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ABSTRACT
Heterogeneous Graph Neural Networks (HGNNs) have gained sig-

nificant popularity in various heterogeneous graph learning tasks.

However, most existing HGNNs rely on spatial domain-based meth-

ods to aggregate information, i.e., manually selected meta-paths or

some heuristic modules, lacking theoretical guarantees. Further-

more, these methods cannot learn arbitrary valid heterogeneous

graph filters within the spectral domain, which have limited ex-

pressiveness. To tackle these issues, we present a positive spectral

heterogeneous graph convolution via positive noncommutative

polynomials. Then, using this convolution, we propose PSHGCN, a

novel Positive Spectral Heterogeneous Graph Convolutional Net-

work. PSHGCN offers a simple yet effective method for learning

valid heterogeneous graph filters. Moreover, we demonstrate the

rationale of PSHGCN in the graph optimization framework. We

conducted an extensive experimental study to show that PSHGCN

can learn diverse heterogeneous graph filters and outperform all

baselines on open benchmarks. Notably, PSHGCN exhibits remark-

able scalability, efficiently handling large real-world graphs com-

prising millions of nodes and edges. Our codes are available at

https://github.com/ivam-he/PSHGCN.
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• Mathematics of computing → Graph algorithms; • Com-
puter systems organization→ Neural networks.
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1 INTRODUCTION
In recent years, there has been a significant surge of interest in

graph neural networks (GNNs) due to their remarkable performance

in tackling diverse graph learning tasks, including but not limited

to node classification [6, 16, 29], recommendation system [4, 15, 19]

and graph property prediction [9, 18, 35]. While earlier versions of

GNNs [16, 29] were primarily developed for homogeneous graphs,

which consist of only one type of node and edge, real-world graphs

typically comprise a diverse range of nodes and edges known as

heterogeneous graphs. For instance, an academic graph may in-

clude multiple nodes such as "author," "paper," and "conference,"

as well as several edges such as "cite," "write," and "publish." Due

to the extensive and diverse information in heterogeneous graphs,

specialized models are necessary to analyze them effectively.

In response to the challenge of heterogeneity, numerous Hetero-

geneous Graph Neural Networks (HGNNs) have been proposed,

achieving significant performance [1, 7, 30, 40]. The majority of

these HGNNs depend on spatial domain-based message passing

and attention modules for information propagation and aggrega-

tion. Following [37], we can broadly classify these HGNNs into two

categories based on whether they use manually selected meta-paths

or meta-path-free techniques to aggregate information.

Meta-path-based HGNNs [7, 30, 37, 42] begin by manually select-

ing or predefining specific meta-paths. Then, they perform message

aggregation based on these meta-paths to obtain the final embed-

ding. These message aggregation strategies encompass attention

modules, Transformers, and various other techniques. In contrast,

meta-path-free HGNNs [1, 20, 22, 33, 40, 41] create graph convolu-

tions for heterogeneous graphs to propagate and aggregate mes-

sages. These convolutions are designed from the spatial domain,

leveraging techniques like attention mechanisms and learnable

weights to acquire node representations heuristically.

Although the above HGNNs have shown promising results in

various heterogeneous graph learning tasks, they still have some
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significant limitations. First, the effectiveness of meta-path-based

HGNNs relies on the manually selected meta-paths, resulting in

poor theoretical guarantees. For example, SeHGNN [37] uses 41

meta-paths for feature aggregation on the ACM dataset, while

HAN [30] uses only 6. This partly explains why SeHGNN outper-

forms HAN on this dataset. Furthermore, all these HGNNs design

aggregation strategies or graph convolutions in the spatial domain

heuristically, which cannot learn arbitrary graph filters like spectral-

based GNNs [6, 10, 11, 32]. This results in limited expressiveness.

For example, MHGCN [40] directly learns the summation weights

of the adjacency matrix with only one type of edge, rendering it

incapable of learning arbitrary filters. Additionally, these HGNNs

acquire graph filters without any necessary constraints, making

them challenging to learn, especially from a graph optimization

perspective [10, 38, 44, 45], where graph filters should satisfy posi-

tive semidefinite constraints. In Section 6.4 of our experiments, we

show the impact of the positive semidefinite constraint, and under

equivalent conditions, models with this constraint perform better

and exhibit reduced standard errors across multiple runs.

To address these issues, we first introduce the concept of spectral

heterogeneous graph convolution, which is a straightforward and

intuitive extension of spectral graph convolution. Building upon

this, we present a positive spectral heterogeneous graph convolu-

tion, leveraging positive noncommutative polynomials to ensure

that the acquired graph filters maintain positive semidefiniteness.

Using this convolutional approach, we propose a novel heteroge-

neous graph convolutional network named PSHGCN. PSHGCN

offers a simple yet highly effective method for learning hetero-

geneous graph filters. Moreover, we analyze the rationale behind

PSHGCN from the perspective of graph optimization. Our analysis

shows that PSHGCN has the theoretical capacity to express a wide

array of valid heterogeneous graph filters. Finally, we conduct an

extensive experiment, demonstrating that PSHGCN excels in tasks

such as node classification and link prediction. This underscores

PSHGCN’s ability to learn heterogeneous graph filters adeptly. No-

tably, PSHGCN exhibits remarkable scalability, efficiently handling

large real-world heterogeneous graphs comprisingmillions of nodes

and edges. We summarize the contributions of this paper as follows:

(1) We propose PSHGCN, a heterogeneous graph convolutional

network that uses positive spectral heterogeneous graph con-

volution to learn valid heterogeneous graph filters.

(2) We present a generalized heterogeneous graph optimization

framework and demonstrate the rationale of our PSHGCN from

this framework.

(3) Thorough experiments demonstrate that PSHGCN achieves

superior performance in tasks such as node classification and

link prediction, and has desirable scalability.

2 RELATEDWORK
Graph Neural Networks (GNNs) are machine-learning tech-

niques designed specifically for graph data. These methods aim to

find a low-dimensional vector representation for each node, en-

abling efficient processing for various network mining tasks. GNNs

can be broadly classified into two categories: spatial-based and

spectral-based approaches [34]. Spatial-based GNNs directly prop-

agate and aggregate information in the spatial domain. From this

viewpoint, GCN [16] can be interpreted as aggregating one-hop

neighbor information in each layer. GAT [29] leverages attention

mechanisms to learn aggregation weights.

Spectral-based GNNs utilize spectral graph convolutions/filters

designed in the spectral domain. ChebNet [6] employs Chebyshev

polynomials to approximate filters. GCN [16] simplifies the Cheby-

shev filter by utilizing a first-order approximation. APPNP [17] uses

Personalized PageRank (PPR) to determine the filter weights. GPR-

GNN [5] learns polynomial filters by employing gradient descent

on the polynomial weights. BernNet [10] utilizes the Bernstein ba-

sis for approximating graph convolutions, enabling the learning

of arbitrary graph filters. JacobiConv [32] and ChebNetII [11] use

Jacobi polynomials and Chebyshev interpolation, respectively, to

learn filters. OptBasisGNN [8] first computes the optimal polyno-

mial bases and then uses them to learn filters. However, all these

methods are designed for homogeneous graphs and do not perform

optimally on heterogeneous graphs.

Heterogeneous Graph Neural Networks (HGNNs) are ex-
plicitly developed to address the challenges posed by heterogeneous

graphs. HGNNs can be broadly categorized into meta-path-based

and meta-path-free HGNNs [37]. Meta-path-based HGNNs prop-

agate and aggregate neighbor features using selected meta-paths.

HAN [30] uses a hierarchical attention mechanism with multiple

meta-paths for aggregating node features and semantic information.

HetGNN [42] employs random walks to generate node neighbors

and aggregates their features. MAGNN [7] encodes information

from manually selected meta-paths instead of just focusing on

endpoints. SeHGNN [37] utilizes predetermined meta-paths for

neighbor aggregations and applies a transformer-based approach.

Meta-path-free HGNNs propagate and aggregate messages from

neighboring nodes in a manner similar to GNNs, without requiring

a selected meta-path. RGCN [22] extends GCN [16] to heteroge-

neous graphs with edge type-specific graph convolutions. GTN [41]

utilizes soft sub-graph selection and matrix multiplication to gen-

erate meta-path neighbor graphs. SimpleHGN [20] incorporates a

multi-layer GAT network with attention based on node features

and learnable edge-type embeddings. MHGCN [40] directly learns

the summation weights and employs GCN’s convolution for feature

aggregation. EMRGNN [33] and HALO [1] propose optimization

objectives tailored for heterogeneous graphs and design architec-

tures by solving these optimization problems. HINormer [21] uses

the local structure encoder and the relation encoder, with graph

Transformer to learn node embeddings. MGNN [2] uses noncom-

mutative polynomials to create graph convolutions for multigraphs

in the spectral domain. All of these HGNNs are designed within the

spatial domain, except for MGNN. However, MGNN mainly focuses

on multigraphs and has no constraints for learned filters. The lack

of robust theoretical guarantees and expressiveness within spatial-

based HGNNs, coupled with the limited exploration of spectral-

based HGNNs, motivates us to propose the PSHGCN.

3 PRELIMINARIES
3.1 Spectral Graph Convolution
Recent studies suggest that many popular spectral-based GNNs

utilize a polynomial of the Laplacian matrix to approximate spectral

graph convolutions [6, 10, 11, 16, 32]. In particular, we denote an
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undirected homogeneous graph with node set 𝑉 and edge set 𝐸

as 𝐺 (𝑉 , 𝐸), whose adjacency matrix is A. Let L = I − Â = I −
D−1/2AD−1/2 denote the normalized Laplacian matrix, where Â =

D−1/2AD−1/2 denotes the normalized adjacency matrix and D is

the diagonal degree matrix of A, i.e., D[𝑖, 𝑖] = ∑
𝑗 A[𝑖, 𝑗]. We use

L = UΛU⊤ to represent the eigendecomposition of L, where U
denotes the matrix of eigenvectors and Λ = diag[𝜆1, ..., 𝜆 |𝑉 | ] is
the diagonal matrix of eigenvalues. Given a graph signal vector

x ∈ R |𝑉 | , the spectral graph convolution is defined as

y = ℎ(L)x = Uℎ (Λ) U⊤x = Udiag
[
ℎ(𝜆1), ..., ℎ(𝜆 |𝑉 | )

]
U⊤x. (1)

The function ℎ(L) (or, equivalently, ℎ(𝜆)) is the spectral graph
filter and y denotes the output of graph convolution. To learn

filters while avoiding the expansive eigendecomposition, existing

methods use polynomials to approximate ℎ(L) [6, 11].

y = ℎ(L)x ≈
𝐾∑︁
𝑘=0

𝑤𝑘L𝑘x, (2)

where𝑤𝑘 are the polynomial filter weights. We can obtain different

filters by setting or learning the weights𝑤𝑘 .

3.2 Graph Optimization Framework
We can obtain the spectral graph convolution through the lens of a

classical graph optimization problem [10, 45].

min

y
𝑓 (y) = min

y
(1 − 𝛼)y⊤𝛾 (L)y + 𝛼 ∥ y − x ∥2

2
, (3)

where the first term is a smooth operation of the signals based

on the graph structure and 𝛾 (·) is an energy function [24]. The

second term is a regularization that maintains the original signals.

The parameter 𝛼 ∈ (0, 1) is a trade-off parameter. We can get the

closed-form solution of the problem (3) by setting
𝜕𝑓 (y)
𝜕y = 0.

y = ℎ(L)x = 𝛼 (𝛼I + (1 − 𝛼)𝛾 (L))−1x. (4)

Equation (4) can express some specific convolution by setting dif-

ferent functions 𝛾 (L) [10, 45]. For example, if we set 𝛾 (L) = L, then
y = 𝛼 (𝛼I + (1 − 𝛼)L)−1x = 𝛼 (I − (1 − 𝛼)Â)−1x, corresponding
the graph convolution of PPNP/APPNP [17]. We can obtain more

existing GNNs’ convolutions using Equation (4). For the details,

please refer to papers [10, 45].

Importantly, in Equation (3), the output of function 𝛾 (L) has to
be positive semidefinite. If 𝛾 (L) fail to satisfy this condition, the

optimization function 𝑓 (y) becomes non-convex, and the solution

to
𝜕𝑓 (y)
𝜕y = 0 may lead to a saddle point. When 𝛾 (L) is positive

semidefinite, we can derive that the spectral graph filter ℎ(L) =
𝛼 (𝛼I + (1 − 𝛼)𝛾 (L))−1 is positive semidefinite, i.e., ℎ(𝜆) ≥ 0 [10].

Therefore, based on the graph optimization framework, a spectral

graph filter ℎ(L) should be positive semidefinite.

3.3 Heterogeneous Graph
A heterogeneous graph [27] is defined as 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 ), where
𝑉 is the set of nodes and 𝐸 is the set of edges. Let 𝑛 = |𝑉 | denote
the number of nodes. Each node 𝑣 ∈ 𝑉 is attached with a node type

𝜙 (𝑣) and each edge 𝑒 ∈ 𝐸 is attached with an edge type𝜓 (𝑒). We

use T𝑣 = {𝜙 (𝑣) : ∀𝑣 ∈ 𝑉 } to denote the set of possible node types

and T𝑒 = {𝜓 (𝑒) : ∀𝑒 ∈ 𝐸} to denote the set of possible edge types.

Table 1: Existing HGNNs that attempt to design the spectral
heterogeneous graph convolution.

Method Shift P𝑟 Graph Convolution

GTN [41] A𝑟 D−1
∏𝐾
𝑘=0

∑𝑅
𝑟=0 𝛼

(𝑘 )
𝑟 A𝑟x

EMRGNN [33] Ã𝑟
∑𝐾
𝑘=0

𝛼 (1 − 𝛼)𝑘
(∑𝑅

𝑟=1 𝜇𝑟 Ã𝑟
)𝑘

x

MHGCN [40] A𝑟
(∑𝑅

𝑟=1 𝛽𝑟A𝑟
)𝐾

x

When |T𝑣 | = |T𝑒 | = 1, the graph becomes an ordinary homogeneous

graph. For convenience, we use 𝑅 = |T𝑒 | to denote the number of

edge types. The meta-paths define a composite relation among

various types of nodes and edges, denoted as P ≜ 𝑛1
𝑟1−→ 𝑛2

𝑟2−→
. . .

𝑟𝑙−→ 𝑛𝑙+1, where 𝑟𝑖 ∈ T𝑒 and 𝑛𝑖 ∈ T𝑣 .
For a heterogeneous graph𝐺 , we denote the sub-graph generated

by differentiating the types of edges between all nodes as {𝐺𝑟 |𝑟 =
1, 2, . . . , 𝑅}. Each 𝐺𝑟 includes 𝑛 nodes but only contains one type

of edge. Let A𝑟 denote the adjacency matrix of the sub-graph 𝐺𝑟 ,

where A𝑟 [𝑖, 𝑗] is non-zero if there exists an 𝑟 -th type edge from

𝑖 to 𝑗 . Notably, in the general case of heterogeneous graphs, the

sub-graph𝐺𝑟 is a directed graph. Hence, we use D𝑟 to represent the
diagonal out-degree matrix of A𝑟 , i.e., D𝑟 [𝑖, 𝑖] =

∑𝑛
𝑗 A𝑟 [𝑖, 𝑗]. We use

Â𝑟 = D−1𝑟 A𝑟 to denote the normalized adjacency matrix and use

L𝑟 = I − Â𝑟 to denote the normalized Laplacian matrix. For brevity,

we assume that all nodes possess the same dimensional features

and denote the node features as X ∈ R𝑛×𝑑 , where 𝑑 represents the

dimensionality of the node features.

4 THE PROPOSED METHOD: PSHGCN
In this section, we will begin by introducing the concept of spectral

heterogeneous graph convolution. Subsequently, we will propose

a positive spectral heterogeneous graph convolution, ensuring its

positive semidefinite nature. Finally, we will provide a compre-

hensive overview of the implementation of the Positive Spectral

Heterogeneous Graph Convolutional Network (PSHGCN).

4.1 Spectral Heterogeneous Graph Convolution
Expanding spectral graph convolution, i.e., Equation (2), to hetero-

geneous graphs is a straightforward and intuitive process.MGNN [2],

in this context, has introduced a method for defining graph convo-

lution on multigraphs through the utilization of noncommutative

polynomials. This approach can be readily applied to heterogeneous

graphs. Specifically,We use P𝑟 to denote either the adjacencymatrix

Â𝑟 or the Laplacian matrix L𝑟 of sub-graph𝐺𝑟 . This P𝑟 is commonly

recognized as the shift operator in graph signal processing [25].

Definition 4.1. (Spectral Heterogeneous Graph Convolution).

Consider a heterogeneous graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 ) with shift operators
{P𝑟 }𝑅𝑟=1. A spectral heterogeneous graph convolution of a graph signal
x ∈ R𝑛 on 𝐺 is defined as ℎ(P1, P2, . . . , P𝑅)x, where ℎ denotes a
noncommutative polynomial function that takes the shift operators
{P𝑟 }𝑅𝑟=1 as independent variables.

Here, we call ℎ(P1, P2, . . . , P𝑅) the heterogeneous graph filter

and formalize it as𝑤0I+∑𝐾
𝑘=1

∑
𝑟1,𝑟2,...,𝑟𝑘

𝑤𝑟1,𝑟2,...,𝑟𝑘
(
P𝑟1P𝑟2 · · · P𝑟𝑘

)
,

where 𝑤𝑟1,𝑟2,...,𝑟𝑘 ∈ R denote the polynomial coefficients, 𝐾 ∈
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Figure 1: An illustration of the proposed PSHGCN.

Z+ is the order of the polynomial, and 𝑟𝑖 ∈ {1, 2, . . . , 𝑅} for each
𝑖 ∈ {1, 2, . . . , 𝑘}. For example, a 2-order polynomial filter ℎ with

two variables can be denoted as ℎ(P1, P2) = 𝑤0I +𝑤1P1 +𝑤2P2 +
𝑤1,1P1P1 +𝑤1,2P1P2 +𝑤2,1P2P1 +𝑤2,2P2P2.

Some existing HGNNs can be perceived as attempts to design

the spectral heterogeneous graph convolution. We show the details

in Table 1. Specifically, GTN [41] introduces a Graph Transformer

layer to perform the graph convolution, which can be represented

as D−1
∏𝐾
𝑘=0

∑𝑅
𝑟=0 𝛼

(𝑘 )
𝑟 A𝑟x. In this expression, 𝛼

(𝑘 )
𝑟 are learnable

weights, D is the degree matrix for normalization, and A0 is the

identity matrix. EMRGNN [33] utilizes the multi-relational Person-

alized PageRank [17] to design the graph convolutions, which can

be expressed as

∑𝐾
𝑘=0

𝛼 (1 − 𝛼)𝑘
(∑𝑅

𝑟=1 𝜇𝑟 Ã𝑟
)𝑘

x. Here, Ã𝑟 is the

normalized adjacency matrix with self-loops. EMRGNN approxi-

mates a graph filter by learning the weight 𝜇𝑟 and setting 𝛼 as a

non-negative trade-off parameter. MHGCN [40] applies a straight-

forward approach by aggregating the adjacency matrix A𝑟 with
learnable weights 𝛽𝑟 , and uses 𝐾 GCN-layers to achieve the graph

convolution. This can be expressed as

(∑𝑅
𝑟=1 𝛽𝑟A𝑟

)𝐾
x.

We can observe that the above methods try to approximate the

heterogeneous graph filter by learning different weights. How-

ever, these methods constitute specific instances of the graph filter

ℎ(P1, P2, . . . , P𝑅), i.e., they cannot be equivalent to this noncommu-

tative polynomial ℎ, which limits their expressiveness. In fact, the

polynomial graph filter ℎ possesses the capacity to approximate

arbitrary filter functions, given that the order 𝐾 is sufficiently high.

4.2 Positive Spectral Heterogeneous Graph
Convolution

Although employing the spectral heterogeneous graph convolu-

tion (Definition 4.1) appears promising, it does not ensure positive

semidefinite graph filters. As outlined in Section 3.2, filters on ho-

mogeneous graphs must be positive semidefinite, a condition we

prove applies to heterogeneous graphs as well.

To ensure the learned graph filters are positive semidefinite,

spectral-based GNNs on homogeneous graphs have employed vari-

ous techniques, such as Bernstein Approximation [10] and Polyno-

mial Interpolation [11]. However, directly extending these methods

to the heterogeneous filter ℎ(P1, P2, . . . , P𝑅) is infeasible since the

shift operators {P𝑟 }𝑅𝑟=1 are noncommucative and share different

eigenspace. Consequently, ensuring that heterogeneous filter ℎ

meets the positive semidefinite constraint becomes a nontrivial
and challenging problem. To address this problem, we propose to

use the positive noncommutative polynomials [12], characterized

by a Sum of Squares form, to redefine the spectral heterogeneous

graph convolution.

Definition 4.2. (Sum of Squares).Anoncommutative polynomial
ℎ(P1, P2, . . . , P𝑅) is a Sum of Squares if it satisfiesℎ(P1, P2, . . . , P𝑅) =∑
𝑖 𝑔𝑖 (P1, P2, . . . , P𝑅)⊤𝑔𝑖 (P1, P2, . . . , P𝑅), where each 𝑔𝑖 is an arbi-

trary polynomial and 𝑔⊤
𝑖
denotes its transpose.

If a noncommutative polynomial conforms to the Sum of Squares

form, it must exhibit positive semidefinite properties, and the op-

posite also holds. Specifically, we have the following theorem.

Theorem 4.1. [12] Let ℎ(P1, P2, . . . , P𝑅) denote a noncommuta-
tive polynomial. If ℎ(P1, P2, . . . , P𝑅) conforms to the Sum of Squares
form, then ℎ(P1, P2, . . . , P𝑅) is positive semidefinite. Conversely, If
the ℎ(P1, P2, . . . , P𝑅) is positive semidefinite, then ℎ(P1, P2, . . . , P𝑅)
meets the Sum of Squares form.

Theorem 4.1 shows the necessity of using a Sum of Squares to

ensure that ℎ(P1, P2, . . . , P𝑅) is positive semidefinite. Based on this,

we propose the positive spectral heterogeneous graph convolution.

Definition 4.3. (Positive Spectral Heterogeneous Graph Convo-

lution). Consider a heterogeneous graph𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 ) with shift op-
erators {P𝑟 }𝑅𝑟=1. A positive spectral heterogeneous graph convolution
of a signal x is defined as

∑
𝑖 𝑔𝑖 (P1, P2, . . . , P𝑅)⊤𝑔𝑖 (P1, P2, . . . , P𝑅)x,

where each 𝑔𝑖 denotes an arbitrary polynomial and 𝑔⊤
𝑖
is its transpose.

4.3 Implementation of PSHGCN
According to Definition 4.3, it is possible to acquire arbitrary filters

that satisfy positive semidefinite constraints by learning various

polynomial functions 𝑔𝑖 . However, learning multiple functions 𝑔𝑖 is

challenging in practice. Therefore, we simplify the Sum of Squares

form by utilizing a single polynomial 𝑔. It is essentially an arbi-

trary monomial noncommutative polynomial. Remarkably, despite

focusing solely on learning a single polynomial function, the exper-

iments in Section 6 demonstrate that this approach shows excellent

performance. Additionally, in the implementation of PSHGCN, we
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opt for P𝑟 = Â𝑟 . As a result, the convolution of PSHGCN is

y = 𝑔(Â1, Â2, . . . , Â𝑅)⊤𝑔(Â1, Â2, . . . , Â𝑅)x, (5)

where x ∈ R𝑛 represents a graph signal and we treat it as a column

of the node features X. As illustrated in Figure 1, PSHGCN acquires

a heterogeneous graph filter by learning the polynomial 𝑔.

In practice, many heterogeneous graphs exhibit varying dimen-

sional features for different node types. To address this, we em-

ploy multiple Multi-layer Perceptrons (MLPs) for feature projec-

tion, aligning them into a common dimensional space, a strategy

commonly employed by many existing HGNNs [20, 33, 37]. Subse-

quently, we apply the graph convolution as specified in Equation (5),

and 𝑔 is a noncommutative polynomial. That is 𝑔(Â1, Â2, . . . , Â𝑅) =
𝑤0I+∑𝐾

𝑘=1

∑
𝑤𝑟1,𝑟2,...,𝑟𝑘

(
Â𝑟1 Â𝑟2 · · · Â𝑟𝑘

)
, where𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘

are learnable coefficients. Finally, we use an MLP for downstream

tasks. More precisely, the model structure of PSHGCN can be for-

mulated as

H = MLP𝑖𝑛 (X),
Y = 𝑔(Â1, Â2, . . . , Â𝑅)⊤𝑔(Â1, Â2, . . . , Â𝑅)H,
Z = MLP𝑜𝑢𝑡 (Y) .

(6)

Notably, the original node features may span diverse dimensions,

resulting in the existence of multiple MLP𝑖𝑛 modules. For the sake

of clarity and simplicity, we opt for a simplified form. For a more

detailed description, please refer to Algorithm 1 in Appendix C.

Decoupled PSHGCN. Similar to many spectral-based GNNs [8,

11, 17], our PSHGCN can be extended to large-scale graphs by

decoupling the feature transformation and propagation processes.

In particular, we first calculate and store Â𝑟1 Â𝑟2 · · · Â𝑟𝑘X for the

original feature X in the preprocessing. Then we perform graph

convolution operations. We have the following special process.

Y = 𝑐0X +
𝐾∑︁
𝑘=1

∑︁
𝑐𝑟1,𝑟2,...,𝑟𝑘 Â𝑟1 Â𝑟2 · · · Â𝑟𝑘X,

Z = MLP𝑜𝑢𝑡 (Y) .
(7)

Here, 𝑐𝑟1,𝑟2,...,𝑟𝑘 denote the coefficients of the Â𝑟1 Â𝑟2 · · · Â𝑟𝑘 term

in the expansion of 𝑔(Â1, Â2, . . . , Â𝑅)⊤𝑔(Â1, Â2, . . . , Â𝑅) . The pre-
computed Â𝑟1 Â𝑟2 · · · Â𝑟𝑘X allows us to train PSHGCN in a mini-

batch manner. For more details, please check Algorithm 2 in Ap-

pendix C. In our experiments, we assess the scalability of PSHGCN

on ogbn-mag and find that PSHGCN achieves a new SOTA result.

5 MODEL ANALYSIS
In this section, we will demonstrate the necessity of the positive

semidefinite constraint from the graph optimization perspective

for heterogeneous graph filters. Meanwhile, we will elaborate on

the rationale behind using PSHGCN and the theoretical guarantees

of its effectiveness. Finally, we will analyze the complexity.

5.1 Understanding PSHGCN from the Graph
Optimization Perspective

Generalized Heterogeneous Graph Optimization Framework.
The utilization of graph optimization in designing GNNs for ho-

mogeneous graphs has been extensively explored and has led to

remarkable performance [10, 38, 44, 45]. However, there have been

limited efforts to extend the graph optimization framework to het-

erogeneous graphs. Based on the graph optimization framework

for homogeneous graphs discussed in Section 3.2, we introduce a

generalized heterogeneous graph optimization problem

min

y
𝑓 (y) = min

y
(1 − 𝛼)y⊤𝛾 (P1, P2, . . . , P𝑅)y + 𝛼 ∥ y − x ∥2

2
, (8)

where 𝛼 ∈ (0, 1) is a trade-off parameter, y denotes the resulting rep-

resentation of the input signal x, and 𝛾 (P1, P2, . . . , P𝑅) is an energy

function determining the rate of propagation [24]. Generally, 𝛾 (·)
takes the shift operators {P𝑟 }𝑅𝑟=1 as inputs and produces a real 𝑛×𝑛
matrix. Similar to Equation (3), we require that 𝛾 (P1, P2, . . . , P𝑅)
must be positive semidefinite, so that the optimization problem (8)

has a closed-form solution. By setting the derivative
𝜕𝑓 (y)
𝜕y = 0, we

can obtain this solution as

y = 𝛼 [𝛼I + (1 − 𝛼)𝛾 (P1, P2, . . . , P𝑅)]−1 x. (9)

We can set up specific 𝛾 functions to get some of the existing

HGNNs within this generalized graph optimization framework.

For example, if we set P𝑟 = L̃𝑟 , where L̃𝑟 is the normalized Lapla-

cian matrix with self-loops, and 𝛾 (L̃1, L̃2, . . . , L̃𝑅) =
∑𝑅
𝑟=1 𝜇𝑟 L̃𝑟 sub-

ject to

∑𝑅
𝑟=1 𝜇𝑟 = 1 and 𝜇𝑟 ≥ 0, then we can get the solution

y = 𝛼

(
I − (1 − 𝛼)∑𝑅𝑟=1 𝜇𝑟 Ã𝑟

)−1
x, which is the heterogeneous

graph convolution used in EMRGNN [33].

Positive semidefinite constraint. We can observe that the

𝛼 [𝛼I + (1 − 𝛼)𝛾 (P1, P2, . . . , P𝑅)]−1 in Equation (9) denotes the het-

erogeneous graph filter, and the ℎ(P1, P2, . . . , P𝑅) defined in Defini-

tion 4.1 is its polynomial approximation. This is consistent with the

concepts discussed on homogeneous graphs in Section 3.1. Within

this graph optimization framework, we can deduce that the hetero-

geneous graph filter has to satisfy a positive semidefinite constraint.

Specifically, we have the following lemma, the proof of which can

be found in Appendix B.

Lemma 5.1. Consider an arbitrary function 𝛾 (P1, P2, . . . , P𝑅) that
produces a real positive semidefinite 𝑛 × 𝑛 matrix and let 𝛼 be in the
interval (0, 1). Then the matrix 𝛼 [𝛼I + (1 − 𝛼)𝛾 (P1, P2, . . . , P𝑅)]−1
is also a real positive semidefinite matrix.

A heterogeneous graph filter must satisfy the requirement of

a positive semidefinite constraint. This fact motivates us to intro-

duce the positive spectral heterogeneous graph convolution and

the PSHGCN based on it. According to Theorem 4.1, the Sum of

Squares form is a necessary and sufficient condition for ensuring

the positive semidefinite constraint of heterogeneous graph fil-

ter ℎ(P1, P2, . . . , P𝑅). In other words, PSHGCN can approximate

any valid heterogeneous graph filter. Conversely, any valid hetero-

geneous graph filter can be expressed by PSHGCN, theoretically

guaranteeing the effectiveness of PSHGCN.

5.2 Complexity
In Equation (6), 𝑔 is a 𝐾-order noncommutative polynomial. In

theory, the number of terms in 𝑔 grows exponentially with the

order 𝐾 , i.e., 𝑅
𝐾+1−1
𝑅−1 terms. However, in real-world heterogeneous

graphs, many types of nodes have no direct edges between them,

e.g., such as authors and conferences in DBLP, which means that

many terms Â𝑖 Â𝑗 in 𝑔 are zero matrices. Therefore, we can ignore
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Table 2: Node classification performance (Mean F1 scores ± standard errors) comparison of different methods on four datasets.
Tabular results are presented in percentages, with the best result highlighted in bold and the runner-up underlined.

DBLP ACM IMDB AMiner

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GCN 90.84±0.32 91.47±0.34 92.17±0.24 92.12±0.23 62.37±1.35 68.13±0.83 75.63±1.08 85.77±0.43
GAT 93.83±0.27 93.39±0.30 92.26±0.94 92.19±0.93 62.45±1.36 68.08±0.49 75.23±0.60 85.56±0.65
GPRGNN 91.66±1.01 92.45±0.76 92.36±0.28 92.28±0.27 63.02±1.48 68.83±0.95 75.32±0.67 86.13±0.58
ChebNetII 92.05±0.53 92.97±0.48 92.45±0.37 92.33±0.38 62.54±1.29 68.33±0.92 75.59±0.73 85.82±0.52

RGCN 91.52±0.50 92.07±0.50 91.55±0.74 91.41±0.75 63.24±0.57 66.51±0.28 63.03±2.27 82.79±1.12
HAN 91.67±0.49 92.05±0.62 90.89±0.43 90.79±0.43 62.05±0.93 67.69±0.64 63.86±2.15 82.95±1.33
GTN 93.52±0.55 93.97±0.54 91.31±0.70 91.20±0.71 64.59±1.03 68.27±0.65 72.39±1.79 84.74±1.24
MAGNN 93.28±0.51 93.76±0.45 90.88±0.64 90.77±0.65 61.36±2.85 67.82±1.54 71.56±1.63 83.48±1.37
EMRGNN 92.19±0.38 92.57±0.37 92.93±0.34 93.85±0.33 65.63±1.97 68.76±0.78 73.74±1.25 85.46±0.74
MHGCN 93.56±0.41 94.03±0.43 92.12±0.66 91.97±0.68 67.59±1.25 70.28±0.71 73.56±1.75 85.18±1.28
SimpleHGN 94.01±0.24 94.46±0.22 93.42±0.44 93.35±0.45 68.72±1.54 70.83±1.07 75.43±0.88 86.52±0.73
HALO 92.37±0.32 92.84±0.34 93.05±0.31 92.96±0.33 71.63±0.77 73.81±0.72 74.91±1.23 87.25±0.89
SeHGNN 95.06±0.17 95.42±0.17 94.05±0.35 93.98±0.36 71.71±0.62 73.42±0.47 76.83±0.57 86.96±0.64
PSHGCN 95.27±0.13 95.61±0.12 94.35±0.23 94.27±0.23 72.33±0.57 74.46±0.32 77.26±0.75 88.21±0.31

these terms in practice. Remarkably, these non-zero polynomial

terms are analogous to the meta-paths commonly employed in most

existing HGNNs [20, 30]. In other words, for heterogeneous graphs

where all types of nodes are interconnected, the neighbors aggre-

gated by these HGNNs also experience exponential growth with the

length of the meta-paths. We can derive that the time complexity

of PSHGCN in Equation (6) is 𝑂 (𝐿𝐾𝑚𝑑 + 𝑛𝑑2), where 𝐿 denotes

the number of non-zero terms in the polynomial 𝑔 with order 𝐾 ,𝑚

denotes the maximum number of edges among {Â1, Â2, . . . , Â𝑅},
𝑑 is the feature dimension, and 𝑂 (𝑛𝑑2) is the time complexity of

the MLP. This complexity is expected to outperform many existing

HGNNs, like HAN [30]. The difference is that PSHGCN doesn’t

need an attention mechanism for aggregation, and it learns the filter

weights instead. In HAN, 𝐿 can be interpreted as the number of

selected meta-paths, while 𝐾 can be seen as their maximum length.

For decoupled PSHGCN in Equation (7), its preprocessing time

complexity is𝑂 (𝐿𝐾𝑚𝑑), and the time complexity for training using

mini-batch is 𝑂 (𝐵𝑑2), where 𝐵 denotes the batch size. This train-

ing complexity is significantly lower than that of SeHGNN [37],

which is 𝑂 (𝐵𝐿2𝑑2), where 𝐿 denotes the number of selected meta-

paths. This reduction is primarily because SeHGNN needs to use a

Transformer for feature fusion.

6 EXPERIMENTS
In this section, we conduct extensive experiments to assess the

performance of PSHGCN against the state-of-the-art HGNNs for

tasks involving node classification and link prediction. Furthermore,

we evaluate the scalability of PSHGCN by employing the Open

Graph Benchmark (OGB). Finally, we provide an in-depth model

analysis from various perspectives. All the experiments are carried

out on a machine with an NVIDIA Tesla A100 GPU (80 GBmemory),

Intel Xeon CPU (2.30 GHz) with 64 cores, and 512 GB of RAM.

6.1 Node Classification
Datasets and Setting. For the node classification task, we evalu-

ate PSHGCN on four widely used heterogeneous graphs, including

three academic citation heterogeneous graphs DBLP [20], ACM [20]

and AMiner [31], and a movie rating graph IMDB [20]. Due to

limited space, we provide dataset statistics in Table 6 within Ap-

pendix D.1 and offer a detailed introduction. For baselines, we

first compare PSHGCN to four popular homogeneous GNNs, in-

cluding GCN[16], GAT [29], GPRGNN [5] and ChebNetII [11],

where GPRGNN and ChebNetII are two competitive spectral-based

GNNs. Additionally, we compare PSHGCN to nine competitive

HGNNs, including RGCN [22], HAN [30], GTN [41], MAGNN [7],

EMRGNN [33], MHGCN [40], SimpleHGN [20], HALO [1] and Se-

HGNN [37]. To ensure a fair comparison, we adopt the experimental

setup used in the Heterogeneous Graph Benchmark (HGB) [20],

and follow its standard split with the training/validation/test sets

accounting for 24%/6%/70%. For multi-label IMDB datasets, we use

the binary prediction approach utilized by HALO [1] for evaluation.

We use the existing baseline results provided by HGB [20]. For

results that are not available, we use the officially released code

and conduct a hyperparameter search based on the guidelines pre-

sented in their respective paper. For PSHGCN, we use Equation (6)

as the propagation process and search the order 𝐾 from 1 to 5 in

the polynomial 𝑔. We use a uniform distribution to randomly ini-

tialize the weights𝑤 in 𝑔 and optimize them using gradient descent,

consistent with spectral-based GNNs [5, 10, 11]. More details of

hyper-parameters and settings are listed in Appnedix D.2.

Results.We use the mean F1 scores with standard errors over

five runs as the evaluation metric. The results are presented in Ta-

ble 2, with the top two performing results highlighted in bold and

underlined, respectively. We first observe that the spectral-based

GNNs, specially designed for homogeneous graphs, outperform
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Figure 2: Comparison of MGNN [2], PSHGCN, and its variant on node classification.

Table 3: Link prediction performance (ROC-AUC/MRR ±
standard errors). Results are presented in percent, with the
best result highlighted in bold and the runner-up underlined.

Amazon LastFM

ROC-AUC MRR ROC-AUC MRR

GCN 92.84±0.34 97.05±0.12 59.17±0.31 79.38±0.65
GAT 91.65±0.80 96.58±0.26 58.56±0.66 77.04±2.11
RGCN 86.32±0.28 93.92±0.16 57.21±0.09 77.68±0.17
GATNE 77.39±0.50 92.04±0.36 66.87±0.16 85.93±0.63
HetGNN 77.74±0.24 91.79±0.03 62.09±0.01 83.56±0.14
HGT 88.26±2.06 93.87±0.65 54.99±0.28 74.96±1.46
SeHGNN 91.67±0.94 95.83±0.58 66.59±0.62 88.61±1.25
SimpleHGN 93.40±0.62 96.94±0.29 67.59±0.23 90.81±0.32
PSHGCN 94.12±0.58 97.93±0.46 69.25±0.63 91.19±0.51

certain HGNNs, like HAN. This suggests spectral-based GNNs’

promising effectiveness even on heterogeneous graphs. Further-

more, PSHGCN outperforms other methods on all datasets, attrib-

uted to its capability of learning various valid heterogeneous graph

filters. Notably, when compared to SeHGNN, PSHGCN achieves su-

perior performance without relying on tricks like label propagation

to enhance features. Instead, it directly learns the coefficients of the

polynomial 𝑔 in Equation (6). Nevertheless, PSHGCN outperforms

SeHGNN on all datasets, with a significant advantage on IMDB

and AMiner. These results highlight PSHGCN’s effectiveness for

heterogeneous graphs and its strong ability to learn filters.

6.2 Link Prediction
Datasets and Setting. For the link prediction task, we use two

datasets Amazon and LastFM from HGB [20] to evaluate the per-

formance of PSHGCN. We compare PSHGCN with eight methods,

including two famous GNNs: GCN [16] and GAT [29], six compet-

itive HGNNs: RCGN [22], GATNE [3], HetGNN [42], HGT [14],

SeHGNN [37] and SimpleHGN [20]. We follow the experimental

setup provided by HGB. The task of link prediction is cast as a

binary classification problem, with the splitting of edges as follows:

81% for training, 9% for validation, and 10% for testing. Then the

graph is reconstructed solely using the edges from the training set.

We use randomly sampled 2-hop neighbors as the negative test set,

as suggested by HGB. For baselines, we use the results provided in

HGB, with the exception of SeHGNN. For SeHGNN, we use their

publicly available code and conduct a hyperparameter search in

accordance with the details in their paper. It’s worth noting that due

to the challenge of applying SeHGNN’s label propagation technique

directly to link prediction, we have excluded this component from

our implementation. For PSHGCN, we employ the same implemen-

tation as utilized for the node classification task described in the

previous subsection. We explore both dot product and DistMult [36]

decoders, following the approach of SimpleHGN [20]. For more

specific hyperparameter settings, please refer to Appendix D.3.

Results. We evaluate link prediction using mean ROC-AUC

(area under the ROC curve) and MRR (mean reciprocal rank) with

standard errors, over five repeated runs. The results are presented

in Table 3. We observe that PSHGCN consistently outperforms

other methods on both datasets. This underscores the effectiveness

of PSHGCN in the link prediction task and demonstrates the fea-

sibility of designing heterogeneous graph convolutions from the

spectral domain. Notably, PSHGCN exhibits a significant advantage

over SeHGNN, which we attribute to its enhanced expressiveness

and flexibility. PSHGCN can derive diverse heterogeneous graph

filters by directly learning coefficients, whereas SeHGNN relies

on manually selected meta-paths and incorporates techniques like

label propagation to boost its performance.

6.3 Scalability
To evaluate the scalability of PSHGCN, we conduct a node clas-

sification task on the large-scale heterogeneous graph ogbn-mag

from the Open Graph Benchmark (OGB). We compare six baselines

listed on the OGB leaderboard: RGCN [22], HGT [14], NARS [39],

SAGN [26], GAMLP [43] and SeHGNN [37]. We use results on the

leaderboard for these baselines. For PSHGCN, we use the decou-

pled version described in Equation (7), and more hyperparameter

settings are listed in Appendix D.4.

Table 4 shows the mean accuracies with standard errors over

five runs. We use the symbol
∗
to denote the usage of extra embed-

dings (e.g., ComplEx embedding) and multi-stage training, which

are commonly used in the baselines. We observe that PSHGCN

has achieved a new SOTA result on ogbn-mag, underscoring the

effectiveness and scalability of decoupled PSHGCN. Compared to

the non-decoupled PSHGCN, the decoupled version relies more on
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Table 4: Node classification performance (Mean accuracies ±
standard errors) on ogbn-mag, where the symbol "∗" denotes
the usage of extra embeddings and multi-stage training. The
best results are highlighted in bold.

Methods Validation accuracy Test accuracy

RGCN 48.35±0.36 47.37±0.48
HGT 49.89±0.47 49.27±0.61
NARS 51.85±0.08 50.88±0.12
SAGN 52.25±0.30 51.17±0.32
GAMLP 53.23±0.41 51.63±0.22
SeHGNN 55.95±0.11 53.99±0.18
PSHGCN 56.16±0.21 54.57±0.16
SAGN

∗
55.91±0.17 54.40±0.15

GAMLP
∗

57.02±0.41 55.90± 0.27

SeHGNN
∗

59.17±0.09 57.19±0.12
PSHGCN

∗ 59.43±0.15 57.52±0.11

the original node features since it does not utilize encoders like

MLPs to transform the features before filtering. In fact, it is worth

further exploration to investigate how to extend the non-decoupled

PSHGCN to large-scale datasets using techniques such as sampling,

and this also holds true for Spectral-based GNNs.

6.4 Model Analysis
Impact of the positive semidefinite. To investigate the impact

of the positive semidefinite constraint, we compared PSHGCN and

its variant without this constraint, as well as MGNN [2], the only

method attempting to design heterogeneous graph convolution

in the spectral domain. Specifically, MGNN uses noncommutative

polynomials to create convolutions for multigraphs, which can be

expressed as XW0 +
∑𝐾
𝑘=1

∑
Â𝑟1 Â𝑟2 · · · Â𝑟𝑘XW𝑟1,𝑟2,...,𝑟𝑘 , where W

are learnable weight matrices. These weight matrices implicitly de-

fine the polynomial coefficients. For the variant of PSHGCNwithout

the positive semidefinite constraint, we achieve it by removing𝑔⊤in
Equation (6). In the implementation, we used the code provided by

the authors for MGNN. Unfortunately, this code stores the adja-

cency matrices in dense form, limiting the choice of higher-order

𝐾 . So, we developed a sparse version based on the original code,

denoted as MGNN (Sparse). For both MGNN (Sparse) and PSHGCN

(Variant), our experiments followed the same settings as PSHGCN,

with a search for polynomial orders ranging from 2 to 10. Fig-

ure 2 presents the results of our comparison. First, we observe that

PSHGCN and its variants outperform MGNN and MGNN (Sparse),

highlighting the effectiveness of directly learning polynomial coef-

ficients, a finding consistent with research in spectral-based GNNs.

Additionally, PSHGCN outperforms PSHGCN (Variant), especially

with smaller standard errors over multiple repeated runs. This result

underscores the significance of the positive semidefinite constraint

in learning heterogeneous graph filters. It enhances learning ability

and stability in practice while also ensuring the learned filters are

always theoretically valid.

Time comparison. We conduct node classification on DBLP

to evaluate the time cost (per epoch) and memory cost for several

representative models, including GTN, MAGNN, HAN, MHGCN,

EMRGNN, RGCN, HALO, SimpleHGN, SeHGNN, and PSHGCN.

The results are shown in Appendix D.5. We found that PSHGCN is

comparable to the advanced methods but significantly outperforms

early methods such as HAN and RGCN. This is due to PSHGCN

having a simple structure and no attention mechanism or other

modules. In addition, we provide a comparison between decoupled

PSHGCN and SeHGNN on ogbn-mag. As analyzed in Section 5.2,

decoupled PSHGCN is more efficient than SeHGNN.

Sensitivity of the order 𝐾 . We investigate the impact of the

order 𝐾 in the polynomial 𝑔 on the performance of PSGCN. The

results are shown in Appendix D.5. We find that the performance of

PSHGCN increases gradually with increasing𝐾 , which is consistent

with the theory of polynomial approximation in graph convolution.

Notably, using large 𝐾 may result in too many weights, making the

learning process challenging.

7 DISCUSSION & CONCLUSION
This paper introduces PSHGCN, a novel heterogeneous convolu-

tional network that creates heterogeneous graph convolutions in

the spectral domain. Through the utilization of positive noncommu-

tative polynomials, PSHGCN enables effective learning of diverse

valid heterogeneous graph filters. Experimental results demonstrate

that PSHGCN achieves superior performance in node classification

and link prediction tasks compared to existing methods. Notably,

to our knowledge, this paper is the first attempt to obtain graph

convolutions by directly learning the weights of spectral graph fil-

ters on heterogeneous graphs. Extensive experiments demonstrate

the effectiveness of our proposed methods. Consequently, it opens

up several directions for future research. (1) As mentioned in Sec-

tion 6.3, it would be meaningful to explore alternative approaches,

such as sampling or graph sparsification, to improve the scalability

of PSHGCN. (2) Further investigation into the spectral analysis of

PSHGCN makes sense. This involves defining the Fourier trans-

form on heterogeneous graphs. Although some methods have been

attempted with techniques like joint block diagonalization [2] or

Jordan decomposition [23], these methods are not as intuitive or

effective as those in homogeneous graphs.
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A NOTATIONS
We summarize the main notations of the paper in Table 5.

B PROOF OF LEMMA 4.1
Proof. We assume that the output of function 𝛾 (P1, P2, · · · , P𝑅)

is represented by the matrix N. According to Lemma 5.1, N is a

real symmetric positive semidefinite matrix. We perform an eigen-

decomposition of N and express it as N = QΣQ⊤, where Q is the

matrix of eigenvectors and Σ = diag[𝜎1, 𝜎2, · · · , 𝜎𝑛] is the matrix

of eigenvalues. Notably, the eigenvalues 𝜎𝑖 satisfy 𝜎𝑖 ≥ 0. Then, we
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Table 5: Summation of main notations in this paper.

Notation Description

𝐺 = (𝑉 , 𝐸) undirected homogeneous graph with node

and edge sets 𝑉 and 𝐸

Â, L the normalized adjacency and Laplacian ma-

trix of graph 𝐺 = (𝑉 , 𝐸)
ℎ(L) the spectral graph filter of graph 𝐺 = (𝑉 , 𝐸)
𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 ) heterogeneous graph with node and edge

sets 𝑉 and 𝐸, node type 𝜙 and edge type𝜓

𝑛 the node number of graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 )
𝑅 the number of edge types of𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 )
𝐺𝑟 the sub-graph with only type of edge of

graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 )

Â𝑟 , L𝑟 the normalized adjacency and Laplacian ma-

trix of sub-graph 𝐺𝑟

P𝑟 refers to either Â𝑟 or L𝑟

X, x node feature matrix and graph signal vector

ℎ(P1, P2, . . . , P𝑟 ) the spectral heterogeneous graph filter

have

𝛼 [𝛼I + (1 − 𝛼)𝛾 (P1, P2, · · · , P𝑅)]−1 = 𝛼 [𝛼I + (1 − 𝛼)N]−1 .
We find that the matrix 𝛼 [𝛼I + (1 − 𝛼)N]−1 is real and symmetric.

Its eigenvalues are given by
𝛼

𝛼+(1−𝛼 )𝜎𝑖 for 𝑖 = 1, 2, · · · , 𝑛. It is
evident that

𝛼
𝛼+(1−𝛼 )𝜎𝑖 > 0 for 𝛼 ∈ (0, 1) and 𝜎𝑖 ≥ 0. Consequently,

thematrix𝛼 [𝛼I + (1 − 𝛼)N]−1 is a real positive semidefinite matrix.

□

C PSEUDOCODE
Algorithm 1 presents the pseudocode for PSHGCN. In this context,

{X𝜙𝑖 |𝑖 = 1, 2, . . . , |T 𝑣 |} represents a collection of node feature

matrices of different types. For example, X𝜙𝑖 corresponds to the

feature matrix of a node with node type 𝜙𝑖 . The dimension of the

feature matrix X𝜙𝑖 is |𝜙𝑖 | × 𝑑𝜙𝑖 , and following the concatenation

operation in step 5, H will have dimensions of 𝑛 × 𝑑 , where 𝑑 is the

hidden dimension.

Algorithm 2 presents the pseudocode for decoupled PSHGCN. In

step 16, 𝑐𝑟1,𝑟2,...,𝑟𝑘 are the coefficients of the Â𝑟1 Â𝑟2 · · · Â𝑟𝑘 term in

the expansion of 𝑔(Â1, Â2, . . . , Â𝑅)⊤𝑔(Â1, Â2, . . . , Â𝑅) and 𝑐0 = 𝑤2

0
.

Algorithm 1: Pseudocode of PSHGCN
Input: heterogeneous graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 ), raw node

feature matrices {X𝜙𝑖 |𝑖 = 1, 2, . . . , |T𝑣 |}, order 𝐾 .
Parameter :polynomial coefficients𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘 ,

MLP
𝜙𝑖
𝑖𝑛

for feature projection,

MLP𝑜𝑢𝑡 for downstream task.

Output: The node embedding Z of graph 𝐺 .

1 Get the normalized adjacency matrices {Â𝑟 |𝑟 = 1, 2, . . . , 𝑅};
2 Randomly initialize coefficients𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘 ;

3 for 𝑖 = 1 to |T𝑣 | do
4 H𝜙𝑖 ← MLP

𝜙𝑖
𝑖𝑛
(X𝜙𝑖 );

5 H← concatenate

(
{H𝜙𝑖 |𝑖 = 1, 2, . . . , |T𝑣 |}

)
;

6 Y′ ←
(
𝑤0I +∑𝐾

𝑘=1

∑
𝑤𝑟1,𝑟2,...,𝑟𝑘

(
Â𝑟1 Â𝑟2 · · · Â𝑟𝑘

))
H;

7 Y←
(
𝑤0I +∑𝐾

𝑘=1

∑
𝑤𝑟1,𝑟2,...,𝑟𝑘

(
Â𝑟1 Â𝑟2 · · · Â𝑟𝑘

))⊤
Y′;

8 Z← MLP𝑜𝑢𝑡 (Y);
9 return Z;

Algorithm 2: Pseudocode of decoupled PSHGCN

Input: heterogeneous graph 𝐺 = (𝑉 , 𝐸, 𝜙,𝜓 ), raw node

feature matrices {X𝜙𝑖 |𝑖 = 1, 2, . . . , |T𝑣 |}, order 𝐾 .
Parameter :polynomial coefficients𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘 , W𝜙𝑖

for feature transformation,

MLP𝑜𝑢𝑡 for downstream task.

Output: The node embedding Z of graph 𝐺 .

1 Get the normalized adjacency matrices {Â𝑟 |𝑟 = 1, 2, . . . , 𝑅};
2 Randomly initialize coefficients𝑤0 and𝑤𝑟1,𝑟2,...,𝑟𝑘 ;

3 % Preprocessing
4 for 𝑖 = 1 to |T𝑣 | do
5 X̃𝜙𝑖 ← Convert the dimension of X𝜙𝑖 to 𝑛 × 𝑑𝜙𝑖 ;
6 for 𝑖 = 1 to |T𝑣 | do
7 H𝜙𝑖

0
← X̃𝜙𝑖 ;

8 for each 𝑟1, 𝑟2, . . . , 𝑟𝑘 do
9 H𝜙𝑖𝑟1,𝑟2,...,𝑟𝑘 ← Â𝑟1 Â𝑟2 · · · Â𝑟𝑘 X̃𝜙𝑖 ;

10 % Training
11 for 𝑖 = 1 to |T𝑣 | do
12 H̃𝜙𝑖

0
← H𝜙𝑖

0
W𝜙𝑖

;

13 H̃𝜙𝑖𝑟1,𝑟2,...,𝑟𝑘 ← H𝜙𝑖𝑟1,𝑟2,...,𝑟𝑘W𝜙𝑖
;

14 H0 ←
∑ | T𝑣 |
𝑖=1

H̃𝜙𝑖
0
;

15 H𝑟1,𝑟2,...,𝑟𝑘 ←
∑ | T𝑣 |
𝑖=1

H̃𝜙𝑖𝑟1,𝑟2,...,𝑟𝑘 ;
16 Y = 𝑐0H0 +

∑𝐾
𝑘=1

∑
𝑐𝑟1,𝑟2,...,𝑟𝑘H𝑟1,𝑟2,...,𝑟𝑘 ;

17 Z = MLP𝑜𝑢𝑡 (Y);
18 return Z;
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Table 6: Statistics of datasets on the node classification task.

Dataset #Nodes

#Node

Types

#Edges

#Edges

Types

Target #Classes

DBLP 26,128 4 239,566 6 author 4

ACM 10,942 4 547,872 8 paper 3

IMDB 21,420 4 86,642 6 movie 5

AMiner 55,783 3 153,676 4 paper 4

Ogbn-mag 1,939,743 4 21,111,007 4 paper 349

D ADDITIONAL EXPERIMENTAL DETAILS
D.1 Datasets and Baselines
Datasets.We use five common real-world heterogeneous datasets

for node classification, including three academic citation hetero-

geneous graphs: DBLP [20], ACM [20], and AMiner [31], as well

as a heterogeneous graph based on movie ratings, IMDB [20], and

a large-scale academic citation heterogeneous graph known as

ogbn-mag [13]. The statistics for these datasets can be found in

Table 6. Additionally, we utilize two prevalent real-world hetero-

geneous datasets for link prediction: one stemming from product

purchase data, Amazon [20], and the other from online music data,

LastFM [20]. You can refer to Table 7 for the statistics of these two

datasets. Further details about each of these datasets are provided

below.

• DBLP is a computer science bibliography website that contains

papers published between 1994 and 2014 from 20 conferences

across four research fields. The dataset comprises four types of

nodes: authors (A), papers (P), terms (T), and venues (V), as well

as six types of edges: A-P, P-A, P-V, V-P, P-T, and T-P. For meta-

path-based HGNNs, the utilized meta-paths are APA, APTPA,

and APVPA.

• ACM is an academic citation network that encompasses papers

from three classes: Database, Wireless Communication, and Data

Mining. The dataset consists of four types of nodes: authors (A),

papers (P), subjects (S), and fields (F), along with eight types

of edges: A-P, P-A, P-c-P, P-r-P, P-S, S-P, P-K, and K-P (where

’c’ denotes citation relation and ’r’ denotes reference relation).

For meta-path-based HGNNs, the used meta-paths are PAP, PSP,

PcPAP, PcPSP, PrPAP, and PrPSP.

• IMDB is an online platform that provides information about

movies and their associated details. The movies are categorized

into five classes: action, comedy, drama, romance, and thriller.

The dataset encompasses four types of nodes: movies (M), di-

rectors (D), actors (A), and keywords (K), and includes six types

of edges: M-A, A-M, M-D, D-M, M-K, and K-M. For meta-path-

based HGNNs, the utilized meta-paths include MDM, MAM,

DMD, DMAMD, AMA, and AMDMA.

• AMiner is also an academic citation network that includes four

types of papers. The dataset includes three types of nodes: au-

thors (A), papers (P), and references (R), with four types of edges:

A-P, P-A, R-P, and P-R. For meta-path-based HGNNs, the used

meta-paths are PAP and PRP.

• Ogbn-mag is a large-scale heterogeneous network derived from
a subset of the Microsoft Academic Graph. It includes types

Table 7: Statistics of datasets on the link prediction task.

Dataset #Nodes

#Node

Types

#Edges

#Edges

Types

Target

Amazon 10,099 1 148,659 2 product-product

LastFM 20,612 3 141,521 3 user-artist

of nodes: papers (P), authors (A), institutions (I), and fields of

study (F), along with four types of directed relations. For more

detailed information, please refer to the Open Graph Benchmark

(OGB) [13].

• Amazon is an online retail platform containing a vast array of

electronic products within its network, interconnected by co-

viewing and co-purchasing links. The dataset consists of a single

node type, products (P), accompanied by two distinct types of

edges: viewing and purchasing.

• LastFM is an online music website. The dataset comprises three

node categories: users (U), artists (A), and tags (T), interconnected

by three types of edges: U-U, U-A, and A-T. For meta-path-based

HGNNs, the employed meta-paths encompass UU, UAU, UATAU,

AUA, ATA, and AUUA.

Baseline Implementations. For GCN, GAT, RGCN, HAN, GTN,
MAGNN, GATNE, HetGNN, HGT, and SimpleHGN, we use the

Heterogeneous Graph Benchmark (HGB) implementations [20].

For other baselines, we use the implementation released by the

authors.

• HGB: https://github.com/THUDM/HGB

• GPR-GNN: https://github.com/jianhao2016/GPRGNN

• ChebNetII: https://github.com/ivam-he/ChebNetII

• EMRGNN: https://github.com/tuzibupt/EMR

• MHGCN: https://github.com/NSSSJSS/MHGCN

• HALO: https://github.com/hongjoon0805/HALO

• SeHGNN: https://github.com/ICT-GIMLab/SeHGNN

• MGNN: https://github.com/landonbutler/MultigraphNN

Table 8: The hyper-parameters of PSHGCN for node classifi-
cation in Section 6.1.

Dataset hidden 𝐾 dropout lr
mlp

𝐿2
mlp

lrconv 𝐿2conv

DBLP 64 5 0.10 0.006 0.0 0.002 0.8

ACM 256 5 0.25 0.004 0.0 0.004 0.8

IMDB 256 1 0.70 0.0005 5e-4 0.008 0.0

AMiner 32 5 0.35 0.008 5e-4 0.008 0.3

D.2 Node classification in Section 6.1
We follow the experimental setup provided by the Heterogeneous

Graph Benchmark (HGB) [20] and utilize the baseline results al-

ready available in their paper. In cases where baseline results are

not accessible, we rely on the officially released code and perform

a hyperparameter search following the guidelines outlined in the

respective paper.

For our PSHGCN model, we first apply a feature projection layer

to align node features, ensuring that different types of nodes share

https://github.com/THUDM/HGB
https://github.com/jianhao2016/GPRGNN
https://github.com/ivam-he/ChebNetII
https://github.com/tuzibupt/EMR
https://github.com/NSSSJSS/MHGCN
https://github.com/hongjoon0805/HALO
https://github.com/ICT-GIMLab/SeHGNN
https://github.com/landonbutler/MultigraphNN
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Figure 3: Node classification performance of PSHGCN with respect to the order 𝐾 .
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Figure 4: Time andMemoryComparison forHGNNs onDBLP.
The area of the circles corresponds to the (relative) memory
consumption of the respective models.

the same dimensional feature space. This feature projection layer

is commonly employed by various popular HGNNs [1, 20, 33, 37].

For the MLPs in PSHGCN, we search the hidden dimension from

the set {32, 64, 128, 256}. Similarly to many popular spectral-based

GNNs [10, 11, 32], we train the linear and convolutional layers

using distinct learning rates and weight decays. Specifically, we

employ lr
mlp

and 𝐿2
mlp

to represent the learning rate and weight

decay for the linear layers, while lrconv and 𝐿2conv are used for the

convolutional layers. The hyperparameters of PSHGCN for the

node classification task are presented in Table 8.

Table 9: Comparison of PSHGCN and SeHGNN on ogbn-mag.

Method Accuracy (%) #Params Time (s/epoch) Total time (min/run)

SeHGNN 57.19±0.12 8,371,231 7.8218 105.8293

PSHGCN 57.52±0.11 4,852,434 5.8989 83.2687

D.3 Link prediction in Section 6.2
For the link prediction task, we follow the experimental setup

provided by HGB. The task of link prediction is cast as a binary

classification problem, with the splitting of edges as follows: 81%

for training, 9% for validation, and 10% for testing. Then the graph

is reconstructed solely using the edges from the training set. For

PSHGCN, we use the same implementation as used for the node

classification task. we search the hidden dimension of MLPs from

the set {32, 64, 128, 256}, learn rating from the set {0.0005, 0.001,

0.005, 0.01, 0.05}, weight decays from the set {0.0, 4e-5, 3e-5, 0.001,

0.05, 0.1, 0.5 }, and dropout from {0.1, 0.2, 0.5,0.8}.

Table 10: The p-value in the t-test (PSHGCN v.s. SeHGNN).

Metric DBLP ACM IMDB AMiner

Macro-F1 0.0044 0.0361 0.0065 0.0016

Micro-F1 0.0098 0.0457 0.0000 0.0000

D.4 Node classification on ogbn-mag
For the larger-scale dataset ogbn-mag, we use the leaderboard

results provided by the Open Graph Benchmark (OGB)[13] for

the baselines. Regarding PSHGCN, we set the value of 𝐾 to 4

in Equation(7) and perform the preprocessing step to calculate

Â𝑟1 , Â𝑟2 , · · · , Â𝑟𝑘X. In cases where certain node types lack raw fea-

tures, we initialize their features randomly. As for PSHGCN
∗
, we

employ the ComplEx algorithm [28] to generate additional embed-

dings and adopt multi-stage learning. In the multi-stage learning

process, we select test nodes with confident predictions in the last

training stage, incorporate them into the training set, and retrain

the model in a new stage [37, 43]. Since the most advanced meth-

ods [37, 43] on ogbn-mag currently utilize label propagation to

enhance training, we also include the label propagation module. Re-

garding the hyperparameters, the hidden dimension is set to 1024,

the dropout rate is 0.5, the learning rate is 0.001, and the weight

decay is 0.0. Further implementation details are available in the

code repository.

D.5 Model Analysis in Section 6.4
Time comparsion. Figure 4 shows the comparison of time and

memory usage for HGNNs on DBLP, and Table 9 compares the

decoupled PSHGCN with SeHGNN on ogbn-mag. As explained in

the mentioned sections, PSHGCN is efficient and performs better

than the baseline models.

Sensitivity of the order 𝐾 . Figure 3 displays the node classi-
fication F1 scores with respect to the order 𝐾 on DBLP and ACM

datasets. We find that the performance of PSHGCN increases grad-

ually with increasing 𝐾 , which is consistent with the theory of

polynomial approximation in graph convolution.

Significance test. We performed a t-test analysis comparing

PSHGCN and SeHGNN on node classification tasks, with the find-

ings presented in Table 10. Notably, all the p-values obtained are

below 0.05, indicating statistical significance. This underscores

the substantial improvement in performance by PSHGCN over

SeHGNN, even with fewer inputs, such as the absence of extra label

data.
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