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Abstract

Dirichlet process mixture models suffer from slow mixing of the MCMC posterior
chain produced by stick-breaking Gibbs samplers, as opposed to collapsed Gibbs
samplers based on the Polya urn representation which have shorter integrated
autocorrelation time (IAT).

We study how cluster membership information is encoded under the two
aforementioned samplers, and we introduce the transcoding algorithm to switch
between encodings. We also develop the transcoding sampler, which consists
of undertaking posterior partition inference with any high-efficiency sampler,
such as collapsed Gibbs, and to subsequently transcode it to the stick-breaking
representation via the transcoding algorithm, thereby allowing inference on all
stick-breaking parameters of interest while retaining the shorter IAT of the
high-efficiency sampler.

The transcoding sampler is substantially simpler to implement than the slice
sampler, it can inherit the shorter IAT of collapsed Gibbs samplers and it can
also achieve zero IAT when paired with a posterior partition sampler that is
i.i.d., such as the sequential importance sampler.

Keywords: Dirichlet process, Markov chain Monte Carlo, Size-biased, Slice
sampler, Stick-breaking

1. Introduction

Posterior inference of the Dirichlet process mixture model parameters under
the stick-breaking representation is known to suffer from slowdowns caused by
difficulties in the Gibbs sampler moving between local modes. This class of sam-
plers is known as conditional samplers, or stick-breaking samplers. Conversely,
marginal Gibbs samplers (also called collapsed samplers) based on the Polya urn
representation of the Dirichlet process operate in a smaller parameter space, as
they marginalise the Dirichlet process out; they are known to be less affected by
the issue, and to have shorter integrated autocorrelation time (IAT). They also
use a different integer encoding for cluster membership indicators, as opposed

⋆This article is based on chapter 7 of my PhD thesis at Durham University [1].
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to conditional samplers. Various Metropolis jumps have been proposed to in-
duce the stick-breaking sampler to move more frequently between local modes,
thereby attaining faster mixing; however, none of these methodologies has so far
reached the same level of performance as the marginal samplers. Key references
in this respect are [2] and [3].

We observe a gap in literature pertaining to the study of the relationship be-
tween the collapsed parameter space of the Polya urn, and the wider parameter
space of the stick-breaking representation. The former leads to cluster labels
which are numbered in order of appearance, and which carry no specific mean-
ing as they are exchangeable; the latter instead carry very specific meaning, as
they point to which stick in the stick-breaking construction each observation
originates from. We discuss the relationship between the two encodings, and
we devise a way to infer one from the other, in both directions, to ultimately
design a new sampler which can augment the partition posterior obtained under
either encoding, with inferences pertaining to all stick-breaking parameters of
interest.

This article is structured as follows. Section 2 discusses and contrasts the
two encoding conventions. Section 3 discusses how to transcode between encod-
ings, either deterministically, or through statistical inference via the transcod-
ing algorithm. Section 4 builds on the transcoding algorithm and introduces the
transcoding sampler, for full posterior inference of all stick-breaking parameters;
it also discusses its performance. Section 5 offers a summary of the relation-
ship between this article and other work in this area, while section 6 draws the
conclusions.

2. Encodings

In statistics, information about data and parameters pertaining to a model
must be encoded into standard format according to some convention, for the
information to be useable. While doing so is often straightforward, the nu-
merous alternate representations of the Dirichlet process (henceforth DP) offer
a multiplicity of options to choose from, the relationships between which are
complex, especially when it pertains to identifying partitions. This is partly
inherited from the fact that partitions themselves, as mathematical objects,
feature several competing coding conventions, and it is also partly due to the
exchangeability properties often enjoyed by the many alternate representations
of the DP.

In this section we discuss two encoding methods for DP cluster membership
indicators, and how they are equivalent in terms of the partition that they
identify, yet one holds more informative power than the other with respect to
the information that it implicitly carries.

Consider a model of n observations from a Dirichlet Process Mixture (hence-
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forth DPM), written as follows:

yi | θi ∼ p (yi | θi) , (1)

θi | G ∼ G,

G ∼ DP (α,G0) ,

where y = (y1, . . . , yn) is a vector of n observations while θ = (θ1, . . . , θn) is the
vector of their latent parameters; G indicates both the Dirichlet process and its
realisation, G0 is called the base measure, and α is the precision parameter.

Repeated values of θi identify random clusters of observations; often, infer-
ence on these clusters is one of the primary objectives of resorting to a DPM
model in the first place. It is common practice to augment the model specifica-
tion from equation 1 with additional latent variables, to express cluster mem-
bership information in isolation from the locations of the atoms, for example to
enable algorithms which are primarily based on the random partition induced
by the DP, or to accompany applications where the location of the atoms is not
of primary interest. There are multiple ways and conventions to encode cluster
membership information into the latent cluster membership indicator vector.

2.1. Encoding in order of appearance

The original article pertaining to the Polya urn representation of the Dirich-
let process [4] ignores the topic of the location of the atoms of the DP, and
only focuses on its probability masses and on the partition that the Polya urn
sequence induces. The article only refers to the balls in the Polya urn having a
certain colour x, and it does not point to any specific labelling convention for
it. In this respect, x could belong to any set, as long as the set is countably infi-
nite; in principle the set could even be a set of words or descriptors, to identify
infinite colours, although doing so would be impractical, as no natural language
that we know of has an infinite set of descriptors to match an infinite palette.

A more practical way, although certainly not the only way, to encode the
information about the colours of the balls extracted from the urn is to rely on
natural numbers. This is for example how [5] discusses the 2-colour Polya urn,
where he assigns 1 to indicate a white ball, and 0 to indicate black. Similarly,
colour membership in an n-colour Polya urn can be expressed with integers from
Nn, to map to specific colours. However, as outlined, the strategy of listing all
possible colours and mapping them to N does not work well with the Dirichlet
process due to its infinite dimensionality.

Common practice in the infinite-dimensional Polya urn setting is therefore
to abandon the colour analogy entirely, and to encode cluster membership via
N, with the clusters labelled in the order whereby they appear in the sampling
process. Given an n-dimensional sample, cluster membership is encoded via
vector s = (s1, . . . , sn), defined so that Aj ≡ {i : si = j, i ∈ Nn}. This results
in a scheme where s1 = 1, always; s2 = 1 if the second ball from the urn is the
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same colour as the first ball, and s2 = 2 otherwise, and so on:

p (s1 = 1) = 1,

p (si | si−1, . . . , s1) =
α

α+ i− 1
δki−1+1 (si) +

ki−1∑
l=1

ni−1,l

α+ i− 1
δl (si) , (2)

where ki−1 and ni−1,l are respectively the number of clusters and the size of
cluster l over the first i− 1 observations.

2.2. Encoding in stick-breaking order

The phrase stick-breaking refers to the following construction, where w1, w2, . . .
can be seen as pieces broken out of a stick of length 1:

w1 := v1,

wh := vh
∏
l<h

(1− vl) , h = 2, 3, . . .

vh ∼ Beta (1, α) , h = 1, 2, . . . , (3)

mh ∼ G0.

It can be proved [6] that the distribution of the following random measure is
DP (α,G0):

G :=

∞∑
h=1

whδmh
. (4)

In the DP literature, we mainly see two approaches to encoding the clustering
scheme arising from the stick-breaking process. The first assigns integers to the
cluster membership indicator vector from Nk in the order of appearance of the
sticks that the observations are sampled from. For example, conditional to w,
if the first drawn observation originates from the stick of length wh, then it is
assigned the label 1, and so is any other subsequent draw from the same stick;
the next observation to be drawn from any stick other than wh, and any other
subsequent observations drawn from the same, are assigned the label 2, and so
on. The resulting sequence of cluster membership indicators is clearly equivalent
to the one arising from the Polya urn, and it is labelled in order of appearance
(the same discussed in section 2.1). For example, this type of encoding is used in
the many influential articles from Pitman, where he discusses the stick-breaking
process (for example, see Section 3.1 of [7]).

The other approach involves indexing the sticks in their order of construction
as per equation 3, and then assigning to each observation the index of the stick
that the observation was sampled from. In symbols, consider equation 3, and
express cluster membership through the vector r = (r1, . . . , rn), where

p (ri = h | w) = wh, h = 1, 2, . . .

While it is ubiquitous in the Bayesian nonparametric literature, this encoding
method carries no name to identify it, and we hereby name it stick-breaking
order.
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We observe that encoding in stick-breaking order carries more information
than encoding in order of appearance, as the latter is anyway already implicitly
included in the presentation order of the stick-breaking indices1. While an or-
dered vector r encoded in stick-breaking order can be deterministically brought
back to its order of appearance (s), by checking which elements of r are new
as one progresses through the ordered sequence, the reverse is not true, and
inference is needed to attempt to derive r back from s.

2.3. Size-biased random permutations

The concept of order of appearance is strictly connected to that of size-
biasing. A size-biased random permutation w̃ = (w̃1, w̃2, . . .) ofw = (w1, w2, . . .)
is defined as follows (see for example [8]). First sample w̃1 from

p (w̃1 = wh | w) = wh, h = 1, 2, . . . ,

and then sample w̃2, w̃3, . . . from

p (w̃k+1 = wh | w̃1, . . . , w̃k,w) =
wh 1 [wh ̸= w̃i, for 1 ≤ i ≤ k]

1− w̃1 − w̃2 − . . .− w̃k
, h = 1, 2, . . .

(5)
for k ≥ 1.

An equivalent definition [9] involves sampling the indices I1, I2, . . . from
the categorical distribution with parameter w, and denoting the distinct val-
ues in I1, I2, . . ., in order of appearance, as Ĩ1, Ĩ2, . . .. Then (w̃1, w̃2, . . .) :=(
wĨ1

, wĨ2
, . . .

)
is a size-biased permutation of w.

An important property of w is that it is invariant to size-biased random
permutations [10, 9, 11, 12], meaning that the random variable w and its size-
biased random permutation w̃ are equal in distribution:

w
d
= w̃.

Because it has the same probability distribution as that of its random size-
biased permutation, the sequence w1, w2, . . . is said to be in size-biased order.
The random variable arising from any number of repeated size-biased random
permutations of w still has the same probability distribution as w.

3. Transcoding

In this section we describe how to transcode cluster membership indicators
from one encoding to the other. Order of appearance labels can deterministically
be obtained from stick-breaking labels, while the reverse is less straightforward
and requires statistical inference.

1This is on the assumption that the order of appearance of each data point is known, and
reflected in the data set.
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3.1. From stick-breaking to order of appearance

Recall that repeated values in r induce a random partition {A1, . . . , Ak} on
Nn, where we define A1, . . . , Ak in order of appearance, such that 1 ∈ A1 and
for each 2 ≤ i ≤ k the first element of Nn \ (A1 ∪ . . . ∪Ai−1) belongs to Ai. The
vector s is then entirely determined by r through the mapping g : Nn 7→ Nn

k

induced by the relationship:

si = j ⇐⇒ i ∈ Aj .

3.2. From order of appearance to stick-breaking – the transcoding algorithm

In a set of n observations with K = kn observed clusters, denote the distinct
values of r (in the order whereby they appear in the vector r) by

(
r⋆1 , . . . , r

⋆
kn

)
,

as follows:

r⋆1 = r1,

r⋆j = rmin{i∈Nn: ri /∈{r⋆1 ,...,r⋆j−1}}, j = 2, . . . , kn.

The random vector r⋆ carries precisely the extra information that is needed
over s to retrieve r, as the pair (r⋆, s) is informationally equivalent to r. We
further denote by w̃ the lengths of the sticks in the order whereby the original
sticks are discovered in the data sampling process. We also use the symbols
ñ = (ñ1, . . . , ñk) to distinguish the cluster sizes in order of appearance from
n = (n1, n2, . . .), the cluster sizes indexed to match w.

The simplest approach to infer r from s involves the accept/reject algorithm,
which we present several increasingly efficient approaches for in Appendix C;
however, even in its most efficient form, it still proves to be wasteful, to the
point of being impractical with large data sets, which motivates the approach
below (the transcoding algorithm), which augments the target space to allow
sampling with almost sure acceptance.

We introduce the indicator variable t = (t1, t2, . . .) to explicitly describe the
order of appearance of (w1, w2, . . .):

tj = i ⇔ r⋆i = j. (6)

Our motivating idea is that the pair (w̃, t) expresses the same information as
(w, r⋆); in doing so, we took inspiration from section 3.2 of [13], and we reversed
it.

Now that t is defined, we can draw r⋆ | s by sampling from the joint posterior
p (r⋆,w, t, w̃ | s):

p (r⋆,w, t, w̃ | s) = p (r⋆ | w, t, w̃, s) · p (w, t, w̃ | s)
= p (r⋆ | w̃, t) · p (w, t | w̃, s) · p (w̃ | s)
= p (r⋆ | w̃, t) · p (w, t | w̃) · p (w̃ | s) , (7)

where the first term in equation 7 is an indicator function which does not require
any sampling, as r⋆ | w̃, t is entirely determined by (w̃, t), while the second and
third term need to be sampled.
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The algorithm involves three steps (in the reverse order of the three factors
from equation 7):

1. sample w̃ | s,
2. sample w, t | w̃,

3. deterministically obtain p (r⋆ | w̃, t) and therefore r | w, t, w̃, s.

Although the algorithm does entail infinite-length vectors, from a practical
perspective only a finite number of elements needs to be drawn, hence the
algorithm can still be executed exactly.

3.2.1. Sampling w̃ | s
The posterior distribution of w̃ | s can be expressed as

p (w̃ | s) = p (s | w̃) p (w̃)

p (s)

=
1

p (s)

(
k∏

i=1

w̃ñi−1
i

)k−1∏
i=1

1−
i∑

j=1

w̃j


αk (1− w̃1 − . . .− w̃k)

α−1

(1− w̃1) . . . (1− w̃1 − . . .− w̃k−1)

=
αk

p (s)

(
k∏

i=1

w̃ñi−1
i

)
(1− w̃1 − . . .− w̃k)

α−1
, (8)

where the second passage above leverages corollary 7 from [14] and the fact that:

p (ñ1, . . . , ñk | w̃) =

(
k∏

i=1

w̃ñi−1
i

)k−1∏
i=1

1−
i∑

j=1

w̃j

 . (9)

We recall that w and w̃ are equal in distribution. As the former can be
expressed in terms of v, where each element is a priori beta-distributed, then
the latter also can, and we name the equivalent terms ṽ.

Recalling that the determinant |J | of the Jacobian of the transform

vi =
wi

1−
∑

l<i wl

is

|J | =
k−1∏
i=1

(1− vi)
k−i

,
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we apply it to derive p (ṽ | s) from p (w̃ | s):

p (ṽ | s) = αk

p (s)

(
k∏

i=1

ṽñi−1
i

∏
l<i

(1− ṽl)
ñi−1

)(
k∏

i=1

1− ṽi

)α−1 k−1∏
i=1

(1− ṽi)
k−i

=
αk

p (s)

(
k∏

i=1

ṽñi−1
i

∏
l<i

(1− ṽl)
ñi−1

)
(1− ṽk)

α−1
k−1∏
i=1

(1− ṽi)
α+k−i−1

=
αk

p (s)

(
k∏

i=1

ṽñi−1
i

)
k∏

i=1

(1− ṽi)
∑

l>i ñl+α−1
,

which leads to:

ṽi | s ∼ Beta

(
ñi, α+

∑
l>i

ñl

)
.

This provides the joint distribution of w̃ | s and ṽ | s. Their marginals are
consistent (as they should be) with the result from [15], according to which
w̃1 | s ∼ Beta (ñ1, α+ n− ñ1) and, by exchangeability,

w̃i | s ∼ Beta (ñi, α+ n− ñi) ,

as can also be obtained in our setting from equation 8 by integrating out the
nuisance terms. This also dovetails with theorem 1 of [16] (also explained in
theorem 1 and corollary 20 of [17], which better contextualises it with w̃),
according to whichw̃1, . . . , w̃k, 1−

k∑
j=1

w̃j | ñ1, . . . , ñk

 ∼ Dirichlet (ñ1, . . . , ñk, α) , (10)

by definition of a Dirichlet process.

3.2.2. Sampling w, t | w̃
By definition (see equation 6), we have that

wh = w̃th ,

hence w differs from w̃ only in relation to the order of its elements, given by
t. It is therefore only required to sample t | w̃ at this step, which implicitly
determines w | w̃ too.

As w is invariant under size-biased permutations (see [9] and section 2.3 of
this article), and as w̃ is a size-biased permutation of it, we have that

(w | w̃ = ω)
d
= (w̃ | w = σ (ω)) ,

for any feasible vector of values ω and for any permutation σ (including the
identity permutation). Intuitively, both w | w̃ = ω and w̃ | w = σ (ω) are size-
biased random permutations of the same unordered set of weights. Sampling

8



t | w̃ therefore involves the same process as sampling w̃ | w, via size-biasing
through equation 5:

p (t1 = τ | w̃) = w̃τ , τ = 1, 2, . . . ,

p (tj = τ | t1, . . . , tj−1, w̃)

=
w̃τ 1 [τ ̸= ti, for 1 ≤ i ≤ j − 1]

1− w̃t1 − . . .− w̃tj−1

, j > 1, τ = 1, 2, . . .

3.2.3. Obtaining r | w, t, w̃, s

As above, r⋆ | . . . can be retrieved from :

r⋆j = min {i : ti = j} , j = 1, 2, . . . (11)

Then, r | . . . can be derived from s, r⋆.

3.3. Testing the transcoding algorithm

To test the capabilities of the posterior augmentation method, we carry out
the following experiment:

• we sample a vector r of length 5 from the stick-breaking process with
parameter α = 1, 1 million times;

• we re-encode all sample paths of r into s, as described in section 3.1, and
we discard from s and r all sample paths where s ̸= (1, 1, 1, 1, 2). By doing
so, we are left with 50, 090 data points from a sample from the probability
distribution p (r | s = (1, 1, 1, 1, 2));

• we run the posterior augmentation algorithm on s = (1, 1, 1, 1, 2), to infer
back r | s = (1, 1, 1, 1, 2), and we compare with the frequencies obtained
as above. Clearly, the two should match. We compare both marginal and
joint frequencies.

Our results are in table 1. As expected, the probabilities match.

4. The transcoding sampler

We move to the task of developing a sampler for the joint posterior of all
of the parameters of interest in the stick-breaking construction of a Dirichlet
process mixture: r, w and m. We write and factor the full joint posterior as:

p (r,w,m, s | y)
= p (s | y) · p (r | s,y) · p (w | r, s,y) · p (m | w, r, s,y)

= p (s | y) · p (r | s,y) · p (w | r,y) · p (m | r,y) .

9



p (r1 = h | s = (1, 1, 1, 1, 2))
h transcoding empirical
1 0.6660 0.6670
2 0.2449 0.2432
3 0.0677 0.0682
4 0.0162 0.0164
5 0.0039 0.0040
6 0.0009 0.0010
7 0.0003 0.0001
8 0.0001 0.0000
. . . . . . . . .

p (r5 = h | s = (1, 1, 1, 1, 2))
h transcoding empirical
1 0.1659 0.1666
2 0.3592 0.3638
3 0.2281 0.2286
4 0.1219 0.1184
5 0.0635 0.0604
6 0.0304 0.0306
7 0.0156 0.0154
8 0.0080 0.0079
. . . . . . . . .

p (r = h | s = (1, 1, 1, 1, 2))
h transcoding empirical
(1, 1, 1, 1, 2) 0.3316 0.3350
(1, 1, 1, 1, 3) 0.1671 0.1679
(2, 2, 2, 2, 1) 0.1326 0.1336
(1, 1, 1, 1, 4) 0.0838 0.0823
(2, 2, 2, 2, 3) 0.0561 0.0560
(1, 1, 1, 1, 5) 0.0426 0.0401
(2, 2, 2, 2, 4) 0.0280 0.0265
(3, 3, 3, 3, 1) 0.0266 0.0268
. . . . . . . . .

Table 1: Marginal and joint posterior distribution of r | s = (1, 1, 1, 1, 2), obtained via 1
million simulations from r (“empirical”) and via 100, 000 iterations from the transcoding
sampler (“transcoding”), for α = 1.

The first factor can, in principle, be obtained with any sampler, including col-
lapsed and sequential importance samplers (see section 4.1). The second factor
can be obtained with the transcoding algorithm, as

p (r | s,y) = p (y | r, s) p (r | s)
p (y | s)

= p (r | s) ,

which the transcoding algorithm is capable of producing. The third factor is
also a by-product of the transcoding algorithm.

Hence the transcoding algorithm can be used as a building block to form the
transcoding sampler, where the full joint conditional is:

p (r⋆,w,m, t, w̃, s | y)
= p (s | y) · p (r⋆,w, t, w̃ | s) · p (m | r⋆, s,y) , (12)

where the first factor can be produced with any partition posterior sampler, the
second factor can be produced with the transcoding algorithm, and the third
factor only requires remapping from θ | s,y to m | r,y, or otherwise if absent
it can be sampled with standard methods. We henceforth refer to the sampling
algorithm for s | y as the core sampler of the transcoding sampler. Not only

10



can we use as a core sampler one that produces s | y directly, but we can also
use any other sampler that produces r | y, which can always be mapped back
to s | y via the method outlined in section 3.1.

The third factor in equation 12 is often already available from the core
sampler in the first place, in the form of θ | s,y (see for example collapsed
algorithm 2 and algorithm 8 mentioned in section 4.1). For occupied clusters
we have

mri = θi, i = 1, . . . , n, (13)

while for unoccupied clusters we have

mj ∼ G0, j /∈ {r1, . . . , rn} . (14)

In case the core sampler does not return the posterior of m, we observe that

p (m | r⋆, s,y) = p (m | y, r) ∝ p (y | m, r) p (m) ,

which can be obtained via standard methods (for example, via Metropolis-
Hastings).

To summarise, the transcoding sampler is composed of the following steps:

1. use the core sampler to generate posterior samples from s | y (this can be
any sampler that produces the partition posterior; see for example section
4.1);

2. use the transcoding algorithm to sample from r,w, t, w̃ | s;
3. if the core sampler also provides the posterior of θ, obtain m | θ, r, . . .

via equations 13 and 14, or otherwise sample m | y, r via other standard
approaches (possibly Metropolis-Hastings).

To stress the difference between w | y and w̃ | y, we include figure 1 as ob-
tained on the testing data set that we describe in section 4.1.1: while the a priori
probability distribution of w and w̃ is the same, their posterior distributions
are not.

4.1. Performance testing

In this section we carry out performance testing to see how various samplers
compare. In what follows, we describe the data set used for testing, the per-
formance measures used for testing, the sampling algorithms subject to testing
and the testing outcomes.

4.1.1. The data set

The test data set that we adopt is the thumb tack data of [18], in the same
order as it appears in [19]. The data set is composed of 320 observations,
pertaining to the roll of a thumb tack; each tack was flipped 9 times, and “a one
was recorded if the tack landed point up”. We model it via a Dirichlet process
mixture with a binomial likelihood, and we set G0 to a Beta (1, 1). For testing
purposes, we prefer to fix α = 1 as opposed to assigning a prior on it, to make it
easier to appraise convergence; calculations for α = 0.2 and α = 5 (not included

11
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Figure 1: Histogram of the posterior of w1, w̃1, w2, w̃2, obtained with the collapsed algorithm
2 and the transcoding sampler, with α = 1 and 2,000,000 iterations, on the thumb tack data
set.
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here for brevity) broadly lead to the same conclusions, and the methods we
outline in this article remain applicable even when α is random. We use native
R [20] to perform 2, 000, 000 iterations of each algorithm; calculations were run
on an AMD Ryzen 7 7700X CPU.

4.1.2. Efficiency measures

It is well known that samples from MCMC chains suffer to various degrees
from autocorrelation, which makes them less efficient than an equally-sized sam-
ple of independent observations. This is well-articulated in [21], which discusses
the concept of integrated autocorrelation time of an observable f , denoted by τ :

τ =
1

2

∞∑
l=−∞

ρl =
1

2
+

∞∑
l=1

ρl,

where ρl is the autocorrelation of f at lag l. Measuring τ is important when com-
paring MCMC algorithms because 2τ measures how much larger the variance
of the estimate of f is than in independent sampling. Like other studies before
ours [22, 23, 2, 24], we also turn to τ to gauge the efficiency of the algorithms
discussed in this chapter.

In an MCMC chain with N iterations, producing τ̂ , the sample estimate of
τ , requires the introduction of a cutoff M ≪ N in the summation, with “M
large enough so that ρl is negligible for |l| > M”; this is due to reasons outlined
in [21], and which in essence pertain to the fact that, otherwise, the variance of
τ̂ would not converge to 0 for N → ∞, which is undesirable behaviour for an
estimator. We therefore use the formula

τ̂ =
1

2
+

M∑
l=1

ρ̂l,

where M := min {l ∈ N : l ≥ 10 · τ̂ (l)}, as per the advice in [21, page 145].
The functionals that we turn to, to measure the integrated autocorrelation

time, are:

• Kn, the number of clusters. We choose this metric for comparability, as
it has been widely employed in previous studies. Although Kn is not
directly altered by a successful label switch, its integrated autocorrelation
time should still be informative of the overall convergence speed;

• the deviance as defined in [22, 23, 2, 24]:

D = −2

n∑
i=1

log

∑
j

nj

n
p (yi | θj)

 , (15)

Previous studies justify its use on the basis that it is seen as “a global
function of all model parameters” [24];
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• θ1, which was introduced in [22]. Theoretically, since our testing data set
is composed of 320 observations constituted of only 9 unique values, one
could monitor θi for nine choices of i, corresponding to each unique value
of y, however for brevity we only report information about θ1;

• r1, which was never considered in previous studies but which in our view
is important, since the problem we are trying to solve pertains to label
switching ;

• w1 and m1 too, for completeness.

Two of the samplers that we employ in our tests are sequential importance
samplers (SIS) [1, 25]. Integrated autocorrelation time is not the right efficiency
measure to compare between sequential importance samplers, which generate
i.i.d. observations. To compare between SIS algorithms, we use the variance of
their normalised weights, and the Effective Sample Size (ESS), calculated as

ESS ≈ N

1 + Var
(
Ŵ
) ,

where the weight estimates Ŵ are standardised to sum to 1, as follows:

Ŵi =
WiN∑N
i=1 Wi

,

where N is the size of the simulation sample. For more information pertaining
to this performance measure, we refer to [19, 25].

4.1.3. Testing candidates

In this section we provide a short outline of three broad families of DPM
posterior samplers that we compare in our tests, either in conjunction with the
transcoding algorithm, or in isolation.

Firstly, we mention the collapsed sampler, which owns its name to its use
of the Polya urn representation, which integrates G out, therefore collapsing
the parameter space. This reduction of the parameter space means that the
collapsed sampler is less susceptible to slow mixing than stick-breaking samplers;
however, it does not allow posterior inference on the random measure G or
on other stick-breaking parameters either (as it encodes cluster membership
in order of appearance). A comprehensive reference for collapsed samplers is
[22]. Neal’s algorithm 2 and 8 are generally thought to be the best performing
collapsed samplers when the pair G0 and p (yi | θi) is respectively conjugate or
non-conjugate. Because the test data set that we employ naturally fits with the
beta-binomial conjugate pair, we only include in our tables Neal’s algorithm 2.

Secondly, we turn our attention to stick-breaking samplers, and to the slice
sampler in particular. It relies on the DP representation from equation 3, and
it adopts the stick-breaking encoding. It does provide posterior inference on a
number of stick-breaking parameters which the collapsed sampler simply does
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not provide, such as w for example. Because of its larger parameter space, it is
known that this sampler can suffer from slow mixing of the MCMC chain and
as such, some Metropolis jumps have been proposed in literature, to accelerate
it. In the tables from this article, we employ the slice sampler [26] as modified
in [27], accelerated with label-switching Metropolis moves 1 and 2 [2], and with
move 3 [3].

Thirdly, we mention sequential importance sampling (SIS). In the context
of the DPM, it was first explored by [28], who introduced a sampler for s,θ |
y. A more efficient variation of it, S2, was introduced shortly thereafter [25],
which integrates θ out. Both algorithms encode cluster membership in order of
appearance. More recently, we developed SIS algorithm R [1], which uses stick-
breaking encoding instead. The appeal of sequential importance sampling is that
it is i.i.d., hence by definition its IAT is the shortest possible; its disadvantage
is that its performance depends on the order whereby the observations appear
in the sample, with no known optimality criterion to sort the data before the
sampler is run. For the purpose of this article, we focus on algorithm S2, which
we combine with the transcoding algorithm, and on algorithm R to compare;
algorithm R is run standalone rather than in conjunction with the transcoding
algorithm because it already uses stick-breaking encoding hence it does not need
transcoding.

4.1.4. Testing outcomes

Our testing outcomes are reported in 2. The table includes (from top to
bottom):

• the transcoding sampler with SIS sampler S2 as its core sampler;

• SIS algorithm R;

• the transcoding sampler with collapsed sampler 2 as its core sampler;

• the slice sampler in four variations: without Metropolis moves for accel-
eration of the chain, and with respectively Metropolis move 1, 2 or 3.

It should be highlighted that the transcoding sampler is guaranteed to inherit
its IAT from its core sampler, by construction; for example, although we do not
include the IAT of stand-alone collapsed algorithm 2 in 2, it is safe to assume
that its IAT is exactly the same as that of the transcoding sampler that uses
collapsed algorithm 2 as its core sampler.

As expected, where the core sampler is i.i.d., the transcoding sampler returns
IAT values at the minimum end of the spectrum (i.e. ≈ 0.50) – it produces
fully i.i.d. samples. Where the core sampler is instead a collapsed algorithm,
the IAT of the parameters that are naturally produced by the core sampler
is by construction exactly that of the core sampler, and the IAT of the stick-
breaking parameters which result from the augmentation of the core sampler
displays materially shorter IAT than that of the slice sampler, no matter which
Metropolis label switching move the latter adopts.
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Algorithm ESS IATK IATw1 IATr1 IATwr1
IATm1 IATθ1 IATD

SIS S2+transcoding 144,211 0.50 0.50 0.50 0.50 0.50 0.50 0.50
SIS R 131,933 0.50 0.50 0.50 0.50 0.50 0.50 0.50
collapsed2+transc. N.A. 11.86 5.97 2.49 7.73 0.50 0.55 2.15
slice, no moves N.A. 75.16 126.00 43.70 36.00 388.12 0.87 6.43
slice, move 1 N.A. 72.16 121.15 32.15 34.34 38.69 0.87 6.65
slice, move 2 N.A. 65.39 73.59 32.96 32.44 226.31 0.86 6.39
slice, move 3 N.A. 57.37 34.38 13.64 29.63 6.15 0.86 6.24

Table 2: Comparison of the transcoding sampler with sequential importance sampling algo-
rithm S2 (“SIS S2+transcoding”) and collapsed algorithm 2 (“collapsed2+transc.”) as its
core samplers, and the slice sampler and sequential importance sampling algorithm R, over
2, 000, 000 iterations, on the thumb tack data set, with α = 1.

5. Relationship with other work

Ultimately, the three main building blocks of the transcoding sampler are:

1. size-biasing;

2. equation 9;

3. the derivation of w, t | w̃, and equation 11.

We have identified two other approaches which revolve around building
blocks 1 and 2, yet they reach different conclusions from those outlined in this
article, as they do not use building block 3.

One is [29], where an algorithm is developed which, in essence, samples from

p (si | w̃,θ⋆ . . .) ∝ w̃sip
(
yi | θ⋆si

)
, i = 1, . . . , n, (16)

then it samples w̃ | s, . . . via equation 10, and then it samples their locations,
in a Gibbs scheme, where cluster membership indicators are re-encoded at each
iteration so that they are in order of appearance. The space that this algorithm
operates in is somewhere in between that of collapsed algorithm 2, and that of
the slice sampler: it is wider than the former, because it also includes w̃, while
it is narrower than the latter, as its cluster membership encoding is in order
of appearance. Its IAT times published in [29] reflect the same, positioning
the algorithm between collapsed algorithm 2 and the slice sampler in terms
of performance. However, the posterior that this algorithm produces does not
include either r or w, which instead the slice sampler returns – as such, contrary
to the transcoding sampler, it is not a replacement for the slice sampler.

The other is [30]2, which essentially3 also operates as indicated earlier, with
the technical difference that instead of sampling si | . . . from equation 16 and re-
encoding the labels in order of appearance at each iteration, it adds constraints

2Also related to [31].
3The algorithm also has other features and uses, including for example its applicability to

finite mixture models.
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to the sampling formula so that the resulting cluster membership indicators
generated by the sampler are always admissible to begin with, by construction,
hence no need to re-encode them. This algorithm operates in the same space
as [29], and as above its posterior does not include r or w either, and is no
substitute for the slice sampler.

6. Conclusions

In this article, we have discussed cluster membership encoding according to
the order of appearance of the clusters in the data (as it happens in the vector
that we denote by s, which results from the Polya urn construction), and ac-
cording to the order of their originating sticks in the stick-breaking construction
process (as it happens in the vector that we denote by r, which results from the
stick-breaking construction); we have determined that the latter carries more
information than the former. We have worked out a simple, deterministic ap-
proach to derive s | r, and the transcoding algorithm to infer r | s.

We have also derived the transcoding sampler, which fully integrates with
any other sampler capable of returning the exchangeable posterior partition of
the data (i.e. its core sampler), to infer back all stick-breaking parameters of
possible interest including r,w, w̃ and others. Since the transcoding sampler
leverages the transcoding algorithm, which is i.i.d., it inherits the integrated au-
tocorrelation times of the core sampler that it relies on. The transcoding sampler
thus makes it possible to make full posterior inferences of stick-breaking param-
eters while attaining minimal autocorrelation times (when using the sequential
importance sampler at its core), or while attaining the same autocorrelation
times as those from collapsed samplers (when using collapsed samplers at its
core), which are known to be much shorter than those attained by the slice
sampler and other stick-breaking samplers (even in the presence of Metropolis
label-switching moves, to accelerate the slice sampler).

Appendix A. A new a prior sampler for s

For better understanding of the connection between the two encodings, in
this appendix we exemplify the relationship between w | w̃ = ω and w̃ |
w = σ (ω) that we made use of in section 3.2.2, and we show that each is a
size-biased random permutation of the other, in both directions. To do so, we
introduce a new a priori sampler for s which does not rely on the classic Polya
urn construction of equation 2. The process is as follows:

1. set s1 = 1 and sample w̃1 ∼ Beta (1, α) as per equation 3 (this is possible
because w̃ is a size-biased permutation of w and the latter is invariant to
size-biased permutations; see [9] and [15]). Then, sample s2, s3, . . . from:

p (si | s1, . . . , si−1, w̃)

=

ki−1∑
j=1

w̃jδj (si)

+

1−
∑

l≤ki−1

w̃l

 δki−1+1 (si) , (A.1)
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where ki−1 is the number of clusters in s1, . . . , si−1. We derived equation
A.1 from equation 3.4 from [7]:

p (ñ1, . . . , ñk | w̃) =

 k∏
j=1

w̃
ñj−1
j

k−1∏
j=1

1−
∑
l≤j

w̃l

 . (A.2)

Intuitively, given s1, . . . , si−1 and w̃1, . . . , w̃ki−1 , the probability of si open-
ing up a new cluster is 1−

∑
l≤ki−1

w̃l (see the second factor in equation

A.2); conversely, the probability of si repeating some already observed
cluster j is w̃j (see the first factor in the same equation). Whenever a new
cluster is opened up, draw its corresponding weight as per equation 3, on
the basis of the same justification as before.

2. draw a size-biased permutation of w̃, to obtain w and implicitly r too, by
using a variation of equation 5 where, in the formula, w is replaced by w̃
and vice-versa.

This sampler is noteworthy because of two reasons:

• it generates data points from the Polya urn process in a way that is dif-
ferent from how it is usually presented. This method allows the weights
to be exact, as opposed to Polya urn samplers based on equation 2 where
their estimation is based on the size of the generated clusters, and is only
asymptotically correct;

• it exemplifies that w and w̃ are size-biased permutations of each other.
While w̃ naturally arises as a size-biased random permutation of w due
to its connection to sampling without replacement, w can also be thought
as a size-biased random permutation of w̃.

Appendix B. Exchangeability, EPPF and Ewens’ sampling formula

We include some considerations about the concept of exchangeability as it
applies to random vectors and to random partitions, also useful to support some
conclusions in appendix Appendix C.

Appendix B.1. Exchangeability

One of the main properties generally associated with the Polya urn construc-
tion of the Dirichlet process is that it produces “exchangeable sequences” and,
while this is true under certain conditions, we would like to clarify the impact
that different types of encoding have on this key property.

The finite Polya urn scheme, with a fixed number colours, is known to gen-
erate a sequence of random cluster membership indicators that is exchangeable
(in the sense of de Finetti), and which is conditionally independent on a Dirich-
let probability measure [32], when it is coded according to a finite set with
elements corresponding to each colour. Similarly, the infinite-dimensional Polya
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urn is also known to produce sequences of random cluster membership indi-
cators which are exchangeable, and which are conditionally independent on a
Dirichlet process measure, as long as each of their labels uniquely identifies
a specific colour. However, we observe that encoding a Polya urn sequence
with the order of appearance encoding breaks its de Finetti exchangeability,
due to the order constraints that the encoding imposes. For example, assume
a Polya urn sequence with parameter α: the random vector (s1, s2, . . .) that
it induces is not exchangeable as s1 = 1 almost surely, while p (s2 = 1) < 1,
hence p (s1, s2) ̸= p (s2, s1). It can be seen that the conditional s | r is not
exchangeable either.

Conversely, stick-breaking encoding does lead to a sequence r that is de
Finetti exchangeable, as ri, rj are conditionally independent on w. However,
its conditional r | s is only de Finetti partially exchangeable – it is not fully
exchangeable.

What is preserved under both encoding methods is the exchangeability of
the random partition induced by the Dirichlet process: both encoding methods
lead to a random exchangeable partition. Recall that a random partition is
exchangeable if and only if its probability distribution is symmetric for every
permutation σ of Nk:

p (n1, . . . , nk) = p (nσ1
, . . . , nσk

) .

We summarise these properties in table B.3.

property s s | r r r | s
exchangeability no no yes no
partial exchangeability no no yes yes
exchangeability of its partition yes yes yes yes

Table B.3: Exchangeability of the cluster membership indicator vector when encoded in order
of appearance (s) and in stick-breaking order (r), and of its posterior.

Appendix B.2. EPPF and Ewens’ sampling formula

An exchangeable random partition Πn can be described by the following
function, which is called exchangeable partition probability function (EPPF):

p (n1, . . . , nk) = αk Γ (α)

Γ (α+ n)

k∏
j=1

Γ (nj) . (B.1)

The EPPF is a symmetric function which returns the probability of one partic-
ular (unordered) set partition, and which only depends on the unordered block
sizes; partitions with the same block sizes have the same probability.

Equation B.1 is also related to the following, which is called the Ewens sam-
pling formula. Define Mj := # {i : ni = j, i = 1, . . . , k} , j = 1, . . . , n. Then

p (M1, . . . ,Mn) = n!
Γ (α)

Γ (α+ n)

n∏
i=1

αMi

iMiMi!
, (B.2)
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as for every configuration in Equation B.2 there are

n!∏n
i=1 i!

MiMi!

configurations in B.1 (see [33] for a comprehensive summary of the uses of the
Ewens sampling formula).

Finally, the probability of the composition (n1, . . . , nk) in order of appear-
ance is [7, equation 2.6]:

pOOA (n1, . . . , nk) =
n!

nk (nk + nk−1) · · · (nk + · · ·+ n1)

p (n1, . . . , nk)∏k
i=1 (ni − 1)!

=
n!

nk (nk + nk−1) · · · (nk + · · ·+ n1)
αk Γ (α)

Γ (α+ n)
. (B.3)

Appendix C. Accept-reject transcoding methods

The simplest way to obtain stick-breaking encoding from cluster membership
indicators encoded in order of appearance is via the accept/reject algorithm.
We present here variations of it, in increasing order of efficiency; however, even
in its most efficient form the algorithm is still wasteful, hence the value of the
transcoding algorithm from section 3.2 which instead operates via augmentation
of the target space.

Appendix C.1. Accept-reject method 1

To infer r from s, we write

p (r | s) ∝ p (s | r) p (r) , (C.1)

and we observe that:

• p (r) is easy to sample from, by progressively sampling from p (r1) , p (r2 | r1) , . . .
according to:

p (r1 = h) = E [wh] =
αh−1

(α+ 1)
h
,

and, for i = 2, 3, . . ., according to:

p (ri = h | r1, . . . , ri−1) = E [wh | r1, . . . , ri−1]

= E [vh | r1, . . . , ri−1]
∏
l<h

E [1− vl | r1, . . . , ri−1] ,

where the conditional expectations can be obtained from

vh | . . . ∼ Beta

(
1 + nh, α+

H∑
l=h+1

nl

)
, (C.2)

where nh is the number of observations in cluster h, and which in turn is
due to the conjugacy of the generalised Dirichlet distribution [34];
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• the first term on the right hand side of equation C.1 acts as an indicator
function:

p (s | r) = 1g(r) (s) .

Therefore, we can draw a proposal r̂ from p (r), and accept it if g (r̂) = s, or
repeat the attempt if otherwise. The resulting acceptance rate equals equation
B.1 (Ewens’ distribution), which returns the probability of one specific configu-
ration of s where the cluster sizes are n1, . . . , nk:

αk Γ (α)

Γ (α+ n)

k∏
j=1

Γ (nj) .

However, the probability above approaches zero very quickly as n increases,
to the point of quickly becoming unusable; for example, for a sequence with
n = 30, α = 1 with 3 clusters of size (22, 7, 1), its theoretical acceptance rate as
derived via equation B.1 is approximately 1.4 × 10−10, hence the algorithm is
quite wasteful.

Row s p (s) acceptable r pattern
1 (1, 1, 1) 0.3333 (a, a, a)
2 (1, 1, 2) 0.1666 (a, a, b)
3 (1, 2, 1) 0.1666 (a, b, a)
4 (1, 2, 2) 0.1666 (a, b, b)
5 (1, 2, 3) 0.1666 (a, b, c)

Table C.4: Accept-reject algorithm 1, acceptable configurations of r for all possible outcomes
of s, in a Dirichlet process where n = 3, α = 1.

Appendix C.2. Accept-reject method 2

Consider a permutation σ of N, and observe that:

• while s is not de Finetti exchangeable (because of its order constraint),
we still have that p (s1, . . . , sn) = p (sσ1

, . . . , sσn
) as long as σ does not

alter the order of appearance of the clusters;

• p (r1, . . . , rn) = p (rσ1
, . . . , rσn

), for any σ, because the random vector r is
de Finetti exchangeable.

It is therefore legitimate to relax the acceptance criterion from section Ap-
pendix C.1 to accept all cases where the ordered4 vector of the cluster sizes of

4With r encoded in stick-breaking order, and with the sizes of the clusters ordered so that
the size of the first cluster to appear is positioned first, the size of the second cluster to appear
is positioned second, etc.
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r̂ matches the ordered cluster sizes of s; doing so increases the acceptance rate
to

αk Γ (α)

Γ (α+ n)

n!

nk (nk + nk−1) · · · (nk + . . .+ n1)
,

as per equation B.3.
We exemplify this with the aid of tables C.4 and C.5, which shows the set

of all possible outcomes of s when n = 3. When, for example, s = (1, 1, 2),
the algorithm from section Appendix C.1 aims to capture all outcomes of r
whose configuration is compatible with s = (1, 1, 2); there is only one such case
in Table C.4 (see row 2). The algorithm from this section, instead, moves from
the observation that row 3 from Table C.4 is entirely equivalent to row 2 of
the same, once both s and r transformed via σ1 = 1, σ2 = 3, σ3 = 2. In this
specific example, doing so doubles the acceptance ratio; in the example from
section Appendix C.1 (n = 30, α = 1; 3 clusters of size 22, 7, 1), it improves
the acceptance rate from 1.4 × 10−10 to 0.00416. Table C.5 summarises the
configurations of r that can be accepted, once appropriately re-arranged.

Row s p (s) acceptable r pattern
1 (1, 1, 1) 0.3333 (a, a, a)
2 (1, 1, 2) 0.1666 (a, a, b) , (a, b, a)
3 (1, 2, 1) 0.1666 (a, b, a) , (a, a, b)
4 (1, 2, 2) 0.1666 (a, b, b)
5 (1, 2, 3) 0.1666 (a, b, c)

Table C.5: Accept-reject algorithm 2, acceptable configurations of r for all possible outcomes
of s, in a Dirichlet process where n = 3, α = 1.

Appendix C.3. Accept-reject method 3

The approach from section Appendix C.2 can be pushed even further by
observing that p (s1, . . . , sn) = p (τ (sσ1

) , . . . , τ (sσn
)), for any permutations σ, τ

which do not alter the order of appearance of the clusters in (τ (sσ1) , . . . , τ (sσn)),
as s is invariant to permutations of its labels (subject to the aforementioned
condition). This is exemplified in Table C.6.

The algorithm works by generating a proposal r̂, sorting its cluster sizes in
increasing (or decreasing) order and comparing them with the sorted cluster
sizes of s; if they match, r̂ is accepted and the positions of its elements are
permuted to match the pattern of s.

The acceptance rate of this algorithm is (see section Appendix B.2):

n!∏n
i=1 Mi! (i!)

Mi
· αk Γ (α)

Γ (α+ n)

k∏
j=1

Γ (nj) . (C.3)

This is a moderate improvement to the algorithm from section Appendix
C.2; for example, in the same case as above (n = 30, α = 1; 3 clusters of size
22, 7, 1), its acceptance rate is 0.0065, up from 0.00416. However, as is to be
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expected, even this algorithm becomes more wasteful as n increases, and in
fact, for a sample size of n = 320 (such as for example the thumbtack dataset
used in [19]), the acceptance rate is 1 in about 70 million, for cluster sizes
(226, 75, 13, 3, 2, 1), which motivates the need to devise a better algorithm.

Row s p (s) acceptable r pattern
1 (1, 1, 1) 0.3333 (a, a, a)
2 (1, 1, 2) 0.1666 (a, a, b) , (a, b, a) , (a, b, b)
3 (1, 2, 1) 0.1666 (a, b, a) , (a, a, b) , (a, b, b)
4 (1, 2, 2) 0.1666 (a, b, b) , (a, a, b) , (a, b, a)
5 (1, 2, 3) 0.1666 (a, b, c)

Table C.6: Accept-reject algorithm 3, acceptable configurations of r for all possible outcomes
of s, in a Dirichlet process where n = 3.
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