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Abstract. We compute the precise leading asymptotics of the variance
of the number of real roots for a large class of random polynomials,
where the random coefficients have polynomial growth. Our results ap-
ply to many classical ensembles, including the Kac polynomials, hyper-
bolic polynomials, their derivatives, and any linear combinations of these
polynomials. Prior to this paper, such asymptotics was only established
for the Kac polynomials in the 1970s, with the seminal contribution of
Maslova. The main ingredients of the proof are new asymptotic esti-
mates for the two-point correlation function of the real roots, revealing
geometric structures in the distribution of the real roots of these ran-
dom polynomials. As a corollary, we obtain asymptotic normality for the
real roots for these random polynomials, extending and strengthening a
related result of O. Nguyen and V. Vu.

1. Introduction

In this paper, we consider the real roots of random polynomials,

(1.1) Pn(x) =

n∑
j=0

ξjcjx
j ,

where ξj ’s are independent real-valued random variables with unit variance,
and cj ’s are deterministic real-valued coefficients.

Let Nn denote the number of real roots of Pn.
The study of the distribution of Nn is a classical topic in probability with

a long history. While leading asymptotics for the expectation of Nn in the
large n limit have been established for many classical ensembles of random
polynomials, analogous results for the variance of Nn are harder to come by,
especially for random polynomials with non-Gaussian coefficients, and this
is the main goal of the current paper.

We first include a brief history of the subject before discussing the class
of random polynomials considered in the current work. As reported by
Todhunter in [54, p. 618], as early as 1782, Waring was already interested
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in the distribution of the number of ‘impossible’ (i.e., non-real) roots of a
typical polynomial equation. However, it took roughly 150 years until the
first concrete estimates appeared in the literature, in a joint work by Bloch
and Pólya [9] in 1932. In their pioneering work [9], the authors investigated
the expected number of real roots of random polynomials with independent
coefficients taking random values in {−1, 0, 1} and obtained a crude estimate
of O(

√
n). Here and later, we use the usual asymptotic notation X = O(Y )

orX ≪ Y to denote the bound |X| ≤ cY , where c is independent of Y . Bloch
and Pólya’s result has inspired many authors to consider estimates for the
(average) number of real roots of random polynomials with independent and
identically distributed (iid) coefficients, which became the primary theme
for most earlier studies, with seminal contributions by Littlewood–Offord
[35–37], Kac [30, 31], and Ibragimov–Maslova [27–29]. In particular, for
random polynomials with iid centered Gaussian coefficients, Kac [30] derived
an exact formula for E[Nn] and showed that

(1.2) E[Nn] =
2

π
log n+ o(log n).

A key ingredient in Kac’s methods is a formula for the mean density of the
number of real roots, also known as the one-point correlation function for
the real roots (see, e.g., [53]). Kac’s formula and its generalization, the Kac-
Rice formula, are now among the most fundamental tools when dealing with
real roots of Gaussian random polynomials. See also [20] for a geometric
interpretation of this formula. Furthermore, random polynomials with iid
coefficients are now commonly referred to as Kac’s random polynomials [53].
The asymptotic formula (1.2) has also been extended to Kac’s polynomials
with non-Gaussian coefficients [21,27,29,31,42,52]. In particular, the error
term in (1.2) has also been improved to O(1) under a very general assump-
tion on the coefficient distribution, see Nguyen–Nguyen–Vu [42]. In fact,
for several interesting classes of coefficient distributions, it can be shown
that E[Nn] =

2
π log n+ C + o(1), where the constant C may depend on the

coefficient distribution; for details, refer to [17]. For Gaussian polynomials,
a complete asymptotic expansion of E[Nn] was derived by Wilkins [56].

During the 1970s, in a series of papers, Maslova [40,41] initiated two new
themes to the subject: the leading asymptotics for the variance Var[Nn],

(1.3) Var[Nn] =

[
4

π

(
1− 2

π

)
+ o(1)

]
log n,

and the convergence (in distribution) of the standardization of Nn to a
standard Gaussian,

(1.4)
Nn − E[Nn]√

Var[Nn]

d−→ N (0, 1).

The convergence in (1.4) is often referred to as the central limit theorem
(CLT), or asymptotic normality, for the real roots of Pn. Maslova’s work
has inspired numerous authors to explore similar results for other classes
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of random polynomials and random functions, in both Gaussian and non-
Gaussian settings [1–7, 10, 15, 19, 22, 24, 25, 38, 39, 44, 48, 50]. The current
work is part of these themes.

Now, while earlier studies of the real roots of random polynomials with iid
coefficients were mostly motivated by mathematical curiosity, it turns out
that there is a deeper connection to the theory of random point processes
in statistical physics. In the beautiful exposition [26], the authors examined
random point processes that are invariants with respect to the group of
isometries of the underlying Riemanian surfaces. In two dimensions, this
classification leads to three classical ensembles of random point processes,
corresponding to the isometry groups of the complex plane C, the sphere
S1 = C ∪ {∞}, and the hyperbolic disk D = {|z| < 1}:

(1) random flat point processes, which are complex roots of the ran-
dom flat (Weyl) series,

∑∞
j=0

1√
j!
ξjz

j , where (ξj)j≥0 are independent

standard complex Gaussian;
(2) random elliptic point processes, which are complex roots of the ran-

dom elliptic polynomials,
∑n

j=0

√(
n
j

)
ξjz

j , where (ξj)j≥0 are inde-

pendent standard complex Gaussian;
(3) random hyperbolic point processes, which are complex roots of the

random hyperbolic series,
∑∞

j=0

√
L(L+1)...(L+j−1)

j! ξjz
j , where (ξj)j≥0

are independent standard complex Gaussian and L > 0 is a fixed
parameter.

A central theme in the subject is to consider the real analogues of these
random analytic functions when ξj ’s are real-valued random variables and to
study the distribution of the real roots of their polynomial approximations
(except for the elliptic case when we already have a polynomial). In partic-
ular, Kac’s random polynomials are polynomial approximations of the ran-
dom hyperbolic series for L = 1. Additionally, there are higher-dimensional
generalizations of random elliptic polynomials; see [2, 3, 32,51].

We now recall the relevant existing results about variance asymptotics and
asymptotic normality for the real roots of the above ensembles of random
polynomials. In the following, the Gaussian setting is the situation when all
random coefficients ξj are standard Gaussian. For random flat polynomials,
variance asymptotics and the CLT for the number of real roots have been
established for the Gausian setting in a joint work of V. Vu and the first
author [19]. Concerning random elliptic polynomials in the Gaussian setting,
leading asymptotics for variances were computed by Bleher–Di [8] (see also
[43]) and the CLT was proved by Dalmao [10] (see also [1]). These results
were later generalized to higher dimensions in [2, 3]. As far as we know,
the non-Gaussian extensions of [1–3, 8, 10, 19] remain open problems. As
mentioned above, variance asymptotics and the CLT for the number of real
roots of random Kac polynomials were proved by Maslova [40,41] for a very
general class of coefficient distributions. For random hyperbolic polynomials
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and derivatives, the CLT was also proved for a very large class of coefficient
distributions in Nguyen–Vu [44]. However, the methods in [44] do not lead
to precise leading asymptotics for the variance, and this is addressed in the
current paper. We also like to point out related results for random functions:
variance asymptotics were considered in [6, 15,24,25,38,39] and CLTs were
considered in [1, 4, 5, 16].

1.1. Statement of main results. As discussed above, among the three
classical ensembles of random polynomials, random hyperbolic polynomi-
als remain the ensemble for which the precise leading asymptotics for the
variance of the number of real roots are not known (even for the Gauss-
ian setting), other than the special case of Kac polynomials obtained by
Maslova in the 1970s. The current paper addresses this question. Further-
more, our methods work for a very general class of random polynomials,
which includes not only hyperbolic polynomials but also their derivatives or
any linear combination of these polynomials, and our results also apply to
both Gaussian and non-Gaussian settings.1

We first state our result for random hyperbolic polynomials. To this end,
we fix some notation. Given τ > −1/2, consider

(1.5) fτ (u) :=
(√

1−∆2
τ (u) + ∆τ (u) arcsin∆τ (u)

)
Στ (u)− 1,

where

∆τ (u) := uτ+1/2 u(1− u2τ+1)− (2τ + 1)(1− u)

1− u2τ+1 − (2τ + 1)u2τ+1(1− u)
,(1.6)

Στ (u) :=
1− u2τ+1 − (2τ + 1)(1− u)u2τ+1

(1− u2τ+1)3/2
,

and the constant

(1.7) κτ :=

(
2τ + 1

π

∫ ∞

0
fτ (sech

2 v)dv +

√
2τ + 1

2

)
1

π
.

Some basic properties of fτ (including integrability) are collected in Lemma
4.1.

Theorem 1.1 (Asymptotics of variances for hyperbolic polynomials). Let
ξ0, . . . , ξn be real-valued independent random variables with zero mean, unit
variance, and uniform bounded (2+ ε) moments, for some ε > 0. Let L > 0
and consider the random hyperbolic polynomial

Pn,L(x) = ξ0 +
√
Lξ1x+ · · ·+

√
L(L+ 1) · · · (L+ n− 1)

n!
ξnx

n.

1We note that, other than Maslova’s result from five decades ago, the only non-Gaussian
results for variance asymptotics are for random trigonometric functions, as seen in [6,15].
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For any k ≥ 0, let Nn,k be the number of real roots of the kth derivative of

Pn,L (so k = 0 means Pn,L itself). Then for τ = k + L−1
2 , we have

Var[Nn,k] =

[
2κτ +

2

π

(
1− 2

π

)
+ o(1)

]
log n.

Remark 1.2. When L = 1, the random hyperbolic polynomial Pn,L becomes
a random Kac polynomial, so Theorem 1.1 applies to derivatives of the Kac
polynomials, which are novel even in the Gaussian setting. Note that for
L = 1 and k = 0, we have τ = 0 and∫ ∞

0
fτ (sech

2 v)dv =

∫ ∞

0

(
tanh2 v + tanh v sech v arcsin(sech v)− 1

)
dv

=
π

2
− 2,

thus, it follows from (1.7) that

κτ =
1

π

(
1− 2

π

)
,

and this recovers Maslova’s result given in (1.3) for the Kac polynomials.

Theorem 1.1 is a special case of the following more general result for ran-
dom polynomials with coefficients having polynomial asymptotics. Below,
we collect the assumptions for this slightly more technical theorem. We as-
sume that there are fixed positive constants C0, C1, C2, N0, ε, and a fixed
constant τ > −1/2, such that

(A1) ξ0, . . . , ξn are independent real-valued random variables, with E[ξj ] =
0 for j ≥ N0, Var[ξj ] = 1 for j ≥ 0, and sup0≤j≤n E[|ξj |2+ε] < C0,
and

(A2) each cj is real and may depend on both j and n, such that for
N0 ≤ j ≤ n, we have2

(1.8) |cj | = C1j
τ (1 + oj(1)),

and for 0 ≤ j < N0, we have

|cj | ≤ C2.

Theorem 1.3 (Asymptotics of variances for generalized Kac polynomials).
Assume that the polynomial Pn defined by (1.1) satisfies conditions (A1) and
(A2). Then,

Var[Nn] =

[
2κτ +

2

π

(
1− 2

π

)
+ o(1)

]
log n,

where the implicit constants in the o(1) term depend only on N0, C0, C1,
C2, ε, τ , and the rate of decay of oj(1) in condition (A2). Furthermore,

2The oj(1) notation in (1.8) means that this term can be bounded by some oj inde-
pendent of n such that limj→∞ oj = 0.
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Nn satisfies the CLT; that is, the following convergence in distribution to a
normalized Gaussian holds as n → ∞:

Nn − E[Nn]√
Var[Nn]

d−→ N (0, 1).

The second part of Theorem 1.3 concerning the asymptotic normality of
the real roots of Pn is an immediate consequence of the first part regrading
variance asymptotics and the following conditional result of O. Nguyen and
V. Vu in [44] about the CLT for the real roots of generalized Kac polyno-
mials.

Proposition 1.1 ([44, Theorem 1.2]). Assume that ξj’s are independent
with zero mean, unit variance, and sup1≤j≤n E[|ξj |2+ε] = O(1). Assume
that for some fixed positive constants C1, C2, C3, and N0 (independent of
n), the following conditions hold:

(1.9)

{
C1j

τ ≤ |cj | ≤ C2j
τ if N0 ≤ j ≤ n, and

c2j ≤ C3 if 0 ≤ j < N0.

Assume also that

(1.10) Var[Nn] ≫ log n.

Then Nn satisfies the CLT.

We note that in [44], the lower bound (1.10) has been shown for a class
of random polynomials satisfying the following extra condition:

(1.11)
|cj |
|cn|

− 1 = O
(
e−(log logn)1+ε

)
, n− ne− log1/5 n ≤ j ≤ n− elog

1/5 n.

This condition was later verified for derivatives of the Kac polynomials and
hyperbolic polynomials, leading to the CLT for the real roots of these poly-
nomials in [44]. Our asymptotic estimates for the variance of the real roots
in these cases strengthen these results, as they provide the details about the

denominator of Nn−E[Nn]√
Var[Nn]

.

We also note that the class of random polynomials in Theorem 1.3 and the
class of generalized random Kac polynomials satisfying Nguyen-Vu’s condi-
tion (1.11) are substantially different. For the convenience of the reader, we
include an example in Appendix A that satisfies (1.8) but does not satisfy
Nguyen-Vu’s condition (1.11).

Remark 1.4. The assumption τ > −1/2 is utilized extensively throughout
our proof. It might be intriguing to explore generalized Kac polynomials
within the context where τ ≤ −1/2. It raises curiosity to investigate whether
the method of this paper can be extended to estimate Var[Nn], a pursuit we
leave for further examination. For a recent comprehensive overview of these
polynomials, we refer the reader to the work of Krishnapur, Lundberg, and
Nguyen [33], where asymptotic behaviors of the expected number of real
roots are provided, along with insights into bifurcating limit cycles.
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Remark 1.5. Under the same assumption as in Theorem 1.3, it was shown
in [18] (see also [14]) that

(1.12) E[Nn] =
1 +

√
2τ + 1

π
log n+ o(log n).

For generalized Kac polynomials satisfying (1.9) (though not necessarily
(1.8)), it was also shown in [18] that E[Nn] grows logarithmically with respect
to n. The asymptotic formula (1.12) in the special cases when ξj ’s are
Gaussian and cj = jτ for some τ > 0 was previously considered in [11, 12,
46,47,49,50]. Note that (1.12) also recovers Maslova’s result in [40, Theorem
2] for the first derivatives of Kac polynomials.

Remark 1.6. Generalized Kac polynomials have also garnered research at-
tention in the mathematical physics community. In particular, Schehr and
Majumdar [49, 50] established a connection between the persistence expo-
nent of the diffusion equation with random initial conditions and the prob-
ability that a certain generalized Kac polynomial has no real root in a given
interval. A more comprehensive treatment was later provided by Dembo and
Mukherjee [13], who derived general criteria for continuity of persistence ex-
ponents for centered Gaussian processes. The authors of [13] then used
these criteria to study the gap probabilities for both real roots of random
polynomials and zero-crossings of solutions to the heat equation initiated by
Gaussian white noise.

Remark 1.7. As a numerical illustration, let us consider the polynomial
Pn(x) =

∑n
j=1 ξjjx

j , which can essentially be viewed as the first derivative
of the Kac polynomial. By Theorem 1.3, we have

Var[Nn] = C log n+ o(log n),

where

C = 2κ1 +
2

π

(
1− 2

π

)
≈ 0.575737845.

Figures 1 and 2 showcase numerical simulations that support this theoretical
result. Additionally, the numerical evidence presented in Figure 3 seems to
bolster the conjecture that Var[Nn]−C log n converges to a limit as n tends
to infinity, with the limit possibly dependent on the distribution of ξj .

1.2. Main ideas of the proof. We now discuss some main ideas of our
proof. To prove Theorem 1.3, our starting point is the universality argument
of O. Nguyen and V. Vu in [44], reducing the proof to the Gaussian case.
However, our consideration of the Gaussian setting differs from O. Nguyen
and V. Vu’s argument. In [44], the authors used a novel swapping argument
to compare the Gaussian version of Pn with a classical Kac polynomial (us-
ing the assumption (1.11) and via the reciprocal formulation of Pn) and
deduced the lower bound (1.10) from Maslova’s variance estimate for real
roots inside [−1, 1]. This elegant approach, however, only involves the real
roots outside of [−1, 1] of Pn and the consequential lower bound in [44] for
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Figure 1. Plot of sample variances versus the degree n.

Figure 2. Sample variances divided by log(n) are approach-
ing C.

the variance is unfortunately not sharp. In our approach, we avoid treating
Maslova’s estimates as black boxes. The main ingredients in our evaluation
of the variance for the Gaussian case are new asymptotic estimates for the

two-point correlation function of the real roots of P̃n (the Gaussian analog
of Pn), as discussed in Section 3. These estimates reveal some underlying
hyperbolic geometry inside the distribution of the real roots of generalized
Kac polynomials (especially under the hypothesis (1.8)): the asymptotics
depend on a certain notion of pseudo-hyperbolic distance between the real
roots. One of the main challenges in the proof is the fact that there are var-
ious instants when one has to find the leading asymptotics for an algebraic
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Figure 3. We subtract C log(n) from the sample variances,
and the curves seem to converge to different values.

sum where the asymptotics of the summands may negate each other, par-
ticularly when the mentioned pseudo-hyperbolic distance is very small. A
separate consideration is often required in such situations, where a geometric
property of this distance (Lemma 3.3) becomes useful in the proof.

We would also like to mention that Maslova’s proof in [40] for the Kac
polynomials relies on very delicate computations for the variance of real
roots inside carefully chosen local intervals. Extending such explicit compu-
tations to the setting of the current paper, where there are no closed-form
formulas for cj , appears to be very challenging. However, the estimates for
the correlation functions in the current paper can certainly be utilized to
derive asymptotic estimates for the variances of the number of real roots
inside local intervals, and we include some local estimates in Theorem 2.2.

The rest of the paper is organized as follows. In Section 2, we recall the
universality method from [44] to reduce to the Gaussian case. Estimates
for correlation functions are presented in Section 3, and the proof of the
Gaussian case is presented in Section 4.

1.3. Notational conventions. For any subset I of R, where I may depend
on n, we denote by Nn(I) the number of real roots of Pn(x) in I (counted
with multiplicity). In particular, Nn = Nn(R) is the total number of real
roots. These random variables may take values in {0, 1, ..., n}.

2. Reduction to the Gaussian case

We begin by recalling the universality arguments in [44] to reduce Theo-
rem 1.3 to the Gaussian case, and also to localize Nn to the core region In,
defined as follows.
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Here and subsequently, d ∈ (0, 1/2) is fixed, dn := exp(log
d
4 n), an := d−1

n ,
bn := n−1dn, and In := [1− an, 1− bn]. We define

In = In ∪ −In ∪ I−1
n ∪ −I−1

n ,

where for any given set S, we define −S := {−x : x ∈ S} and S−1 := {x−1 :
x ∈ S}.

Let P̃n(x) stand for the Gaussian analog of Pn(x), in other words

P̃n(x) :=

n∑
k=0

ξ̃jcjx
j ,

where ξ̃j ’s are iid standard Gaussian random variables and cj ’s satisfy as-

sumption (A2). For S ⊂ R, we denote by Ñn(S) the number of real roots of

P̃n(x) inside S. The following results were proved in [44, Corollary 2.2 and
Proposition 2.3].

Lemma 2.1 ([44]). There exist positive constants c and λ such that for all
sufficiently large n,

|Var[Nn(In)]−Var[Ñn(In)]| ≤ caλn + cn−λ

and

E[N2
n(R \ In)] ≤

{
c((log an)

4 + log2(nbn)) if bn ≥ 1/n,

c(log an)
4 if bn < 1/n.

With the aid of Lemma 2.1, Theorem 1.3 will be proved once we prove
the following theorem for the Gaussian case.

Theorem 2.2 (Gaussian case). Fix Sn ∈ {−In, In}. As n → ∞, it holds
that

Var[Ñn(Sn)] = (κτ + o(1)) log n,

Var[Ñn(S
−1
n )] =

[
1

π

(
1− 2

π

)
+ o(1)

]
log n,

and

Var[Ñn(In)] =
[
2κτ +

2

π

(
1− 2

π

)
+ o(1)

]
log n,

where κτ is given by (1.7) and the implicit constants in the o(1) terms depend
only on the constants N0, C1, C2, τ , and the rate of decay of oj(1) in
condition (A2).

3. Estimates for the correlation functions

The proof of Theorem 2.2 relies on the Kac-Rice formulas for the expec-
tation and variance, which will be recalled below.
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3.1. Kac-Rice formula for the variance of real roots. Let rn(x, y)

denote the normalized correlator of P̃n, defined as

rn(x, y) :=
E[P̃n(x)P̃n(y)]√

Var[P̃n(x)] Var[P̃n(y)]
.

Setting kn(x) :=
∑n

j=0 c
2
jx

j , we see that

(3.1) rn(x, y) =
kn(xy)√

kn(x2)kn(y2)
.

Thanks to the Kac-Rice formulas, the one-point correlation function for the

real roots of P̃n can be computed by (see e.g., [20])

ρ(1)n (x) =
1

π

√
∂2rn
∂x∂y

(x, x),

and the two-point correlation function for the real roots of P̃n can be com-
puted by (for a proof, see e.g., [43, Lemma 2.1])

ρ(2)n (x, y) =
1

π2

(√
1− δ2n(x, y) + δn(x, y) arcsin δn(x, y)

) σn(x, y)√
1− r2n(x, y)

,

where

σn(x, y) =

√(
∂2rn
∂x∂y

(x, x)− (∂rn∂x (x, y))2

1− r2n(x, y)

)(
∂2rn
∂x∂y

(y, y)−
(∂rn∂y (x, y))2

1− r2n(x, y)

)
and

δn(x, y) =
1

σn(x, y)

(
∂2rn
∂x∂y

(x, y) +
rn(x, y)

∂rn
∂x (x, y)∂rn∂y (x, y)

1− r2n(x, y)

)
.

As is standard, for any interval I ⊂ R, we have

(3.2) E[Ñn(I)] =

∫
I
ρ(1)n (x)dx

and

(3.3) Var[Ñn(I)] =

∫∫
I×I

[
ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y)

]
dydx+ E[Ñn(I)].

3.2. Asymptotics of correlation functions. The estimates for the vari-
ances rely on the formulas (3.2) and (3.3) and asymptotic estimates for the

correlation functions ρ
(1)
n and ρ

(2)
n , which will be established shortly. To this

end, we first investigate the behavior of rn(x, y) for x, y ∈ In ∪ (−In), and
thanks to (3.1), this will be done via estimates for kn(x) for |x| ∈ I2n := {uv :

u, v ∈ In}. Recall that In = [1−an, 1−bn], where an = d−1
n = exp(− logd/4 n)

and bn = dn/n. In what follows, we will assume that n is sufficiently large
and Sn ∈ {In,−In}.

By assumption (A2), we can write c2j = C2
1j

2τ (1 + oj,n) for N0 ≤ j ≤ n,

where oj,n = oj(1) as j → ∞.
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Lemma 3.1. Let

τ0n := max
log(logn)≤j≤n

|oj,n|+ aτ+1/2
n + an.

Then it holds uniformly for x ∈ I2n that

kn(x) =
C2
1Γ(2τ + 1)

(1− x)2τ+1
(1 +O(τ0n))

and

kn(−x) = O(τ0n)kn(x).

Here, the implicit constants have the same possible dependence mentioned
in Theorem 2.2.

Proof. Clearly, τ0n = o(1). By scaling invariance, we may assume C1 = 1.
For x ∈ I2n, we have

kn(x) =

N0−1∑
j=0

c2jx
j +

n∑
j=N0

j2τ (1 + oj,n)x
j

=

N0−1∑
j=0

c2jx
j + (1 +O(τ0n))

n∑
j=1

j2τxj +O

( ⌊log(logn)⌋∑
j=1

j2τxj
)

=: h(x) + (1 +O(τ0n))vn(x) +O(tn(x)).

It is clear that h(x) is bounded uniformly on any compact subset of R, and
these bounds are independent of n. For O(tn(x)), we note that

|tn(x)| = O
(
[log(log n)]2τ+1

)
=

O(a
τ+1/2
n )

(1− x)2τ+1
=

O(τ0n)

(1− x)2τ+1
, x ∈ I2n.

The estimate for the middle term is based on the asymptotic of vn(x) :=∑n
j=1 j

2τxj . For |x| < 1, vn(x) converges to v∞(x) = Li−2τ (x) as n → ∞,

where Lis(z) is the polylogarithm function defined by

Lis(z) =

∞∑
j=1

zj

js
, |z| < 1.

It is well-known that (see [55, p. 149])

Lis(z) = Γ(1− s)(− log z)s−1 +
∞∑

m=0

ζ(s−m)
(log z)m

m!
,

for | log z| < 2π and s /∈ {1, 2, 3, ...}, where ζ(s) is the Riemann zeta function.
Thus, uniformly for x ∈ I2n (and one could also let x ∈ I4n), we have

Li−2τ (x) = Γ(2τ + 1)(− log x)−2τ−1 +O(1)

=
Γ(2τ + 1)

(1− x)2τ+1
(1 +O(τ0n)),
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where in the second estimate, we implicitly used the fact that 1 − x =
O(an) = O(τ0n).

To estimate Li−2τ (−x) for x ∈ I2n, we use the first estimate of the last
display and the duplication formula (see [34, §7.12]),

Li−2τ (−x) + Li−2τ (x) = 22τ+1 Li−2τ (x
2),

and find that uniformly for x ∈ I2n,

Li−2τ (−x) = O(1).

For |x| ∈ I2n, we have

1− |x| ≥ bn = dn/n and |x|n+1 ≤ (1− bn)
2(n+1) = O(e−2dn),

so ∣∣∣∣ ∞∑
j=n+1

j2τxj
∣∣∣∣ = |x|n+1

∣∣∣∣ ∞∑
j=0

(j + n+ 1)2τxj
∣∣∣∣

= |x|n+1O

( ∞∑
j=0

j2τ |x|j + (n+ 1)2τ
∞∑
j=0

|x|j
)

= |x|n+1O

(
Li−2τ (|x|) +

(n+ 1)2τ

1− |x|

)
= o(e−dn).

Thus, uniformly for x ∈ I2n,

vn(x) = Li−2τ (x)−
∞∑

j=n+1

j2τxj =
Γ(2τ + 1)

(1− x)2τ+1
(1 +O(τ0n)),

and

vn(−x) = O(1).

Therefore, uniformly for x ∈ I2n,

kn(x) =
C2
1Γ(2τ + 1)

(1− x)2τ+1
(1 +O(τ0n)).

Since

kn(−x) = h(−x) + C2
1

n∑
j=N0

j2τ (−x)j + C2
1

n∑
j=N0

j2τoj,n(−x)j ,

it follows that

|kn(−x)| ≤ O(1) +O(1) +O(τ0nvn(x)) = O(τ0n)kn(x), x ∈ I2n,

where in the last estimate we used a2τ+1
n = O(τ0n). This completes the proof

of the lemma. □
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The proof can also be applied to k
(i)
n (where τ is replaced by τ+ 1

2 i). Note
that the oj,n term may change, but it is not hard to see that for i ≥ 1,

|c2jj(j − 1) . . . (j − i+ 1)| = C2
1j

2τ+i (1 +O(on,j) +O (1/j)) .

Since (an)
c = O( 1

log logn) for any positive constant c, we then let

τn := max
log(logn)≤j≤n

∣∣∣∣ |cj |C1jτ
− 1

∣∣∣∣+ 1

log log n
= o(1),

and obtain the following corollary.

Corollary 3.2. For any 0 ≤ i ≤ 4, it holds uniformly for x ∈ I2n that

k(i)n (x) =
C2
1Γ(2τ + i+ 1)

(1− x)2τ+i+1
(1 +O(τn))

and

k(i)n (−x) = O(τn)k
(i)
n (x).

Here, the implicit constants have the same possible dependence mentioned
in Theorem 2.2.

For (x, y) ∈ R× R with 1− xy ̸= 0, let us introduce the function

α := α(x, y) := 1−
(

y − x

1− xy

)2

=
(1− x2)(1− y2)

(1− xy)2
.

Clearly, 0 ≤ α ≤ 1. It is well-known in complex analysis that

ϱ(z, w) :=
|z − w|
|1− wz|

defines a metric on the hyperbolic disk D := {z ∈ C : |z| < 1} and is known
as the pseudo-hyperbolic distance on D (see e.g., [23]). A related notion is

|x− y|2
(1− |x|2)(1− |y|2) ≡ 1

α
− 1,

which can be naturally extended to Rn, where it is an isometric invariant
for the conformal ball model Bn := {x ∈ Rn : ∥x∥ < 1}, and the classical
Poincaré metric on Bn can also be computed from this invariant (see e.g.,
[45, §4.5]).

We first prove a property of the pseudo-hyperbolic distance that will be
convenient later.

Lemma 3.3. Let 0 ≤ c < 1√
5
be a fixed constant. Suppose that for some

x, y ∈ (−1, 1) with the same sign, we have

ϱ(x, y) ≤ c.

Then, for every z1, z2, z3, z4 between x and y, it holds that

1

1− z1z2
=

1 +O(ϱ(x, y))

1− z3z4
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and the implicit constant may depend on c. Consequently,

ϱ(z1, z2) ≤ ϱ(x, y)[1 +O(ϱ(x, y))].

Proof. It is clear that in the conclusion of Lemma 3.3, the second desired es-
timate follows immediately from the first desired estimate and the inequality
|z1 − z2| ≤ |x− y|. Below, we prove the first estimate.

Without loss of generality, we may assume |x| ≤ |y|. Since z1, z2, z3, z4
are of the same sign, we have x2 ≤ z1z2, z3z4 ≤ y2, thus it suffices to show
that

1

1− y2
= (1 +O(ϱ(x, y))

1

1− x2
.

It follows from the given hypothesis that α = 1− ϱ2(x, y) ≥ 1− c2. Conse-
quently,

|x− y|√
(1− x2)(1− y2)

=

√
1

α
− 1 ≤ ϱ(x, y)√

1− c2
.

Therefore,

0 ≤ 1

1− y2
− 1

1− x2
=

y2 − x2

(1− x2)(1− y2)
≤ 2|x− y|

(1− x2)(1− y2)

≤ 2ϱ(x, y)/
√
1− c2√

(1− x2)(1− y2)

≤ 2ϱ(x, y)/
√
1− c2

1− y2
.

Since 2ϱ(x,y)√
1−c2

≤ 2c√
1−c2

< 1, we obtain

1

1− y2
≤
(
1− 2ϱ(x, y)√

1− c2

)−1 1

1− x2
= (1 +O(ϱ(x, y)))

1

1− x2
,

and the lemma follows. □

In the following, we will establish asymptotic estimates for rn(x, y) and its

partial derivatives. Under hypothesis (A2), P̃n is very similar to a hyperbolic
random polynomial. It is well-known that the root distributions of (complex)
Gaussian hyperbolic polynomials are asymptotically invariant with respect
to isometries of the hyperbolic disk D. Thus, it seems natural to expect

that the asymptotic estimates for the correlation functions of P̃n will involve
isometric invariants, such as the pseudo-hyperbolic distance. The next few
lemmas will demonstrate this heuristic.

Lemma 3.4. It holds uniformly for (x, y) ∈ Sn × Sn that

(3.4) rn(x, y) = ατ+1/2(1 +O(τn))

and

(3.5) 1− r2n(x, y) = (1− α2τ+1)(1 +O( 4
√
τn)).
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Proof. Inequality (3.4) follows immediately from (3.1) and Corollary 3.2.
To prove (3.5), we consider two cases depending on whether x and y

are close in the pseudo-hyperbolic distance. Let D := {(x, y) ∈ Sn × Sn :
| y−x
1−xy | > 4

√
τn} and D′ := (Sn × Sn) \D (see Figure 4).

x

y

In−In

In

−In

|y −
x|
≤

4√ τ n
(1
− x

y)

Figure 4. D′ is the intersection of the red region with one
of the two blue squares.

First, if (x, y) ∈ D, then 1−α >
√
τn, and so by the mean value theorem,

we have

1− α2τ+1 ≥ (2τ + 1)(1− α)min(α2τ , 1)

≥ (2τ + 1)
√
τnα

2τ+1.

Therefore, we can use (3.4) to obtain

1− r2n(x, y) = 1− α2τ+1(1 +O(τn)) = (1− α2τ+1)(1 +O(
√
τn)),

which implies (3.5).
Now, if (x, y) ∈ D′, we have α = 1 +O(

√
τn). Therefore, using the mean

value theorem, we obtain

(3.6) 1− α2τ+1 = (2τ + 1)(1− α)(1 +O(
√
τn)).

Using Lemma 3.3, for any z1, z2 between x and y, we have
(3.7)

1

1− z1z2
=

1 +O( 4
√
τn)

1− y2
=

1 +O( 4
√
τn)

1− x2
, and

|z1 − z2|
|1− z1z2|

= O( 4
√
τn).

Fix x. We then have

1− r2n(x, y) =
A(y)

kn(x2)kn(y2)
,

where A(y) := kn(x
2)kn(y

2)− k2n(xy) for y ∈ Sn. Using (3.7), we find

kn(x
2)kn(y

2) =

(
C2
1Γ(2τ + 1)

(1− x2)2τ+1

)2

(1 +O( 4
√
τn)) .
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Now, A(x) = 0, A′(x) = 0, and for any z between x and y, we have

A′′(z) = 2kn(x
2)k′n(z

2)+4z2kn(x
2)k′′n(z

2)−2x2k′′n(xz)kn(xz)−2x2(k′n(xz))
2.

Using Corollary 3.2 and (3.7), we obtain

A′′(z) =
C4
1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+4

[
2 + 4(2τ + 2)(z2 − x2) +O( 4

√
τn)
]

=
2C4

1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+4
(1 +O( 4

√
τn)).

Since A(x) = A′(x) = 0, by the mean value theorem, there exists some z
between x and y such that A(y) = 1

2A
′′(z)(y − x)2. Consequently,

1− r2n(x, y) =
A(y)

kn(x2)kn(y2)
=

(y − x)2A′′(z)

2kn(x2)kn(y2)

= (2τ + 1)

(
y − x

1− x2

)2

(1 +O( 4
√
τn))

= (2τ + 1)

(
y − x

1− xy

)2

(1 +O( 4
√
τn)),

which gives (3.5) when combined with (3.6). □

Our next task is to estimate the partial derivatives of rn(x, y). To simplify
the computations and avoid messy algebra, let us introduce the function
ℓn(x, y) := log |rn(x, y)|. Note that

(3.8)
∂rn
∂x

(x, y) = rn(x, y)
∂ℓn
∂x

(x, y),
∂rn
∂y

(x, y) = rn(x, y)
∂ℓn
∂y

(x, y),

and

(3.9)
∂2rn
∂x∂y

(x, y) = rn(x, y)

(
∂2ℓn
∂x∂y

(x, y) +
∂ℓn
∂x

(x, y)
∂ℓn
∂y

(x, y)

)
.

The following lemma indicates that one can take the natural log of (3.4)
and then differentiate, and the estimates remain essentially valid.

Lemma 3.5. It holds uniformly for (x, y) ∈ Sn × Sn that

(3.10)
∂ℓn
∂x

(x, y) =
2τ + 1

1− x2

(
y − x

1− xy

)
(1 +O(

√
τn))

and

(3.11)
∂2ℓn
∂x∂y

(x, y) =
2τ + 1

(1− xy)2
(1 +O(τn)) .

Proof. We start with the proof of (3.10). From (3.1), we have

ℓn(x, y) = log |kn(xy)| −
1

2
log kn(x

2)− 1

2
log kn(y

2),
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which leads to

(3.12)
∂ℓn
∂x

(x, y) = y
k′n(xy)

kn(xy)
−x

k′n(x
2)

kn(x2)
=

yk′n(xy)kn(x
2)− xk′n(x

2)kn(xy)

kn(xy)kn(x2)
.

Utilizing Corollary 3.2, it holds uniformly for (x, y) ∈ Sn × Sn that

(3.13)
k′n(xy)

kn(xy)
=

2τ + 1

1− xy
(1 +O(τn)) and

k′n(x
2)

kn(x2)
=

2τ + 1

1− x2
(1 +O(τn)).

We now divide the proof into two cases, similar to the proof of Lemma 3.4.
Let D := {(x, y) ∈ Sn × Sn : | y−x

1−xy | ≥
√
τn} and D′ := (Sn × Sn) \D.

For (x, y) ∈ D, one observes that

1− x2

|y − x| =
1− xy

|y − x| + x
y − x

|y − x| <
2√
τn

,

thus yielding

max

{
τn

1− x2
,

τn
1− xy

}
< 2

√
τn

|y − x|
(1− x2)(1− xy)

.

Hence, (3.13) implies

∂ℓn
∂x

(x, y) = y
k′n(xy)

kn(xy)
− x

k′n(x
2)

kn(x2)
=

2τ + 1

1− x2

(
y − x

1− xy

)
(1 +O(

√
τn)) .

We now suppose that (x, y) ∈ D′, then α = 1+O(τn). Using Lemma 3.3,
for all z1, z2 between x and y, we have
(3.14)

1

1− z1z2
=

1 +O(
√
τn)

1− y2
=

1 +O(
√
τn)

1− x2
, and

|z1 − z2|
|1− z1z2|

= O(
√
τn).

Fix x ∈ Sn and express ∂ℓn
∂x (x, y) as

∂ℓn
∂x

(x, y) =
B(y)

kn(xy)kn(x2)
,

where B(y) := yk′n(xy)kn(x
2) − xk′n(x

2)kn(xy), treated as a function of
y ∈ Sn. Then, B(x) = 0 and

B′(y) = kn(x
2)[k′n(xy) + xyk′′n(xy)]− x2k′n(x

2)k′n(xy).

By employing Corollary 3.2 and (3.14), we find that for any z between x
and y,

B′(z)

kn(x2)kn(xz)
=

2τ + 1

(1− x2)2

[
(1− x2) + xz(2τ + 2)− x2(2τ + 1) +O(

√
τn)
]

=
2τ + 1

(1− x2)2
[1 + (2τ + 2)x(z − x) +O(

√
τn)]

=
2τ + 1

(1− x2)2
[1 +O(

√
τn)] .



REAL ROOTS OF RANDOM POLYNOMIALS: ASYMPTOTICS OF THE VARIANCE19

Next, using the mean value theorem and (3.14), we see that for some z
between x and y,

B(y) = B(x) +B′(z)(y − x) = B′(z)(y − x),

thus yielding

∂ℓn
∂x

(x, y) =
(y − x)B′(z)

kn(xy)kn(x2)
=

(2τ + 1)(y − x)

(1− x2)2
(1 +O(

√
τn))

=
2τ + 1

1− x2

(
y − x

1− xy

)
(1 +O(

√
τn)) ,

and (3.10) is proved.
To establish (3.11), we utilize Corollary 3.2, leading to

∂2ℓn
∂x∂y

(x, y) =
k′n(xy)

kn(xy)
+ xy

k′′n(xy)

kn(xy)
− xy

(
k′n(xy)

kn(xy)

)2

(3.15)

=
2τ + 1

1− xy
+ xy

(2τ + 1)(2τ + 2)

(1− xy)2
− xy

(
2τ + 1

1− xy

)2

+O

(
τn

(1− xy)2

)
=

2τ + 1

(1− xy)2
(1 +O(τn)) ,

thereby concluding the proof. □

As a consequence of the preceding estimates, we derive an asymptotic

estimate for ρ
(1)
n .

Corollary 3.6. Uniformly for x ∈ Sn ∪ (−Sn), it holds that

(3.16) ρ(1)n (x) =
1

π

√
2τ + 1

1− x2
(1 +O(τn)) .

We remark that a variant of (3.16) is also implicit in [18], with a stronger
bound for the error term (but more stringent assumptions on cj).

Proof. By symmetry, it suffices to consider x ∈ Sn. Using rn(x, x) = 1 and
∂ℓn
∂x (x, x) = ∂ℓn

∂y (y, y) = 0, we see that

ρ(1)n (x) =
1

π

√
∂2rn
∂x∂y

(x, x) =
1

π

√
∂2ℓn
∂x∂y

(x, x).

Thus, (3.16) follows immediately from (3.11). □

We now establish asymptotic estimates for ρ
(2)
n . Recall that

(3.17)

ρ(2)n (x, y) =
1

π2

(√
1− δ2n(x, y) + δn(x, y) arcsin δn(x, y)

) σn(x, y)√
1− r2n(x, y)

,
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where, using (3.8) and (3.9), we write σn and δn as

σn(x, y) = π2ρ(1)n (x)ρ(1)n (y)

×

√√√√(1− (rn(x, y)
∂ℓn
∂x (x, y))2

(1− r2n(x, y))
∂2ℓn
∂x∂y (x, x)

)(
1−

(rn(x, y)
∂ℓn
∂y (x, y))

2

(1− r2n(x, y))
∂2ℓn
∂x∂y (y, y)

)
(3.18)

and

δn(x, y) =
rn(x, y)

σn(x, y)

(
∂2ℓn
∂x∂y

(x, y) +

∂ℓn
∂x (x, y)∂ℓn∂y (x, y)

1− r2n(x, y)

)
.(3.19)

To keep the proof from being too long, we separate the estimates into several
lemmas.

Lemma 3.7. Uniformly for (x, y) ∈ Sn × Sn, it holds that

(3.20) ρ(2)n (x, y) =
2τ + 1

π2

1 + fτ (α)

(1− x2)(1− y2)
(1 +O( 16

√
τn)) ,

where fτ is defined as in (1.5). Furthermore, there exists a positive constant
α0 > 0 (independent of n, but possibly dependent on the implicit constants
and rate of convergence in conditions (A1) and (A2)) such that when α ≤ α0,
the following holds

(3.21) ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y) =
O(α2τ+1)

(1− x2)(1− y2)
.

Proof. (i) We begin with (3.20). To establish this, we first derive asymptotic
estimates for σn(x, y) and δn(x, y).

For σn(x, y), we first show that

(1− r2n(x, y))
∂2ℓn
∂x∂y

(x, x)−
(
rn(x, y)

∂ℓn
∂x

(x, y)

)2

=
2τ + 1

(1− x2)2
(
1− α2τ+1 − (2τ + 1)(1− α)α2τ+1

)
(1 +O( 16

√
τn)) .

(3.22)

Define g(u) = 1 − u2τ+1 − (2τ + 1)(1 − u)u2τ+1 for u ∈ [0, 1]. It is evident
that g is non-increasing on [0, 1] and g(1) = 0. Hence, g(α) ≥ 0, implying

1− α2τ+1 ≥ (2τ + 1)(1− α)α2τ+1.

We then consider two cases. First, if 8
√
τn(1− α2τ+1) ≤ g(α), then (3.22)

follows immediately from Lemma 3.4 and Lemma 3.5.
Now, if 8

√
τn(1 − α2τ+1) > g(α), we will show that x and y are close in

the pseudo-hyperbolic distance, namely,

|x− y|
|1− xy| = O( 16

√
τn).



REAL ROOTS OF RANDOM POLYNOMIALS: ASYMPTOTICS OF THE VARIANCE21

To see this, note that on [0, 1) the inequality g(u) − 8
√
τn(1 − u2τ+1) ≤ 0

implies

u2τ+1 ≥ (1− 8
√
τn)

1− u2τ+1

(2τ + 1)(1− u)
≥ (1− 8

√
τn)min(1, u2τ ),

thanks to the mean value theorem. This further implies

u ≥ min
(
1− 8

√
τn, (1− 8

√
τn)

1/(2τ+1)
)
= 1−O( 8

√
τn),

thus yielding α = 1 +O( 8
√
τn) as desired.

Now, since g(1) = g′(1) = 0 and g′′(t) = (2τ + 2)(2τ + 1)(1 + O( 8
√
τn))

for every t ∈ [α, 1], we can apply the mean value theorem to rewrite the
right-hand side (RHS) of (3.22) as

(3.23) RHS =
(2τ + 1)2(τ + 1)

(1− x2)2
(1− α)2(1 +O( 8

√
τn)).

Fix x. We can rewrite the left-hand side of (3.22) as

(1− r2n(x, y))
∂2ℓn
∂x∂y

(x, x)−
(
rn(x, y)

∂ℓn
∂x

(x, y)

)2

=
1
2A(y)A′′(x)−B2(y)

k3n(x
2)kn(y2)

,

recalling that A(y) = kn(x
2)kn(y

2) − k2n(xy) and B(y) = yk′n(xy)kn(x
2) −

xk′n(x
2)kn(xy). Let C(y) := 1

2A(y)A′′(x)−B2(y). We check at once that

C(x) = C ′(x) = 0,

C ′′(x) =
1

2
[A′′(x)]2 − 2[B′(x)]2 = 0,

C ′′′(x) =
1

2
A′′(x)[A′′′(x)− 6B′′(x)] = 0,

and for all z between x and y,

C(4)(z) =
1

2
A(4)(z)A′′(x)− 2B(z)B(4)(z)− 8B′(z)B′′′(z)− 6[B′′(z)]2.

Using Lemma 3.3, it follows that for all z1, z2 between x and y, we have
(3.24)

1

1− z1z2
=

1 +O( 16
√
τn)

1− y2
=

1 +O( 16
√
τn)

1− x2
, and

|z1 − z2|
1− z1z2|

= O( 16
√
τn).

Using Corollary 3.2 and (3.24), we obtain

k3n(x
2)kn(y

2) =

(
C2
1Γ(2τ + 1)

(1− x2)2τ+1

)4

(1 +O( 16
√
τn)) ,

and for any z between x and y, by arguing as in the proof of Lemma 3.4
and Lemma 3.5, we have

B(z) =
C4
1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+4
(z − x)

(
1 +O( 16

√
τn)
)

=
C4
1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+3
O( 16

√
τn),
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and for i ≥ 1,

B(i)(z) = kn(x
2)
[
zk(i+1)

n (xz)xi + ik(i)n (xz)xi−1
]
− k′n(x

2)k(i)n (xz)xi+1

=
C4
1Γ(2τ + 1)Γ(2τ + i+ 1)

(1− x2)4τ+i+3

×
(
(2τ + i+ 1)zxi + ixi−1(1− x2)− (2τ + 1)xi+1 +O( 16

√
τn)
)

=
C4
1Γ(2τ + 1)Γ(2τ + i+ 1)

(1− x2)4τ+i+3

(
ixi−1 +O( 16

√
τn)
)
.

Similarly,

A′′(x) =
2C4

1Γ(2τ + 1)Γ(2τ + 2)

(1− x2)4τ+4
(1 +O( 16

√
τn)),

A(4)(z) = 16k(4)n (z2)kn(x
2)(1 +O(τn))− 2k(4)n (xz)kn(xz)

− 8k′′′n (xz)k
′
n(xz)− 6(k′′n(xz))

2

=
C4
1Γ(2τ + 5)Γ(2τ + 1)

(1− x2)4τ+6

×
[
14− 8(2τ + 1)

2τ + 4
− 6(2τ + 2)(2τ + 1)

(2τ + 4)(2τ + 3)
+O( 16

√
τn)

]
.

Consequently,

C(4)(z) =
24C8

1 (τ + 1)Γ2(2τ + 2)Γ2(2τ + 1)

(1− x2)8τ+10
(1 +O( 16

√
τn)).

Remark 3.8. We may arrive at this estimate by formally differentiating the
leading asymptotics of C(y) (obtained using Corollary 3.2) with respect to
y, and then letting y = x. In general, when ϱ(x, y) is o(1) small, there
might be cancellation inside the differentiated asymptotics. In such cases,
the expression obtained from the formal differentiation may no longer be
the leading asymptotics for the underlying derivative of C(y). Lemma 3.3
is useful in examining the differentiated asymptotics, effectively allowing us
to set y = x at the cost of error terms of (theoretically) smaller orders.

Now, applying the mean value theorem and (3.24), we find that

C(y)

k3n(x
2)kn(y2)

=
C(4)(z) (y−x)4

4!

k3n(x
2)kn(y2)

=
(2τ + 1)2(τ + 1)

(1− x2)2
(1− α)2(1 +O( 16

√
τn)),

which gives (3.22) when combined with (3.23).
From (3.22), it holds uniformly for (x, y) ∈ Sn × Sn that

1− (rn(x, y)
∂ℓn
∂x (x, y))2

(1− r2n(x, y))
∂2ℓn
∂x∂y (x, x)

=

(
1− (2τ + 1)(1− α)α2τ+1

1− α2τ+1

)
(1 +O( 16

√
τn)) .
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Likewise,

1−
(rn(x, y)

∂ℓn
∂y (x, y))

2

(1− r2n(x, y))
∂2ℓn
∂x∂y (y, y)

=

(
1− (2τ + 1)(1− α)α2τ+1

1− α2τ+1

)
(1 +O( 16

√
τn)) .

Combining the above estimates with (3.18), we get

(3.25)
σn(x, y)

π2ρ
(1)
n (x)ρ

(1)
n (y)

=

(
1− (2τ + 1)(1− α)α2τ+1

1− α2τ+1

)
(1 +O( 16

√
τn)) .

For the asymptotics for δn(x, y), we now show that

∂2ℓn
∂x∂y

(x, y) +

∂ℓn
∂x (x, y)∂ℓn∂y (x, y)

1− r2n(x, y)

=
2τ + 1

(1− x2)(1− y2)

(
α− (2τ + 1)(1− α)

1− α2τ+1

)
(1 +O( 16

√
τn)).

(3.26)

The argument is similar to the proof of (3.22), so we will only mention the
key steps. We may assume α = 1 + O( 8

√
τn), otherwise (3.26) will follow

from Lemma 3.4 and Lemma 3.5. With this constraint on α, we have

α− (2τ + 1)(1− α)

1− α2τ+1
= −1

2

(
(α− 1)2(2τ + 1)(2τ + 2)

1− α2τ+1

)
(1 +O( 8

√
τn)).

Now, arguing as before and taking advantage of Lemma 3.4, Lemma 3.3,
and Corollary 3.2, it suffices to show

∂2ℓn
∂x∂y

(x, y)(1− r2n(x, y)) +
∂ℓn
∂x

(x, y)
∂ℓn
∂y

(x, y)

= −(2τ + 1)2(τ + 1)(y − x)4

(1− x2)4
(1 +O( 8

√
τn)).

Fix x. We then write the left hand side as E(y)
k2n(xy)kn(x

2)kn(y2)
, where

E(y) = A(y)a(y) +B(y)b(y),

a(y) := [k′n(xy) + k′′n(xy)xy]kn(xy)− xy[k′n(xy)]
2,

b(y) := xk′n(xy)kn(y
2)− yk′n(y

2)kn(xy).

One can check that, as a function of y, E(x) = E′(x) = E′′(x) = E′′′(x) = 0.
Indeed, by direct computation,

A(x) = A′(x) = b(x) = B(x) = 0,

A′′(x) = −2b′(x) = 2B′(x) = 2a(x),

A′′′(x) = −2b′′(x) = 6B′′(x) = 6a′(x),

from which one can see that E vanishes up to the third derivative at y = x.
Furthermore, using Lemma 3.3 and Corollary 3.2, we can show that, for all
z between x and y,

E(4)(z) = −24(2τ + 1)2(τ + 1)C4
1 (Γ(2τ + 1))4

(1− x2)8τ+8
(1 +O( 16

√
τn)),



24 YEN Q. DO AND NHAN D. V. NGUYEN

which implies the desired estimate, thanks to an application of the mean
value theorem.

Below, we include some computations in the spirit of Remark 3.8.
For simplicity, let D1 = C2

1Γ(2τ + 1)Γ(2τ + 2). Then

E(y) =
D2

1

2τ + 1

( 1

(1− x2)2τ+1(1− y2)2τ+1
− 1

(1− xy)4τ+2

)
×
( 1

(1− xy)4τ+3
+

(2τ + 2)xy

(1− xy)4τ+4
− (2τ + 1)xy

(1− xy)4τ+4

)
+D2

1

( y

(1− xy)2τ+2(1− x2)2τ+1
− x

(1− x2)2τ+2(1− xy)2τ+1

)
×
( x

(1− xy)2τ+2(1− y2)2τ+1
− y

(1− y2)2τ+2(1− xy)2τ+1

)
+ lower order terms

=
D2

1

2τ + 1

( 1

(1− x2)2τ+1(1− y2)2τ+1
− 1

(1− xy)4τ+2

) 1

(1− xy)4τ+4

+D2
1

( −(y − x)2

(1− xy)4τ+4(1− x2)2τ+2(1− y2)2τ+2

)
+ lower order terms,

dk

dyk

(
1

(1− y2)2τ+1

)
=

(2y)k(2τ + 1) . . . (2τ + k)

(1− y2)2τ+k+1
+ lower order terms,

dk

dyk

(
1

(1− xy)2τ+1

)
=

xk(2τ + 1) . . . (2τ + k)

(1− xy)2τ+k+1
,

and

E(4)(y) =
D2

12(τ + 1)

(2τ + 1)(1− x2)8τ+10

(
16(2τ + 1)(2τ + 3)(2τ + 4)

+ 32(2τ + 1)(2τ + 3)(4τ + 4) + 24(2τ + 1)(4τ + 4)(4τ + 5)

+ 8(2τ + 1)(2)(4τ + 5)(4τ + 6) + 2(4τ + 5)(4τ + 6)(4τ + 7)

− 4(8τ + 6)(8τ + 7)(8τ + 9)− 24(2τ + 1)(4τ + 5)

− 96(2τ + 1)(2τ + 2)− 48(2τ + 1)(2τ + 3)
)

+ lower order terms

=
(−24)D2

1(τ + 1)

(1− x2)8τ+10
+ lower order terms,

as claimed.
On account of (3.19), (3.25), and Lemma 3.4, we conclude that

δn(x, y) = ατ+1/2 α(1− α2τ+1)− (2τ + 1)(1− α)

1− α2τ+1 − (2τ + 1)α2τ+1(1− α)
(1 +O( 16

√
τn))

= ∆τ (α) (1 +O( 16
√
τn)) ,
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where ∆τ is defined by (1.6). Let

Λ(δ) :=
√

1− δ2 + δ arcsin δ, δ ∈ [−1, 1].

Since Λ(δ) ≥ 1 and |Λ′(δ)| = | arcsin δ| ≤ π/2 for all δ ∈ (−1, 1), and
|∆τ (α)| ≤ 1 for all (x, y) ∈ Sn ×Sn, it follows from the mean value theorem
that

Λ(δn(x, y)) = Λ(∆τ (α)) +O(|∆τ (α)O( 16
√
τn)|)

= Λ(∆τ (α))(1 +O( 16
√
τn)).(3.27)

Substituting (3.5), (3.25), and (3.27) into (3.17), we deduce (3.20) as claimed.
(ii) We now discuss the proof of (3.21). In the computation below, we

will assume α ≤ α0, a sufficiently small positive constant. Using Lemma 3.4
and Lemma 3.5, we have

(rn(x, y)
∂ℓn
∂x (x, y))2

(1− r2n(x, y))
∂2ℓn
∂x∂y (x, x)

=
O(α2τ+1)O

(
1

(1−x2)2

)
(1 +O(α2τ+1)) 1

(1−x2)2

= 1 +O(α2τ+1).

Similarly,
(rn(x, y)

∂ℓn
∂y (x, y))

2

(1− r2n(x, y))
∂2ℓn
∂x∂y (y, y)

= 1 +O(α2τ+1).

Using (3.18), it follows that

σn(x, y) = π2ρ(1)n (x)ρ(1)n (y)(1 +O(α2τ+1)).

From Lemma 3.5, we also have

∂2ℓn
∂x∂y

(x, y) +

∂ℓn
∂x (x, y)∂ℓn∂y (x, y)

1− r2n(x, y)

= O

(
1

(1− xy)2

)
+O

(
(x− y)2

(1− xy)2(1− x2)(1− y2)

1

1 +O(α2τ+1)

)
= O

(
1

(1− x2)(1− y2)

)
.

Thus, it follows from (3.19) that

δn(x, y) = O(ατ+ 1
2 ).

Recall that Λ(δ) =
√
1− δ2+δ arcsin δ, which satisfies Λ′(0) = 0 and Λ′′(δ) =

O(1) for δ near 0. Thus, Λ(δ) = 1 + O(δ2) near 0. Consequently, using
Lemma 3.4 again, we obtain

ρ
(2)
n (x, y)

ρ
(1)
n (x)ρ

(1)
n (y)

= Λ(δn(x, y))
σn(x, y)

π2ρ
(1)
n (x)ρ

(1)
n (y)

√
1− r2n(x, y)

= (1 +O(δn(x, y)
2))(1 +O(α2τ+1))

1√
1 +O(α2τ+1)

= 1 +O(α2τ+1).
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This completes the proof of Lemma 3.7. □

Lemma 3.9. Uniformly for (x, y) ∈ Sn × Sn, it holds that

(3.28) ρ(2)n (−x, y)− ρ(1)n (−x)ρ(1)n (y) =
2τ + 1

π2

α2τ+1

(1− x2)(1− y2)
o(1).

Proof. Using (3.1) and Corollary 3.2, we have

rn(−x, y) =
kn(−x, y)√
kn(x2)kn(y2)

=
O(τn)kn(x, y)√
kn(x2)kn(y2)

= O(τn)rn(x, y) = o(1).

Now, by explicit computation (see also (3.12) and (3.15)),

∂ℓn
∂x

(−x, y) = y
k′n(−xy)

kn(−xy)
+ x

k′n(x
2)

kn(x2)
.

Therefore, using (3.11) and Corollary 3.2, we obtain∣∣∣∣
(
rn(−x, y)∂ℓn∂x (−x, y)

)2
∂2ℓn
∂x∂y (−x,−x)

∣∣∣∣ ≤ ∣∣∣∣ 2
∂2ℓn
∂x∂y (−x,−x)

(k′n(−xy))2

kn(x2)kn(y2)

∣∣∣∣
+

∣∣∣∣2r2n(−x, y)

(
k′n(x

2)
kn(x2)

)2
∂2ℓn
∂x∂y (−x,−x)

∣∣∣∣
=

(1− x2)2

(1− xy)2
O(τ2n)r

2
n(x, y) +O(r2n(−x, y))

= O(τ2n)|rn(x, y)|2 = O(τ2n)α
2τ+1.

Similarly,

(rn(−x, y)∂ℓn∂y (−x, y))2

(1− r2n(−x, y)) ∂
2ℓn

∂x∂y (y, y)
= O(τ2n)α

2τ+1.

Substituting these estimates into (3.18) yields

σn(−x, y) = π2ρ(1)n (−x)ρ(1)n (y)
(
1 +O(τ2n)α

2τ+1
)
, (x, y) ∈ Sn × Sn.

Similarly, it holds uniformly for (x, y) ∈ Sn × Sn that

(3.29) δn(−x, y) = O(τn)|rn(x, y)| = O(τn)α
τ+1/2.

While the proof is fairly similar, we include the details because there is
an artificial singular term that appears when we use ℓn (instead of rn) to
compute δn via (3.19). To start, by explicit computation (see also (3.15)),
we have

∂2ℓn
∂x∂y

(−x, y) =
k′n(−xy)

kn(−xy)
− xy

k′′n(−xy)

kn(−xy)
+ xy

(
k′n(−xy)

kn(−xy)

)2

,
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therefore

rn(−x, y)
∂2ℓn
∂x∂y

(−x, y) =
O
(
|k′n(−xy)|+ |k′′n(−xy)|)

)√
kn(x2)kn(y2)

+ rn(−x, y)xy

(
k′n(−xy)

kn(−xy)

)2

= O(τn)
rn(x, y)

(1− xy)2
+ rn(−x, y)xy

(
k′n(−xy)

kn(−xy)

)2

=
O(τnrn(x, y))

(1− x2)(1− y2)
+ rn(−x, y)xy

(
k′n(−xy)

kn(−xy)

)2

.

Similarly,

rn(−x, y)
∂ℓn
∂x

(−x, y)
∂ℓn
∂y

(−x, y)

= rn(−x, y)

(
y
k′n(−xy)

kn(−xy)
+ x

k′n(x
2)

kn(x2)

)(
−x

k′n(−xy)

kn(−xy)
− y

k′n(y
2)

kn(y2)

)
= −rn(−x, y)xy

(
k′n(−xy)

kn(−xy)

)2

+O(τnrn(x, y))

(
1

1− xy

1

1− x2
+

1

1− xy

1

1− y2
+

1

1− x2
1

1− y2

)
= −rn(−x, y)xy

(
k′n(−xy)

kn(−xy)

)2

+
O(τnrn(x, y))

(1− x2)(1− y2)
.

Thus, from (3.19) and the above estimates, we have

δn(−x, y) =
rn(−x, y)

σn(−x, y)

(
∂2ℓn
∂x∂y

(−x, y) +

∂ℓn
∂x (−x, y)∂ℓn∂y (−x, y)

1− r2n(−x, y)

)
=

1

σn(−x, y)

O(τnrn(x, y))

(1− x2)(1− y2)

+
rn(−x, y)

σn(−x, y)
xy

(
k′n(−xy)

kn(−xy)

)2(
1− 1

1− r2n(−x, y)

)
= O(τnrn(x, y)) +O

( |rn(−x, y)3|
|σn(−x, y)|

∣∣∣∣k′n(−xy)

kn(−xy)

∣∣∣∣2)
= O(τnrn(x, y)) +O(τ3nr

3
n(x, y))

= O(τnrn(x, y)).

This completes the proof of (3.29).
Now, note that Λ(δ) = 1 +O(δ2) near 0, so it follows that

Λ(δn(−x, y)) = 1 +O(τ2n)α
2τ+1.
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But then

ρ(2)n (−x, y) =
1

π2
Λ(δn(−x, y))

σn(−x, y)√
1− r2n(−x, y)

= ρ(1)n (−x)ρ(1)n (y)
(
1 +O(τ2n)α

2τ+1
)
,

which yields (3.28) when combined with (3.16). □

Note that the above analysis is directly applicable only to estimating
the variances of the numbers of real roots inside subsets of (−1, 1). For
(−∞,−1) ∪ (1,∞), we will pass to the reciprocal polynomial

Qn(x) :=
xn

cn
P̃n(1/x),

which converts the roots of P̃n in (−∞,−1) ∪ (1,∞) to the roots of Qn in
(−1, 1). Note that

Qn(x) =

n∑
j=0

ξ̃n−j
cn−j

cn
xj

is also a Gaussian random polynomial. Let kQn(x) denote the corresponding
variance function,

kQn(x) =

n∑
j=0

c2n−j

c2n
xj =

xnkn(1/x)

c2n
.

Recall that In = [1 − an, 1 − bn] where an = d−1
n = exp(− logd/4 n) and

bn = dn/n. As we will see, for x ∈ In, kQn(x) converges to
1

1−x as n → ∞,

which suggests that Qn would behave like a classical Kac polynomial (this
heuristics is well-known, see e.g., [18]).

Let

(3.30) en := max
0≤j≤n

√
an

∣∣∣∣ |cn−j |
|cn|

− 1

∣∣∣∣+ 1

log logn
,

we will show the following.

Lemma 3.10. Let ρ
(1)
Qn

and ρ
(2)
Qn

, respectively, denote the 1-point and 2-point

correlation functions for the real roots of Qn. Fix Sn ∈ {−In, In}. It holds
uniformly for x ∈ Sn that

ρ
(1)
Qn

(x) =
1

π

1

1− x2
(1 +O(en)).

Uniformly for (x, y) ∈ Sn × Sn,

ρ
(2)
Qn

(x, y) =
1

π2

1 + f0(α)

(1− x2)(1− y2)
(1 +O( 16

√
en)) ,

where f0 is defined as in (1.5) with τ = 0. Furthermore, there is a positive
constant α1 > 0 (independent of n, but possibly dependent on the implicit
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constants and rate of convergence in conditions (A1) and (A2)) such that
when α ≤ α1, the following holds

ρ
(2)
Qn

(x, y)− ρ
(1)
Qn

(x)ρ
(1)
Qn

(y) =
O(α)

(1− x2)(1− y2)
.

Also, uniformly for (x, y) ∈ Sn × Sn,

ρ
(2)
Qn

(−x, y)− ρ
(1)
Qn

(−x)ρ
(1)
Qn

(y) =
1

π2

α

(1− x2)(1− y2)
o(1).

Explicitly, we have

f0(u) = (
√
1− u+

√
u arcsin

√
u)
√
1− u− 1.

Proof. Write

kQn(x) =
∑

0≤j≤n
√
an

c2n−j

c2n
xj +

∑
n
√
an<j≤n

c2n−j

c2n
xj .

By the assumption (A2),

c2n−j

c2n
=

{
1 + on(1) if 0 ≤ j ≤ n

√
an,

O
(
n|2τ |) if n

√
an < j ≤ n,

where on(1) → 0 as n → ∞. For x ∈ I2n, it holds that

n|2τ |+1xn
√
an ≤ n|2τ |+1(1− bn)

2n
√
an = O(e−

√
dn) = O(an).

Consequently, by putting

e0n := max
0≤j≤n

√
an

∣∣∣∣ |cn−j |
|cn|

− 1

∣∣∣∣+ an,

we see that uniformly for x ∈ I2n,

kQn(x) =
1

1− x
(1 +O(e0n))

and

kQn(−x) = O(1) +O(e0n)kQn(x) = O(e0n)kQn(x).

For the derivatives of kQn , we will similarly compare them with the corre-
sponding derivatives of the analogue of kQn for the classical Kac polynomials,
obtaining analogues of Lemma 3.1 (more precisely, Corollary 3.2) for kQn .
Note that to account for the derivatives of kQn , one has to add an O(1/j)
term to e0n (where j ≥ log log n as in the proof of Lemma 3.1). Thus, with
en defined by (3.30) (which dominates e0n), we will have

(3.31) k
(j)
Qn

(x) =
j!

(1− x)1+j
(1 +O(en)) and k

(j)
Qn

(−x) = O(en)k
(j)
Qn

(x)

uniformly for x ∈ I22 , for j = 0, 1, ..., 4. In other words, en plays the same

role as τn in the prior treatment of P̃n inside (−1, 1).
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Let rQn(x, y) denote the normalized correlator of Qn; that is,

rQn(x, y) =
E[Qn(x)Qn(y)]√

Var[Qn(x)] Var[Qn(y)]
=

kQn(xy)√
kQn(x

2)kQn(y
2)
.

It follows from (3.31) that, uniformly for (x, y) ∈ Sn × Sn,

rQn(x, y) =

[
(1− x2)(1− y2)

(1− xy)2

]1/2
(1 +O(en)) = α1/2(x, y)(1 +O(en)),

and

rQn(−x, y) = O(en)rQn(x, y).

The rest of the proof is entirely similar to the prior treatment for P̃n, with
τ = 0 and C1 = 1. □

Our next task is to estimate the two-point real correlation function for

P̃n between the roots inside (−1, 1) and those outside (−1, 1).

Lemma 3.11. Fix Sn ∈ {−In, In} and Tn ∈ {−I−1
n , I−1

n }. It holds uni-
formly for (x, y) ∈ Sn × Tn that

(3.32) rn(x, y) = o(e−dn/2)

and

(3.33) ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y) = ρ(1)n (x)ρ(1)n (y)o(e−dn/2),

where ρ
(1)
n (x) satisfies (3.16) and

(3.34) ρ(1)n (y) =
1

π

1

y2 − 1
(1 +O(en)), y ∈ Tn.

Proof. It is well-known that ρ
(1)
n (y) = 1

y2
ρ
(1)
Qn

( 1y ), which can be demonstrated

through a change of variables (see, e.g., [18]) or explicit computations. Recall
the definition of en from (3.30). Applying (3.31) and proceeding as in the
proof of Lemma 3.5, we see that

ρ(1)n (y) =
1

π

1

y2 − 1
(1 +O(en)), y ∈ Tn,

which gives (3.34). It also follows that

∂2ℓn
∂x∂y

(y, y) =
1

π2(y2 − 1)2
(1 +O(en)).

Since kn(x
2) ≫ 1 for x ∈ Sn, to show (3.32), it suffices to prove that

(3.35) |k(m)
n (xy)| = o

(
e−2dn/3

√
kn(y2)

)
,

for any bounded integer m ≥ 0. To see this, first note that from the poly-
nomial growth of cj , we obtain

|k(m)
n (xy)| = O(n2τ+1+m(|xy|n+1 + 1)).



REAL ROOTS OF RANDOM POLYNOMIALS: ASYMPTOTICS OF THE VARIANCE31

Using kn(y) = c2ny
nkQn(1/y) and the asymptotic behavior of kQn given in

(3.31), we see that

kn(y
2) = c2n

y2n+2

y2 − 1
(1 + o(1)) ≫ n2τ |y|2(n+1), y ∈ Tn.

For (x, y) ∈ Sn × Tn and any bounded constant c, we have

nc|x|n = O(nc(1− bn)
n) = o(e−2dn/3), and similarly

nc

|y|n = o(e−2dn/3).

Consequently,∣∣∣∣k(m)
n (xy)√
kn(y2)

∣∣∣∣ = O

(
nO(1)√
kn(y2)

+
nO(1)|x|n+1|y|n+1√

kn(y2)

)
≤ O

(
nO(1)

|y|n+1

)
+O

(
nO(1)|x|n+1

)
= o(e−2dn/3),

completing the proof of (3.35), and thus verifying (3.32).

To prove (3.33), we first employ the explicit computation of ∂ℓn
∂x (see

(3.12)) to estimate∣∣∣∣
(
rn(x, y)

∂ℓn
∂x (x, y)

)2
∂2ℓn
∂x∂y (x, x)

∣∣∣∣ ≤ ∣∣∣∣ 2y2

∂2ℓn
∂x∂y (x, x)

(k′n(xy))
2

kn(x2)kn(y2)

∣∣∣∣+ ∣∣∣∣2r2n(x, y)
(
k′n(x

2)
kn(x2)

)2
∂2ℓn
∂x∂y (x, x)

∣∣∣∣.
Using (3.35), we have

|k′n(xy)|2
kn(x2)kn(y2)

= o(e−dn), (x, y) ∈ Sn × Tn.

It follows from Lemma 3.5 and Corollary 3.2 that

2y2

∂2ℓn
∂x∂y (x, x)

= o(1) and

(
k′n(x

2)
kn(x2)

)2
∂2ℓn
∂x∂y (x, x)

= O(1).

Together with (3.32), we obtain

(3.36) 1− (rn(x, y)
∂ℓn
∂x (x, y))2

(1− r2n(x, y))
∂2ℓn
∂x∂y (x, x)

= 1 + o(e−dn), (x, y) ∈ Sn × Tn.

Similarly, we also have

(3.37) 1−
(rn(x, y)

∂ℓn
∂y (x, y))

2

(1− r2n(x, y))
∂2ℓn
∂x∂y (y, y)

= 1 + o(e−dn), (x, y) ∈ Sn × Tn.

Substituting (3.36) and (3.37) into (3.18) yields

σn(x, y) = π2ρ(1)n (x)ρ(1)n (y)(1 + o(e−dn)), (x, y) ∈ Sn × Tn.
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In the same manner, we can show that

δn(x, y) = o(e−dn/2), (x, y) ∈ Sn × Tn.

To prove this, we proceed similarly to the proof of (3.29) in Lemma 3.9.
Recall from (3.15) that

∂2ℓn
∂x∂y

(x, y) =
k′n(xy)

kn(xy)
+ xy

k′′n(xy)

kn(xy)
− xy

(
k′n(xy)

kn(xy)

)2

,

therefore,

rn(x, y)
∂2ℓn
∂x∂y

(x, y) =
O
(
|k′n(xy)|+ |k′′n(xy)|)

)√
kn(x2)kn(y2)

− rn(x, y)xy

(
k′n(xy)

kn(xy)

)2

= o(e−dn/2)− rn(x, y)xy

(
k′n(xy)

kn(xy)

)2

.

On the other hand, using (3.12) gives

rn(x, y)
∂ℓn
∂x

(x, y)
∂ℓn
∂y

(x, y)

= rn(x, y)

(
y
k′n(xy)

kn(xy)
− x

k′n(x
2)

kn(x2)

)(
x
k′n(xy)

kn(xy)
− y

k′n(y
2)

kn(y2)

)
.

As we will see, the main term on the right-hand side is rn(x, y)xy
(k′n(xy)
kn(xy)

)2
.

In the estimate below, we will use the crude estimate |k′n(t2)/kn(t2)| ≤ n for
all t ∈ R. Combining with (3.35), it follows that

rn(x, y)
∂ℓn
∂x

(x, y)
∂ℓn
∂y

(x, y) = rn(x, y)xy

(
k′n(xy)

kn(xy)

)2

+ o(e−dn/2).

Since rn(x, y) = o(e−dn/2) and σn(x, y) ≫ 1 (as proved above), using (3.19)
we obtain

δn(x, y) =
1

σn(x, y)

[
rn(x, y)xy

(
k′n(xy)

kn(xy)

)2( 1

1− rn(x, y)2
− 1

)
+ o(e−dn/2)

]
=

1

σn(x, y)

[(
k′n(xy)

kn(xy)

)2

O(|rn(x, y)|3) + o(e−dn/2)

]
= o(e−dn/2),

which proves the desired claim δn(x, y) = o(e−dn/2).
Together with (3.17), we deduce (3.33) as desired. □

4. Proof of Theorem 2.2

From Lemma 3.11, it follows that the numbers of real roots of P̃n in
Sn ∈ {−In, In} and in Tn ∈ {−I−1

n , I−1
n } are asymptotically independent.

Indeed, on account of (3.33) and (3.16), we have

Cov[Ñn(Sn), Ñn(Tn)] =

∫
Sn

dx

∫
Tn

(
ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y)

)
dy
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= o(e−dn/2)

∫
Sn

1

1− x2
dx

∫
Tn

1

y2 − 1
dy

= o(e−dn/2)O(log2 n)

= o(1).

This gives

Var[Ñn(In)] = Var[Ñn(−In ∪ In)] + Var[Ñn(−I−1
n ∪ I−1

n )] + o(1).

Thus, the proof of Theorem 2.2 now naturally divides into Lemma 4.2 and
Lemma 4.3. Before stating and proving these lemmas, we gather some basic
facts about fτ that will be convenient for the proof.

Lemma 4.1. For τ > −1/2, it holds that supu∈[0,1] |fτ (u)| < ∞ and

fτ (u) =

{
O(u2τ+1) as u → 0+,

−1 +O(
√
1− u) as u → 1−.

Furthermore, given any ε′ ∈ (0, 1/2), fτ is real analytic on (ε′, 1 − ε′). In
particular, the equation fτ (u) = 0 has at most finitely many real roots in
(0, 1), each of which has a finite vanishing order.

Proof. The estimates near 0 and 1 for fτ follow directly from (1.5) and Taylor
expansions. Specifically, for u near 0, one has fτ (u) = 2τ2u2τ+1(1 + o(1)) if
τ ̸= 0, and for τ = 0, f0(u) = (−1

3)u
2(1 + o(1)). These endpoint estimates

demonstrate that the roots do not accumulate at 0 or 1 (see Figure 5).

Figure 5. Plots of fτ on [0, 1] when τ = 1, 0,−1
4 .

Recall the definition of ∆τ (u) in (1.6). Note that 0 ≥ ∆τ (u) ≥ −1, and
these inequalities are strict for u ∈ (0, 1) (see Figure 6). Indeed, by writing

∆τ = uτ+1/2 Num
Denom , we will show that Num < 0 while uτ+

1
2Num+Denom >
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Figure 6. Plots of ∆τ on [0, 1] when τ = 1, 0,−1
4 .

0 for u ∈ (0, 1). Firstly, through examination, we see that Num is strictly
increasing on (0, 1), so Num < Num(1) = 0. Now,

uτ+
1
2Num+Denom = (1− u2τ+1)(1 + uτ+

3
2 )

− (2τ + 1)(1− u)(uτ+
1
2 + u2τ+1)

=: h(u).

If τ ≥ 0, it can be verified that (1−u2τ+1)− (2τ +1)(1−u)uτ is decreasing
for u ∈ (0, 1). Hence, (1− u2τ+1) ≥ (2τ + 1)(1− u)uτ . Consequently,

h(u) ≥ (2τ + 1)(1− u)(uτ + u2τ+
3
2 − uτ+

1
2 − u2τ+1)

= (2τ + 1)uτ (1− u)(1−√
u)(1− uτ+1)

> 0.

If −1
2 < τ < 0, we will show that h is strictly decreasing on (0, 1). One has

h′(u) = (2τ + 2)(τ +
3

2
)uτ+

1
2 + (2τ + 2)(2τ + 1)u2τ+1 − (3τ +

5

2
)u3τ+

3
2

− (2τ + 2)(2τ + 1)u2τ − (2τ + 1)(τ +
1

2
)uτ−

1
2

and
d

du
(u−2τh′(u)) = (2τ + 2)(τ +

3

2
)(
1

2
− τ)u−τ− 1

2 + (2τ + 2)(2τ + 1)

− (3τ +
5

2
)(τ +

3

2
)uτ+

1
2 + (2τ + 1)(τ +

1

2
)(τ +

1

2
)u−τ− 3

2

> uτ+
1
2

[
(2τ + 2)(τ +

3

2
)(
1

2
− τ) + (2τ + 2)(2τ + 1)

− (3τ +
5

2
)(τ +

3

2
) + (2τ + 1)(τ +

1

2
)(τ +

1

2
)
]

= 0.
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Thus, u−2τh′(u) is strictly increasing on (0, 1), and so u−2τh′(u) < h′(1) = 0
for u ∈ (0, 1). Consequently, h′ < 0 and h is strictly decreasing on (0, 1),
which implies h(u) > h(1) = 0. This completes the proof of the claimed
estimates for ∆τ .

By continuity, the above considerations imply maxu∈[ε′,1−ε′] |∆τ (u)| < 1.
Consequently, using the principal branch of log, it is clear from the definition
that fτ has analytic continuation to a neighborhood of [ε′, 1− ε′] in C, thus
the claimed properties regarding real zeros of fτ follow. □

Lemma 4.2. It holds that

(4.1) Var[Ñn(Sn)] = (κτ + o(1)) log n, Sn ∈ {−In, In},
and

(4.2) Var[Ñn(−In ∪ In)] = (2κτ + o(1)) log n.

Proof. (i) We start with (4.1). Let ε′ > 0 be arbitrary. It suffices to show
that for n large enough (depending on ε′), the following holds

|Var[Ñn(Sn)]− κτ log n| = O(ε′ log n).

By (3.2) and (3.16),

E[Ñn(Sn)] =

∫
Sn

√
2τ + 1

π

1

1− x2
(1 + o(1)) dx =

(√
2τ + 1

2π
+ o(1)

)
log n.

Now, using the change of variables x = tanh t and y = tanh s, we see that

dxdy

(1− x2)(1− y2)
= dtds and α = sech2(s− t), (t, s) ∈ Jn × Jn,

where

Jn :=

{
(12 log

2−an
an

, 12 log
2−bn
bn

) if Sn = In,

(12 log
bn

2−bn
, 12 log

an
2−an

) if Sn = −In,

and it is clear that

|Jn| =
1

2
log n− log

d
4 n+ o(1).

Recall the constant α0 > 0 from Lemma 3.7. Then there is a constant
M0 > 0 such that sech(t) < α0 is equivalent to |t| > M0. It follows that∫∫

{Sn×Sn:α<α0}
|ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y)|dxdy

= O

(∫∫
{Jn×Jn:|s−t|>M0}

sech4τ+2(s− t)dsdt

)
= O

(∫ |Jn|

M0

(|Jn| − v) sech4τ+2(v)dv

)
= |Jn|O

(∫ ∞

M0

sech4τ+2(v)dv

)
+O(1).
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We now can refine α0 (making it smaller) so that∫ ∞

M0

sech4τ+2(v)dv < ε′,

and it follows that

(4.3)

∫∫
{Sn×Sn:α<α0}

|ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y)|dxdy = O(ε′ log n).

We now estimate the integral∫∫
{Sn×Sn:α≥α0}

|ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y)|dxdy.

We separate the integration region into

(I) := {(x, y) ∈ Sn × Sn : α ≥ α0, |fτ (α)| < 32
√
τn},

(II) := {(x, y) ∈ Sn × Sn : α ≥ α0, |fτ (α)| ≥ 32
√
τn}.

We will use the same change of variable x = tanh t and y = tanh s, so that
α = sech2(s− t).

For (I), using Lemma 4.1, it is clear that the set E = {u ∈ [α0, 1] :
|f(u)| < 32

√
τn} can be covered by a union of finitely many subintervals of

[α0, 1], each with a length of o(1). Let F = {v : sech2(v) ∈ E}. Then it is
clear that F may be covered by a union of finitely many intervals, each with
a length of o(1). (The implicit constant may depend on α0). Thus, using
the boundedness of fτ and Lemma 3.7, we have∫∫

(I)
|ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y)|dxdy ≤ O

(∫∫
(I)

ρ(1)n (x)ρ(1)n (y)dxdy

)
≤
∫∫

{Jn×Jn:|s−t|∈F}
O(1)dsdt

= o(|Jn|)
= o(log n).

For (II), we note that

(1 + fτ (α))(1 +O( 16
√
τn)) = 1 + fτ (α) +O(|fτ (α)| 32

√
τn).

Thus, using Lemma 3.7, the above estimates (for region (I)), and the bound-
edness of fτ , we obtain∫∫

(II)
ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y)dxdy

=

∫∫
(II)

(
fτ (α) +O( 32

√
τn)|fτ (α)|

)
ρ(1)n (x)ρ(1)n (y)dxdy

= o(log n) +

∫∫
{Sn×Sn:α≥α0}

(
fτ (α) +O( 32

√
τn)|fτ (α)|

)
ρ(1)n (x)ρ(1)n (y)dxdy.
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Making the change of variables x = tanh t and y = tanh s again, from
Lemma 4.1, we know that

∫∞
0 |fτ (sech2 v)|dv and

∫∞
0 v|fτ (sech2 v)|dv both

converge. It follows that∫∫
{Sn×Sn:α≥α0}

fτ (α)ρ
(1)
n (x)ρ(1)n (y)dxdy

=
2τ + 1

π2

∫∫
{Jn×Jn:|t−s|≤M0}

fτ (sech
2(t− s))dsdt

=
2(2τ + 1)

π2

∫ M0

0
(|Jn| − v)fτ (sech

2 v)dv

=
2τ + 1

π2

(∫ ∞

0
fτ (sech

2 v)dv +O(ε′)

)
log n+ o(log n).

A similar computation works for |fτ |, giving a contribution of order
O( 32

√
τn log n) = o(log n), and we obtain∫∫

{Sn×Sn:α≥α0}

(
ρ(2)n (x, y)− ρ(1)n (x)ρ(1)n (y)

)
dxdy

=

(
2τ + 1

π2

∫ ∞

0
fτ (sech

2 v)dv +O(ε′)

)
log n.

Combining these with (4.3) and (3.3), we get

Var[Ñn(Sn)] =

(
2τ + 1

π

∫ ∞

0
fτ (sech

2 v)dv +

√
2τ + 1

2
+O(ε′)

)
1

π
log n,

for any ε′ > 0, which gives (4.1), recalling the definition of κτ in (1.7).
(ii) We now prove (4.2). Using (3.28), we get

Cov[Ñn(−In), Ñn(In)] =

∫∫
In×In

(
ρ(2)n (−x, y)− ρ(1)n (−x)ρ(1)n (y)

)
dxdy

=

∫∫
In×In

2τ + 1

π2

α2τ+1(x, y)

(1− x2)(1− y2)
o(1)dxdy

= o(1)

∫ |Jn|

0
(|Jn| − v)(sech2 v)2τ+1dv

= o(1) log n.

Combining with (4.1) and

Var[Ñn(−In∪In)] = Var[Ñn(−In)]+Var[Ñn(In)]+2Cov[Ñn(−In), Ñn(In)],

we deduce (4.2) as desired. □

Lemma 4.3. It holds that

Var[Ñn(Tn)] =

[
1

π

(
1− 2

π

)
+ o(1)

]
log n, Tn ∈ {−I−1

n , I−1
n },

and

Var[Ñn(−I−1
n ∪ I−1

n )] =

[
2

π

(
1− 2

π

)
+ o(1)

]
log n.



38 YEN Q. DO AND NHAN D. V. NGUYEN

Proof. The proof is entirely similar to the proof of Lemma 4.2 presented
above (specialized to the case τ = 0), making use of Lemma 3.10. □

Appendix A. The asymptotic condition (1.8) does not imply the
concentration condition (1.11)

Consider the sequence cj = jτ
(
1 + (−1)j

log j

)
, which satisfies (1.8), we will

show that it does not satisfy (1.11).

First, observe that for n− e(logn)
1/5 ≥ j ≥ n− ne−(logn)1/5 , we have

jτ

nτ
=

(
1 + o

(
1

log n

))τ

= 1 + o

(
1

log n

)
.

Now, if n− j is odd, then we claim that∣∣∣∣ 1 + (−1)j

log j

1 + (−1)n

logn

− 1

∣∣∣∣ ≥ 1

log n
.

To see this, consider two cases. First, if n is even, then

1− 1
log j

1 + 1
logn

≤ 1− 1

log j
≤ 1− 1

log n
,

and if n is odd, then

1 + 1
log j

1− 1
logn

≥ 1 +
1

log j
≥ 1 +

1

log n
,

so the claim is proved. It follows that, for n large,∣∣∣∣ |cj ||cn|
− 1

∣∣∣∣ = ∣∣∣∣ jτnτ

1 + (−1)j

log j

1 + (−1)n

logn

− 1

∣∣∣∣ ≥ 1

2

1

log n
=

1

2
e− log logn,

so condition (1.11) is not satisfied.
We remark that this example can be modified to show that the asymp-

totic condition (1.8) does not imply conditions similar to (1.11), where one

requires a decay estimate for
∣∣∣ |cj ||cn| − 1

∣∣∣ (as n → ∞) that is stronger than the

uniform decay rate for | jτnτ − 1| (over the range of j under consideration).
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Poincaré Probab. Statist. 58 (2022), no. 3, 1460–1504. MR4452640

[16] Y. Do, H. H. Nguyen, O. Nguyen, and I. E. Pritsker, Central Limit Theorem
for the number of real roots of random orthogonal polynomials, Ann. Inst. H.
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