4.20/0.51 4.27/0.37 3.44/0.44 1.31/0.62 1.73/0.18
VoxelMap 1.83/0.11 2.98/0.18 8.48/0.57 × 1.83/0.11 2.98/0.18 8.48/0.57 × × × × × ×
LIO-SAM 7.80/0.52 3.71/0.23 9.32/0.63 3.05/0.16 -a - - - - - - - -
FAST-LIO2 2.09/0.24 2.11/0.13 2.34/0.15 2.89/0.11 5.64/0.80 3.51/0.23 7.32/0.41 6.79/0.50 3.23/0.37 4.15/0.43 3.13/0.26 0.94/0.37 1.16/0.15
LIO-GVM(w/o s) 2.37/0.40 2.35/0.11 3.21/0.14 2.79/0.14 5.51/0.68 4.73/0.39 6.59/0.39 4.58/0.26 3.36/0.31 4.76/0.44 3.46/0.47 1.28/0.43 1.38/0.20
LIO-GVM(plane) 8.24/0.68 6.91/0.41 8.29/0.74 5.77/0.43 9.34/0.90 7.95/0.54 10.2/0.81 8.89/0.73 6.29/0.49 6.30/0.67 4.54/0.72 2.48/0.59 3.45/0.30
LIO-GVM 1.74/0.46 2.26/0.05 3.16/0.11 2.74/0.09 3.23/0.40 2.69/0.14 4.25/0.27 3.60/0.18 2.47/0.26 3.20/0.35 3.27/0.33 0.89/0.33 1.10/0.17

Errors are denoted as ATE[%]/ARE[deg/10m] (smaller is better). We only align the position and orientation at the origin for a comprehensive evaluation.
Bold value stands for the best; underline is the second best; ’-’ denotes that the algorithm is not applicable; ’×’ indicates that the algorithm diverges.
’-a’: LIO-SAM is not applicable for ntuo * an nc * sequences due to the lack of a 9-axis IMU.

Fig. 6. The trajectories reference to the ground on sequence ntu 04.

system for all the sequences, indicating that the proposed
correspondence matching scheme and residual metric both
contribute to the accuracy of the system. The accuracy of LIO-
GVM(plane) tends to be much worse than LIO-GVM(w/o s),
which is because the residual metric inherently reduces the
weights for mismatches. The drastic accuracy degradation of
LIO-GVM(plane) is because, without the proposed residual
metric, all the adopted correspondences contribute equally to
the estimation, even those with low similarity.

As illustrated in Tab. II, LIO-GVM achieves the best results
for most sequences due to its ability to reject mismatched
distributions (the proposed correspondence matching) and
evaluate the variance divergence in the distribution covariance
(the proposed residual metric). For ntu * sequences, FAST-
LIO2 achieves comparable results with LIO-GVM, because
the accurate IMU integration can approximately project source
points to the correct feature in the target map. VoxelMap offers
accurate pose estimation in some sequences but frequently
diverges, especially for the nc * sequences equipped with a
64-line LiDAR. This divergence is attributed to its map update
scheme. When the LiDAR remains stationary for several scans,
distant voxels converge prematurely and stay undersampled.
This issue is particularly obvious for ground voxels, leading
to the majority of divergence occurrences along the z-axis.
Conversely, LIO-GVM employs a continuously updated map-
ping scheme, ensuring that the performance remains stable for
motion and LiDAR sampling rate variations.

The performance of all LIO systems is negatively impacted
in ntuo * compared to ntu * sequences due to the equip-
ment of a low-cost IMU. Nevertheless, LIO-GVM is able
to mitigate the impact of IMU noises through its proposed
correspondence matching scheme, which can reject outliers.
Additionally, LIO-GVM incorporates a new residual metric
that takes similarity into account during the estimation phase,
allowing more effective correspondences to have a greater

(a) MCD VIRAL dataset.

(b) Newer College dataset.

Fig. 7. The average time consumed per scan (ms) for all methods in different
datasets.

influence on the estimation. Consequently, LIO-GVM exhibits
the best accuracy compared to other systems. However, all
the methods have a common limitation in accommodating the
pronounced changes in elevation in the ntu * sequences, as
seen in Fig. 5 and Fig. 6.

Overall, LIO-GVM has demonstrated the best performance
regarding odometry accuracy, showing the effectiveness of
the error-rejecting correspondence matching scheme and the
distribution-based residual metric in achieving accurate pose
estimation across various sensor setups, especially in long-
term applications or with cheaper IMUs.

B. Evaluation of Storage Efficiency

In this section, we evaluate the storage consumption of
the global map generated by LIO-GVM. Specifically, in LIO-
GVM, we have defined a custom point type using the Point
Cloud Library (PCL). Each point encapsulates all the elements
of (µi,Ci,M), comprising a total of four integer values
and nine floating-point values. All the voxels are stored in a
compressed binary .pcd file. For other systems, we configure
their local map size to be 500m, ensuring coverage of all areas
within the two datasets, and save all the points in the map to
a compressed binary .pcd file.
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TABLE III
EVALUATION OF THE TEMPORAL EFFICIENCY IN SEQUENCES ON MAPPING PROCEDURES

Gaussian Fitting Correspondence Match Incremental Update Total Map Time

ikd-Tree GVM ikd-Tree GVM ikd-Tree GVM ikd-Tree GVM

ntu 02 0 11.61 25.05 1.29 2.45 5.13 27.50 18.03
ntu 04 0 12.91 24.26 1.41 3.96 5.34 28.22 19.66
ntu 10 0 11.86 24.27 1.34 3.97 5.87 28.24 19.08
ntu 13 0 12.71 24.89 1.67 3.62 5.18 28.51 19.56
nc 01 0 8.10 14.36 0.69 0.78 2.97 15.14 11.76
nc 02 0 8.25 15.76 0.73 0.92 2.84 16.68 11.82
nc 05 0 7.73 12.62 0.67 0.57 2.84 13.19 11.24
nc 06 0 7.19 13.66 0.70 0.81 3.23 14.47 11.12
nc 07 0 8.99 15.67 0.62 1.11 3.18 16.78 12.79

We evaluate the average time consumed per scan [ms].
Bold value stands for the best value.

TABLE IV
THE CONSTRUCTED MAP STORAGE ANALYSIS

ntu 02 ntu 04 ntu 10 ntu 13 nc 01 nc 02 nc 05 nc 06 nc 07

FAST-LIO2 6.07 21.83 19.13 22.19 7.93 9.24 1.15 0.65 5.62
LIO-GVM 3.55 12.61 11.39 8.29 4.25 4.60 0.13 0.48 3.01

The map storage is analyzed by evaluating the storage consumption [MB]. All the maps are saved as binary compressed PCD files.
Bold value stands for the best value.

Fig. 8. The eventual runtime RAM usage for all the methods.

As illustrated in Tab. IV, the map storage consumption of
LIO-GVM outperforms other systems for all the sequences.
This is because other systems need to ensure that the down-
sampling filter of the map is not excessively large (usually
< 0.5m) to preserve the geometric information of the points.
In contrast, our approach allows us to allocate a considerably
larger voxel size (commonly > 1m) compared to other systems
while still offering a comprehensive representation of the intra-
voxel point distribution.

C. Evaluation of Time Consumption

In this section, we will evaluate the temporal efficiency
of LIO-GVM, utilizing the same parameters as those de-
ployed in our previous odometry evaluations for consistency.
We first analyze the influence of the data structure on the
mapping procedure, which involves correspondence matching
and incremental updates. Given the superior performance of
the ikd-Tree provided in [4] compared to other dynamic
tree-based structures, our comparison will be limited to this
structure. While the Gaussian fitting process does not directly
participate in the mapping procedure, its time consumption
is still accounted for in LIO-GVM for a fair comparison.
We denote the data structure in LIO-GVM for the mapping
procedure as GVM. The results are illustrated in Tab. III.
GVM significantly outperforms ikd-Tree in correspondence

matching because the time complexity of k-nearest neighbors
searching for ikd-Tree is O(log(n)), where n is the tree size;
but for GVM, managed in a hash table, the corresponding time
complexity is O(1). ikd-Tree slightly performs better in the
incremental update. Nonetheless, GVM demonstrates superior
performance in total map time.

In Fig. 7, we illustrate the average total time consumed
per scan for all the sequences. The total time we evaluated
includes all the procedures: data processing, pose estimation,
and map update. Since LIO-SAM and DLO run map update
in different thread with the pose estimation thread, we only
evaluate their time consumed for state estimation. Notably,
VoxelMap consumes an average of 141.3 ms per scan due
to its demand for dense point cloud data. Even though the
mapping procedure of LIO-GVM is faster than FAST-LIO2,
FAST-LIO2 achieves the shortest total time for almost all
the sequences. This is because LIO-GVM requires more
geometric information from the input scan. For example, in
ntu * sequences, FAST-LIO2 employs fewer feature points
than LIO-GVM (4638 versus 5741). Consequently, LIO-GVM
spends more time on pose estimation. However, as illustrated
in Tab. 8, the fast performance of FAST-LIO2 and DLO comes
with the trade-off of increased runtime RAM usage, while
LIO-GVM can achieve comparable temporal efficiency with
lower RAM usage.

VI. CONCLUSION

In conclusion, this letter proposes an accurate filter-based
LIO system denoted as LIO-GVM, which models the points
as Gaussian distributions for robust correspondence match-
ing. The key innovation of the system is the proposed new
residual metric. Unlike previous methods that solely measure
distance, our approach incorporates variance disparity, thereby
enhancing the system’s performance. Benefiting from the
new metric, the map of LIO-GVM can be maintained in a
simple yet efficient manner. We demonstrate the reliability
and efficiency of LIO-GVM through extensive experiments
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on different datasets. The limitation of LIO-GVM is that it
requires equipment with higher resolution LiDAR to ensure
informative Gaussian fitting of the input scan. Additionally, the
voxel size is not adaptive to the environment. To address these
limitations, future work will focus on developing an adaptive
voxel representation scheme for the global map.

APPENDIX

A. Supplemental Material

Please find details in the supplemental material: supplemen-
tal material.pdf.

B. Derivation of the Proposed Residual Metric

Let’s denote
(
Gµ̂n

j − Gµi

)
as Gµ̃, then equate (15) with

the second term in MAP problem, we’ll have:

∥znk∥2V−1
k

=

m∑
j=0

(snj,i)
2Gµ̃T (Ĉn

j +Ci + αI)−1Gµ̃. (19)

To avoid the singularity issue, we first perform eigen-
decomposition on (Ĉn

j + Ci + αI)−1 to have (Ĉn
j +

Ci + αI)−1 =
(
Un

j

)T (
Λn

j

)−1
Un

j . Subsequently, the
eigenvalues are normalized and clamped at 10−4: λn

t,j =
max(λn

t,j/trace(Λ
n
j ), 10

−4), t = 1, 2, 3. In order to obtain
the same formula as the left-hand side, we perform matrix
decomposition to have

(
Λn
j

)−1
=

(
Qn

j

)T
V−1

k Qn
j , which is

quite easy since
(
Λn
j

)−1
is a diagonal matrix. Thus,

(19) =
m∑
j=0

(snj,i)
2Gµ̃T (Ĉn

j +Ci + αI)−1Gµ̃

=

m∑
j=0

snj,i
Gµ̃T

(
Un

j

)T (
Qn

j

)T
V−1

k snj,iQ
n
j U

n
j
Gµ̃

=

m∑
j=0

(znk,j)
TV−1

k znk,j ,

(20)

where:
znk,j = snj,iD

n
j

(
Gµ̂n

j − Gµi

)
,

Dn
j = Qn

j U
n
j .

(21)
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