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The generation and application of squeezed light have long been central goals of quantum optics, enabling
sensing below the standard quantum limit, optical quantum computing platforms, and more. Intensity noise
squeezing of bright (coherent) states, in contrast to squeezed vacuum, is relatively underdeveloped. Bright
squeezing has been generated directly through nonlinear optical processes or “quietly pumped” semiconductor
lasers. However, these methods suffer from weak squeezing limits, narrow operating wavelength ranges, and
have not been explored at large bandwidths. Here, we show how semiconductor lasers with sharp intensity-
dependent dissipation can support highly broadband intensity noise squeezing from infrared (IR) to terahertz
(THz) wavelengths, the latter of which has remained unexplored in quantum noise studies. Our protocol real-
izes strongly (> 10 dB) intensity noise-squeezed intracavity quantum states, which could create a new regime
for cavity quantum electrodynamics experiments, as well as strong output squeezing surpassing gigahertz band-
widths. Furthermore, we show how the same systems also create self-pulsing and bistable mean field behavior,
enabling control of light in both the temporal and noise domains. The existence of these multiple functionalities
in both the classical and quantum mechanical domains in a single semiconductor laser platform, from IR to THz
wavelengths, could enable advances in on-chip quantum optical communication, computing, and sensing across
the electromagnetic spectrum.

I. INTRODUCTION

The generation of states of light with noise “squeezed”
below the standard quantum limit for a coherent state is a
decades-old pursuit of quantum optics. In these squeezed
states, the variance in one observable (such as amplitude or
phase) is reduced at the expense of another, permitting levels
of quantum fluctuations which lie below the standard quan-
tum limit. Such squeezed states of light have been harnessed
for optical quantum computing as well as precision sensing
and metrology [1, 2]. The most common methods to gen-
erate squeezed light employ laser-pumped nonlinear crystals.
For example, sub-threshold optical parametric amplifiers have
been used to produce up to 3 dB of intracavity squeezing [3–5]
and 15 dB of propagating squeezed vacuum [6–8].

By contrast, schemes to generate squeezing in bright states
of light are less mature, despite their promise as sources
for sensitive spectroscopy applications and pumps for low-
noise optical amplifiers [9, 10]. Generation of bright squeez-
ing has been limited to methods developed over two decades
ago such as second harmonic generation, Kerr nonlinearity
in fiber-optic interferometers, and “quietly pumped” semi-
conductor lasers [11–13]. However, these mechanisms come
with inherent tradeoffs that limit the space of possible ap-
plications. First, the magnitude of squeezing achieved has
not approached that achievable with squeezed vacuum (in ei-
ther intracavity or output intensity noise), limiting applica-

tions where intense squeezed light is preferred over squeezed
vacuum. Secondly, large (GHz) bandwidths have not been
demonstrated with these bright squeezing methods, limiting
their application in quantum communication protocols. In
mesoscopic systems with strong nonlinearities, high levels of
broadband intracavity squeezing could produce approximate
large Fock states, with exciting potential applications in qubit
nondemolition readout in cavity QED, optomechanical cool-
ing, quantum metrology, and enhanced light-matter interac-
tions [5, 14–17]. Finally, existing methods to produce in-
tense squeezed states have been generally limited to narrow
wavelength ranges in the infrared (e.g., due to nonlinear phase
matching and conversion efficiency constraints). As a result,
there are large wavelength ranges (MIR-THz) in which inten-
sity squeezing has never been demonstrated, despite tantaliz-
ing applications in quantum-enhanced chemical fingerprint-
ing, wireless communication, and solid-state qubit manipula-
tion [18].

These wavelengths spanning from the IR to the THz have
been particularly well-served by semiconductor lasers, ow-
ing to their wide gain bandwidths, convenient form factors,
and ease of electrical pumping. Several methods have been
explored to produce intensity squeezing directly from semi-
conductor lasers, including so-called “quiet pumping” (pump
noise suppression) and optical feedback/dispersive loss to ex-
ploit amplitude-phase correlations [19–21]. However, these
methods have achieved only a few dB of squeezing. More-
over, such squeezing has been achieved only at low noise fre-
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quencies, leaving the large excess noise from so-called “relax-
ation oscillations” at higher frequencies unmitigated. Thus,
the majority of modern semiconductor lasers do not surpass
— or even reach — the shot noise limit at large bandwidths.
This, together with the limitations of other nonlinear optical
techniques described above, highlights a broad open challenge
in producing sources of highly squeezed intense light which
are versatile in wavelength and bandwidth.

Here, we show how semiconductor lasers equipped with
Kerr nonlinearity and frequency-dependent outcoupling can
enable sharply nonlinear dissipation and act as a source of in-
tense squeezed light from IR to THz wavelengths, reducing
intracavity fluctuations to more than 10 dB below the shot
noise limit. Output fluctuations are significantly suppressed
relative to conventional semiconductor lasers and, when com-
bined with quiet pumping schemes, can be squeezed over 10
dB below the shot noise limit at GHz bandwidths. Our ap-
proach exploits intensity-dependent dissipation, in conjunc-
tion with a semiconductor gain medium, to create a laser ar-
chitecture which natively produces light with intensity fluctu-
ations far below the shot noise limit. We show that semicon-
ductor laser architectures are aptly suited for this purpose due
to their compact form factor, strong intrinsic optical nonlin-
earities, and ease of on-chip integration with the low loss res-
onators and photonic crystals required to generate frequency-
dependent dissipation. In addition, we explain how these same
architectures can exhibit classical nonlinear phenomena such
as self-pulsing and bistability. Together, these functionalities
could pave the way towards combined temporal and quantum
noise control over light across the electromagnetic spectrum.
This could unlock elusive quantum states such as THz pulsed
squeezed states, with novel applications in communications
and sensing.

We structure the rest of this paper as follows. Section II
shows how the concept of intensity-dependent dissipation can
be implemented in a semiconductor laser architecture. Section
III first presents the mean-field dynamics of a semiconduc-
tor laser with nonlinear dispersive loss, demonstrating self-
pulsing and bistability, and then strong, broadband intracav-
ity and output intensity noise squeezing at IR and THz wave-
lengths. Finally, Sections IV, V summarize our results and
present outlooks and future extensions of this work.

II. THEORY

A. Nonlinear dispersive loss

We first describe how, under the right conditions, the com-
bination of Kerr nonlinearity and frequency-dependent loss
lead to a laser cavity with an effective intensity-dependent loss
that controls the quantum state of light produced by the laser.
Consider the cavity architecture shown for a semiconductor
laser in Fig. 1a. We focus on a single cavity mode, with an-
nihilation operator a. As is well known, a cavity containing a
Kerr nonlinearity develops an intensity-dependent resonance
frequency due to the intensity-dependent index of the Kerr
material [23]. In the case of semiconductor lasers, free car-
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FIG. 1: Semiconductor lasers with nonlinear dispersive loss. (a)
Basic semiconductor laser diode heterostructure design with nonlin-
ear dispersive loss. Dispersive outcoupling is generated via the sharp
frequency-dependent transmission of a photonic crystal element.
Coupling of Kerr nonlinearity from the Kerr material and carrier non-
linearity from the gain material with a dispersive mirror of reflectiv-
ity R(ω) creates sharp nonlinear loss κ(n,N). Here, ∆ denotes
detuning from the dispersive (Lorentzian) resonance and γ denotes
the width of the dispersive resonance (related to its FWHM). (b)
Semiconductor optical nonlinearities, including carrier-dependent
free carrier dispersion (FCD) and two photon absorption (TPA). In
addition to the photon number-dependent Kerr effect, these nonlin-
earities shift the real part of the active region’s refractive index, in
turn shifting the resonance frequency in the laser cavity. Weak non-
linear loss from shifting the imaginary part of the refractive index
via the Kramers-Kronig relations is also generated, but in most cases
is negligible compared to the nonlinear dispersive loss. (c) Sample
implementation of nonlinear loss in a photonic crystal (PhC) “Fano”
laser. The PhC platform allows much stronger per-photon nonlinear-
ities due to very small mode volumes. Dispersive loss is provided by
waveguide-nanocavity Fano interference in a photonic crystal slab
[22].

rier nonlinearities (Fig. 1b) also shift the cavity resonance.
Then, the cavity resonance frequency depends linearly on the
photon number and inverted carrier density n and N as

ωR(n,N) = ω0 · (1 + βn+ σN), (1)

as derived in the S.I.. This form for the cavity resonance shift
due to semiconductor nonlinearities has been analyzed previ-
ously using coupled mode theory and supported experimen-
tally [24–27]. Here, ω0 is the bare resonance frequency of
the cavity mode a, β is a dimensionless per-photon nonlin-
earity that can be directly calculated from the Kerr nonlinear
coefficient n2 or nonlinear susceptibility χ(3), and the carrier
nonlinearity σ is material-dependent and is directly related to
the linewidth enhancement factor (see S.I. for details).

Additionally, in the laser cavity of Fig. 1a, one of the
end facets is a broadband reflector, while the other is a
sharply dispersive element, such as a Fano resonance struc-
ture or a Bragg reflector, which equips the cavity with sharply
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frequency-dependent dissipation through its reflection coef-
ficient R(ω). When combined, the intensity-dependent res-
onance frequency and frequency-dependent dissipation give
the cavity mode an effective intensity-dependent dissipation,
which can promote the formation of quantum states [28, 29].
The one critical assumption for this description is that the
temporal response of the dispersive mirror is fast compared
to the round trip time of the cavity. This corresponds to an
adiabatic limit where the dispersive resonance, which sets the
cavity transmission T (ω), is able to near-instantaneously fol-
low shifts in the cavity frequency caused by the nonlinearities.
When these assumptions are fulfilled, the cavity field is sub-
ject to an effective intensity-dependent damping rate

κ(n,N) ≡ κ(ωR(n,N)) = −FSR · logR(ωR(n,N))

≈ FSR · T (ωR(n,N)),
(2)

where the approximation holds when R(ωR) ≈ 1. Sharply
frequency-dependent reflectivity profiles enable the dissipa-
tion rate κ(n,N) to take on forms which are highly nonper-
turbative in n, making this type of nonlinear dissipation fun-
damentally different than the types of nonlinear dissipation
realized by multi-photon absorption. One example of such a
reflectivity profile has been realized in self-pulsing Fano lasers
[22] with low mode volumes which, when augmented with a
Kerr nonlinear material (Fig. 1c), could create strongly non-
linear dissipation. As we will show, systems exhibiting this
kind of loss can provide new behaviors not just in their steady
states, but also through new quantum noise behaviors.

Note that in Fig. 1a we consider a semiconductor laser
with separate gain and Kerr nonlinear elements. We choose
to use a different material for the Kerr nonlinearity in order
to avoid possible dispersive resonant effects of optical nonlin-
earity near transition energies in the gain material. The Kerr
material is chosen to be a GaAs-based semiconductor due to
its strong optical nonlinearity from bound carriers. Semicon-
ductor lasers with nonlinear dispersive loss based on “active
nonlinearity” (in which the gain and Kerr materials are the
same) may be possible, but the timescale of resonant effects
may call into question the adiabatic assumption of the cavity
resonance frequency’s instantaneous response to changes in
photon number, thus placing such systems outside the scope
of the models we consider here.

B. Laser dynamics

Semiconductors typically fall into the category of so-called
“class B” lasers, in which the polarization dynamics de-
cay quickly relative to the timescales associated with car-
rier recombination and cavity decay. In this case, the po-
larization dynamics are adiabatically eliminated, resulting in
Heisenberg-Langevin equations for photon number and car-
rier number operators, as derived in the S.I. [30, 31]:

ṅ = (G(n,N)− κ(n,N))n+ Fn (3a)

Ṅ = I −
(
nG(n,N) + γ∥N

)
+ FN . (3b)

To be maximally general here, we allow the gain G and loss
κ to depend on both the carrier density N and photon num-
ber n (the latter could account for gain saturation). In writing
this form of the gain and loss, we have assumed that the gain
and loss respond effectively instantaneously to changes in the
photon and carrier number. Pumping is performed by carrier
injection using current I (in units of carrier density per unit
time), and γ∥ denotes the nonradiative decay rate of carriers.
The case of optically pumped excitation of free carriers is de-
scribed in the S.I.. Finally, the decay rates and pump noise are
associated with zero-mean Langevin force terms Fn,N, with
nonzero correlators provided in the S.I..

In all examples presented in the main text, we consider lin-
ear gain which neglects saturation effects, so that G(n,N) =
G(N) = GN (N −Ntrans) with Ntrans the transparency car-
rier density. We found no phenomenological differences using
logarithmic quantum well gain or including the effects of gain
saturation [32].

C. Noise properties

The noise properties of semiconductor lasers can be com-
puted by considering operator valued fluctuations of the
Heisenberg-Langevin equations from their mean field solu-
tions. In the steady state, this results in a pair of coupled
linear equations for the operator values fluctuations δn and
δN , which are given as:

[
δṅ

δṄ

]
=

[
−nκn n (GN − κN )
−G0 −(nGN + γ∥)

] [
δn
δN

]
+

[
Fn − nκωFϕ

FN

]
.

(4)

Here, κn ≡ ∂κ/∂n = −βω0κω = −βω0(∂κ/∂ω) repre-
sents the sharpness of the dispersive loss, κN ≡ ∂κ/∂N =
αLGNκω/2 = −σω0κω , where αL is the linewidth enhance-
ment factor (directly related to σ, the free carrier dependence
of the refractive index), and Fϕ is a Langevin force associ-
ated with the phase equation of motion. Note that αL, which
emerges due to amplitude-phase coupling in semiconductor
lasers, affects noise behavior, but not steady state operation.
Important physical parameters to characterize intensity noise
are the relaxation oscillation frequency and damping rate of
relaxation oscillations. As derived in the S.I., these can be
calculated from the complex poles of the fluctuation dynam-
ics:

Ω2
R ≈ (nGN + γ∥)(nκn) + n(GN − κN )κ

Γ1 ≈ n(GN + κn) + γ∥.
(5)

These measures provide an important way to understand the
effect of nonlinear dispersive loss on quantum noise. They
will also dictate mean field dynamics that result from fluctua-
tions from steady state operation.

Going forward, we will assume in the main text that the
shift in refractive index due to Kerr nonlinearity is much
stronger than that due to carrier nonlinearity, |βn| ≫ |σ(N −
Ntrans)|, so that the dependence of loss on carrier number κN
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FIG. 2: Mean-field dynamics and steady state behavior. (a) Dynamical and steady state solutions in semiconductor lasers with nonlinear
dispersive loss. In the region κn = ∂κ/∂n < 0 (photon numbers left of the Fano resonance), a variety of different behaviors are possible.
At large detunings (small n, blue region), the loss does not depend strongly on photon number, and the relaxation oscillations typical of
conventional semiconductor lasers are observed. At a certain detuning (n), the relaxation oscillations become critically damped and, at smaller
detunings, they become undamped, leading to self-sustained picosecond pulses (orange region). When the pump enters the bistable region (red
region, only present for β = −10−9 (purple curve)), the pulses become transient and the laser ultimately collapses to a continuous wave (CW)
steady state. Lastly, to the right of the loss minimum (green), relaxation oscillations are heavily damped since κn = ∂κ/∂n > 0, leaving a
CW steady state. Plots were produced by considering a transient increase in intracavity intensity by 10% at t = 0 relative to steady state. (b)
Steady state intracavity photon number n as a function of pump current (S-curve) for three different linear background losses κ0 and nonlinear
strengths β. The indicated unstable region is bypassed by the bistable point and is not generally accessible during lasing. The gray vertical
lines denote the boundaries of the bistable region for the purple dotted curve. In these simulations, we use parameters based on experimentally
determined values for buried heterostructure lasers with GaAs gain and AlGaAs cladding (Fig. 1a): active region dimensions 0.1 µm × 5
µm × 1 mm, confinement factor Γ = 0.3, bare cavity resonance frequency ω0 = 2.16 × 1015 s-1 (873 nm, GaAs bandgap), free spectral
range FSR = 43 GHz, transparency density Ntrans = 2 × 1024 m-3, nonradiative decay rate γ∥ = 3 × 108 s-1, and linear gain coefficient
GN = 1/V · dG/dN = 3694 s-1 [31]. The S.I. provides an estimate of typical Kerr nonlinear strengths in this structure. The Fano resonance
is centered at photon number nc = 8× 106 (a) and nc = 106 (b). Its resonance decay (FWHM) is γ = 2× 1012 s-1. In (a), κ0 = 10−2 ·FSR
for β ̸= 0.

can be neglected. With strong Kerr nonlinearity, this is gen-
erally true for linewidth enhancement factors αL ≲ 5. Many
semiconductor laser systems fall in this regime, but quantum
well/quantum dot designs and gain-symmetric quantum cas-
cade lasers generally minimize αL [33, 34]. We consider the
behavior when |βn| ∼ |σ(N − Ntrans)| as well as the effect
of two photon absorption in the S.I..

III. RESULTS

A. Mean-field dynamics

We begin by considering the mean-field steady-state and
dynamical solutions that emerge for a Kerr nonlinear semi-
conductor laser with a symmetric Fano resonance. As shown
in Fig. 2a, the mean-field behavior can differ drastically de-
pending on the sharpness of the loss κn = ∂κ/∂n.

The mean-field dynamics of the equations of motion allow
diverse modes of operation, as shown in Fig. 2a. The key
driving force for these behaviors is the variation in the damp-
ing rate for relaxation oscillations (Eq. 5), which describes
relaxation back to the mean field steady state. We plot the

temporal evolution of the intracavity photon number follow-
ing a transient 10% increase in the photon number at t = 0
relative to the initial steady state. For κn ≈ 0 (low n and
far detuned from Fano resonance, blue region), relaxation os-
cillations are observed. For κn ≪ 0, the relaxation oscilla-
tions become critically damped and eventually undamped (or-
ange region), resulting in oscillations that transition into self-
generated and self-sustained pulses. The pulses are quenched
when the initial photon number enters the bistable region’s
lowest branch (demarcated by gray lines in Fig. 2b), ulti-
mately collapsing to the topmost branch (and bypassing the
intermediate unstable branch). For κn > 0, relaxation oscil-
lations are strongly damped (Γ1 grows with κn in Eq. 5). We
note that in many semiconductor lasers that are not operated
very far above threshold, intensity noise is often far from the
shot noise limit due to the relaxation oscillation peak. The
nonlinear loss in the region κn > 0 suppresses this peak by
over four orders of magnitude, as we will show. Physically,
the nonlinear loss magnifies the strength of attraction of the
laser steady state (a fixed point of the rate equations) in pro-
portion to the slope κn. This has the effect of strongly resist-
ing deviations from the steady state photon number, leading
to the strong intensity squeezing described in the next section.

Self-pulsing has been reported previously using photonic
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FIG. 3: Intensity noise squeezing. (a) Comparison of steady state photon probability distribution p(n) under conventional and sharp loss.
The steady state photon number is determined by the location of intersection between saturable gain and loss. The variance of the probability
distribution is determined by the effective “steepness” of intersection of the gain and loss curves. While the conventional laser architecture with
linear loss results in a near-coherent state far above threshold, the sharp loss architecture results in states with variance below the mean, which
correspond to non-classical light. In the most extreme limit, this mechanism can enable the generation of near-Fock states inside the laser cavity.
(b) Intracavity Fano factor spectrum (∆n2(ω)/n) as a function of noise frequency for the three different steady states (⋆,▲,■) indicated in
the input-output curve of Fig. 2b (r ≡ I/Ithres is the pumping ratio). Here, κ0 = FSR for the linear loss (blue) and κ0 = 10−2 ·FSR for the
nonlinear loss (purple). Nonlinear loss creates a strong suppression of the relaxation oscillation (RO) peak. (c) Output squeezing over a > 1
GHz bandwidth with (“noisy”) and without (“quiet”) pump noise suppression (plotted for three different pump powers with nonlinear strength
β = −10−9). (d), (e), (f) Comparison of loss profiles and integrated Fano factor as a function of pump current for a nonlinear laser with a
Fano mirror or DBR. Fano factors are plotted for the low noise branch when bistability is present. In (d), (e), (f), nc = 5 × 106 marks the
center of the Fano resonance, while for DBR loss profiles, the average index is ñ = 3.0, the index contrast is ∆n ≲ 1.0, and the first transition
from stop to pass band is tuned to occur around nc = 5× 106. All other simulation parameters are the same as those in Fig. 2.

crystal-based “Fano” lasers with saturable free carrier absorp-
tion from a nanocavity [22]. Here, we see that a similar phe-
nomenon occurs due to a different physical mechanism: the
combination of Kerr nonlinearity and dispersive loss. Sup-
pose that the laser is pumped to a CW steady-state lying in
the self-pulsing region of Fig. 2a. A transient increase in
intracavity intensity (e.g., due to spontaneous emission into
the lasing mode) now decreases the photonic loss, providing
a positive feedback mechanism that builds up the intracavity
intensity further. This should continue up to the point where
the stimulated emission rate is high enough to drop the carrier
density below threshold. The pump then builds up the car-
rier density again, and the pulsing continues. Further details
about the self-pulsing behavior, including an analysis of the
pulse profile, are provided in the S.I..

We now examine the steady-state input-output curve (S-
curve), as shown in Fig. 2b. Linear loss presents an n-
independent loss profile, and leads to the well known linear
dependence of steady state photon number on pump current

(as well as clamping of the carrier density and gain above
threshold). In the presence of dispersive loss, moderate non-
linearity (β = −10−10) begins to modify the steady state be-
havior. For pump currents just above threshold, the behavior
is close to linear. However, as the pump current increases, so
does the loss, pulling down the input-output curve to a sub-
linear behavior. For even stronger nonlinearity (β = −10−9),
a bistable transition occurs that creates a range of photon num-
bers which have no stable steady state solution. In particular,
this occurs because there is a nonzero photon number at which
the cavity experiences minimum loss. The topmost bistable
branch (with κn ≫ 0 and strongest squeezing) needs to be
accessed hysteretically “from above,” by pumping to a high
power (beyond the right bistable edge) and slowly lowering
the power.
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B. Broadband intensity noise squeezing

We now describe how the mechanism of intensity-
dependent loss can compress steady state photon statistics
(Fig. 3a). The steady states of all lasers are characterized by
a balance between saturable gain and loss. In a conventional
laser with “linear loss,” the loss rate seen by the cavity field is
the same for all photon numbers. For photon numbers where
gain exceeds loss, an effective “force” encourages occupation
of yet higher photon numbers; for photon numbers where loss
dominates gain, an effective force encourages occupation of
lower photon numbers. The intersection point where “gain
equals loss” represents the equilibrium point between these
two forces, and consequently determines the mean photon
number of the cavity in the laser steady state. While the in-
tersection point determines the mean photon number, the be-
havior of the photon number-dependent gain and loss in the
vicinity of this intersection dictates the variance of the photon
number probability distribution p(n). In conventional lasers
which are far above threshold, the probability distribution ap-
proaches that of a coherent state, with Poissonian statistics.

This situation changes significantly when linear loss is re-
placed by a strongly intensity-dependent loss. If the loss rises
sharply with photon number around its intersection with the
saturable gain, then the steady state probability distribution
becomes compressed compared to the case of linear loss. In-
tuitively, this is because the disparity between loss and gain
around the steady state is magnified relative to the conven-
tional laser, resulting in larger “forces” that squeeze the proba-
bility distribution to sub-Poissonian statistics. Roughly speak-
ing, the photon number variance is determined by the ratio of
the slopes of the gain and loss. This mechanism enables the
sharp loss laser to create steady states with variance lower than
the mean, a feature only possible in non-classical light. In the
most extreme limit, the loss may rise so sharply that only a
single number state (the mean) has a substantial probability of
occupation, approaching a cavity Fock state. However, realiz-
ing intracavity Fock states would likely require systems with
fewer photons and stronger nonlinearities, such as exciton-
polariton condensates [28].

To quantify this effect in semiconductor laser systems, we
consider the photon number variance, given by (∆n)2 =
1
π

∫∞
0

dω⟨δn†(ω)δn(ω)⟩, where δn(ω) gives the spectrum of
intensity fluctuations and is governed by Eq. 4. A useful pa-
rameter to quantify the quantum nature of light is the Fano
factor, defined as F = (∆n)2/n. The Fano factor is 1 for
Poissonian light, corresponding to the shot noise limit; values
below one indicate sub-Poissonian light below the shot noise
level. We calculate the most general expression for F (includ-
ing carrier nonlinearity) in the presence of nonlinear disper-
sive loss in the S.I.. For weak Kerr and carrier nonlineari-
ties, F → 1 when pumping far above threshold, approaching
Poissonian (coherent) statistics. Our main result here is that
for strong Kerr nonlinearity (nκn ≫ κ0, n|κN |, γ∥, GN ), the
Fano factor behaves as

F → κ/(nκn) (6)

for large n. Critically, the ratio κn/κ is a measure of how

sharply the loss varies with n compared to the absolute loss
rate at the steady state photon number, and thus dictates the
dimensionless “sharpness” of the loss. The Fano factor is in-
versely proportional to this sharpness factor, and thus sharp
losses can lead to sub-Poissonian states.

In Fig. 3, we demonstrate the effects of intensity noise
squeezing in semiconductor lasers with nonlinear dispersive
loss. Just above the left point of bistability, n stays approxi-
mately constant while the photon number variance ∆n2 can
decrease sharply. In the plot of the Fano factor spectrum
∆n2(ω)/n (Fig. 3b), the intensity noise fluctuations asso-
ciated with relaxation oscillations (ROs) are quenched closer
to the left bistable point. Due to the sharp loss, the RO peak
is in general significantly suppressed compared to the case of
linear loss (the RO frequency and damping rate are increased
in accordance with Eq. 5). Note that as a result of the bistabil-
ity, the laser can exist in two states with very different photon
numbers over a range of pump currents. The larger photon
number branch corresponds to sharp loss (κn > 0) in this
scheme. Overall, nonlinear dispersive loss creates significant
broadband intensity noise squeezing by orders of magnitude
compared to analogous linear loss.

We also found that intensity noise squeezing can extend to
the light which exits the cavity. To analyze this effect, the
output noise spectrum can be computed from the intracavity
noise spectrum by coupled mode theory (see S.I. for details).
In Fig. 3c, we plot the output intensity spectrum normalized
to the shot noise limit (SNL) for three different pump pow-
ers (with β = −10−9). When a shot noise limited pump is
used, output photon noise is not squeezed below the SNL.
By using “quiet” pumping (i.e. constant current driving), it
is possible to achieve noise reduction exceeding 10 dB be-
low the SNL over GHz bandwidths. In conventional semicon-
ductor lasers that are quietly pumped, weak output squeez-
ing has been experimentally observed at sub-GHz bandwidths
and strong squeezing (> 10 dB) is only predicted to occur for
operation far above threshold and is not associated with in-
tracavity squeezing [35]. In contrast, the mechanism of non-
linear dispersive loss (1) creates strongly squeezed intracavity
states, (2) strongly suppresses the relaxation oscillation peak
(> 12 dB relative to a conventional semiconductor laser with
the same pump current but without nonlinear dispersive loss),
extending output squeezing to GHz bandwidths, and (3) may
allow significant output squeezing even at moderate pump cur-
rents owing to the bistability that creates strong intracavity
squeezing near threshold for nonzero photon number.

Finally, we calculate noise frequency-integrated Fano fac-
tors as a function of pump current in Fig. 3e by integrating the
spectra in Fig. 3b. For linear loss, the Fano factor approaches
unity (shot noise limit) far above threshold. The behavior of
Fano factor for nonlinear dispersive loss is phenomenologi-
cally different. For simplicity, in Fig. 3e, we only plot the
sharp loss (upper) branch when bistability is present (purple
curves). We note that the lower branch, accessible by normal
pumping from threshold, resembles linear behavior apart from
the bistable point, which creates a discontinuity in the Fano
factor as a function of pump current. On the upper branch, lin-
ear behavior (shot noise) is restored when the detuning from
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the Fano resonance grows large (κn ≈ 0). Approaching the
left bistable edge, the cavity frequency approaches the Fano
resonance and, for a certain n, the ratio κ/(nκn) approaches
a minimum, corresponding to maximum intracavity squeez-
ing. The Fano factor does not decrease indefinitely due to
intensity-carrier noise coupling and finite carrier noise from
nonradiative decay processes. Nonetheless, low linear back-
ground losses, sharp dispersive dissipation, and large Kerr
nonlinearities can create intracavity squeezing over 10 dB be-
low the shot noise limit.

We next consider a second kind of dispersive loss – dis-
tributed feedback provided by, for example, a distributed
Bragg reflector (DBR). This type of loss marks a departure
from the adiabaticity criterion that limits the sharpness of
Fano-type losses because its timescale is instead set by the
width of the DBR pass/stop band, not the sharpness of its de-
cay. In principle, this means that the DBR-type loss can be
made quite large, enhancing intensity noise squeezing further.
This is shown in Fig. 3c,e, where sharper loss profiles (ob-
tained by increasing the number of layers in the DBR) corre-
spond to enhanced squeezing (5 dB lower than the Fano mir-
ror example in Fig. 3d). Additionally, the sharp loss region
(κn > 0) in the case of DBR loss profiles can be accessed
by pumping directly from threshold, where a stop band transi-
tions to a pass band. Further details about the DBR example,
including the exact analytical form for the loss, are provided
in the S.I..

C. IR and terahertz squeezing using quantum cascade lasers

To emphasize the generality of the physics of nonlinear dis-
sipation, we apply this mechanism to quantum cascade lasers
(QCLs), showing that strong intensity squeezing can be ex-
tended to “difficult” spectral ranges where squeezing has not
been demonstrated, such as the mid-IR and THz. QCLs em-
ploy intersubband transitions for stimulated emission, allow-
ing recycling of the carrier population and therefore high out-
put powers, since a single carrier can now generate m pho-
tons if m gain stages are used [38, 39]. This endows QCLs
with giant intrinsic Kerr nonlinearities that have been em-
ployed in a variety of applications, such as frequency comb
generation for molecular spectroscopy in the infrared [40].
We note that the picosecond timescale of these nonlineari-
ties can fulfill the adiabaticity criterion for nonlinear disper-
sive loss [41] and that low-loss dispersive mirrors have been
previously used to create dispersion-compensated QCL fre-
quency combs [42]. Strongly intensity noise-squeezed light
from QCLs, if realized, is extremely promising given that (1)
intensity noise squeezing is more difficult to achieve in QCLs
than other semiconductor lasers due to nonradiative decay of
carriers in multiple levels [36], and (2) QCLs operate at wave-
lengths that are of great interest for sensing applications but
are inaccessible by most other lasers.

A sample design for a QCL with nonlinear dispersive loss is
provided in Fig. 4a. Here, the intrinsic Kerr nonlinearity of the
active region combined with a dispersive mirror on the laser’s
output facet generates nonlinear dissipation. To quantify the

Quantum cascade Kerr-squeezed laser
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FIG. 4: Strongly squeezed IR and terahertz light using QCLs.
(a), (b) Basic dispersive Kerr-squeezed QCL laser architecture with
nonlinear dispersive loss. Electrons make subband transitions in a
given quantum well and tunnel to the next one. Dispersive outcou-
pling is provided by a photonic crystal fabricated on an end facet of
the QCL. The giant, ultrafast Kerr nonlinearity of the active region
due to intersubband transitions is used to generate nonlinear disper-
sive loss. (c) Three-level system used for rate equation analysis with
nonradiative decay timescales from each level indicated. (d) Fano
factor spectrum for two different pump strengths r ≡ I/Ithres, with
β = 10−9 and κ0 = FSR. A similar bistability to the diode laser
case is present here, and the r = 0.5 curve is for the upper (low
noise) branch (r = 5 corresponds to large detuning from the Fano
resonance and lies in the approximately linear loss regime). (e) Inte-
grated Fano factor as a function of pump strength for the low noise
branch for three different nonlinear strengths and operating wave-
lengths in the IR and THz. For these simulations, we use system
parameters measured from experiment: wavelength λ0 = 4, 103 µm
(IR, THz), τ32 = 2.1 ps, τ31 = 3.4 ps, τ21 = 0.5 ps, m = 25 gain
stages, confinement factor Γ = 0.2, cavity length L = 3 mm, and
gain coefficient GN = 105Γ s-1 [36, 37]. The Fano resonance has
FWHM γ = 2× 1012 rad/s and is centered at nc = 2.5× 107.

steady state and noise behavior of this system, we proceed
by a Langevin force-based rate equation analysis as before.
We use a three-level model for the carrier dynamics (Fig. 4b,
c), with rate equations describing the evolution of the photon
and carrier populations provided in the S.I.. The nonradiative
decay time constants governing transitions between the three
carrier levels are given by τ31, τ32, τ21 and linear gain propor-
tional to the difference in population between levels 2 and 3 is
assumed.

We calculate intracavity intensity noise spectra and inte-
grated Fano factors by Fourier transforming the linearized rate
equations (as done above), with details of the calculation pro-
vided in the S.I.. We find that the DC/low-frequency noise
is suppressed by a factor (nκn/κ)

2 in the presence of strong
nonlinear loss, nκn ≫ κ, 1/τ21, 1/τ31, 1/τ32. We plot the
noise behavior for a sample system with Fano mirror outcou-
pling in Fig. 4d, e. In this figure, we consider steady state and
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noise for three different Kerr nonlinear strengths β and two
different operating wavelengths λ0 to mimic realistic experi-
mental systems operating in the IR and THz. For comparison,
we note that per-photon nonlinear strengths β ∼ 10−10 were
observed nearly two decades ago when QCLs were first used
for self-mode-locking [43]. Our results show that the strong,
ultrafast Kerr nonlinearity in QCLs in combination with dis-
persive loss mechanisms can be harnessed to generate strong
broadband intensity noise squeezing that has generally evaded
mid-IR and THz wavelengths. Note also that (1) QCLs do not
suffer from the GHz relaxation oscillations present in conven-
tional semiconductor lasers due to the ultrafast (intersubband)
carrier dynamics [44] and (2) linewidth enhancement due to
free carriers is negligible, so the cavity resonance frequency
ωR(n,N) → ωR(n) and the nonlinear loss κ(n,N) → κ(n).
We finally note that self-pulsing by the mechanism in Sec.
III A in QCLs may be possible but is more difficult to achieve
than in conventional diode lasers. This is due to the ultra-
fast (intersubband) carrier dynamics in QCLs, which create
high frequency (exceeding GHz) relaxation oscillations that
are difficult to undamp.

IV. DISCUSSION

We briefly describe some of the other experimental plat-
forms for realizing the effects of nonlinear dispersive loss.
We have already shown how quantum cascade lasers (QCLs)
are promising realizations of semiconductor lasers with non-
linear dispersive loss given their giant, ultrafast Kerr nonlin-
earities. QCLs emit at IR and THz wavelengths, overlapping
with the vibrational modes of many biochemically relevant
molecules, making the possibility of developing quantum-
enhanced chemosensors based on the principles described
here tantalizing.

Because semiconductor platforms are conducive to inte-
gration with on-chip photonic crystal optical elements, many
designs have already achieved the dispersive losses consid-
ered here and therefore could exhibit intensity noise reduc-
tion if quality factors and nonlinear strengths are within the
tolerances required. For example, previous work has real-
ized “Fano lasers” that exhibit self-pulsing due to the inter-
play between dispersive loss and carrier nonlinearity [22]. A
Fano resonance is created by coupling between a waveguide
and nanocavity (point defect) in a photonic crystal slab. By
increasing the quality factor of the lasing waveguide mode
in these types of structures and integrating a Kerr material
in/around the gain region, intensity noise reduction by non-
linear dispersive loss could be observable (Fig. 1c).

Photonic crystal surface-emitting lasers (PCSELs) are an-
other platform that may be used for demonstrating the effects
of nonlinear dispersive loss [45]. PCSELs may present ad-
vantages such as single-mode operation and high output pow-
ers; in contrast to the Fano laser concept, lasing occurs trans-
versely (and thus the Fano mirror is aligned transversely rather
than longitudinally). However, because losses may be signif-
icant in both longitudinal and transverse directions, it is nec-
essary to optimize quality factors in both directions. The use

of bound states in the continuum is also a promising way for-
ward to achieve high quality factor resonances and nonlinear
dissipation when PCSELs are endowed with strong Kerr non-
linearity [46].

In addition to Fano-type dispersive losses, distributed
feedback-based losses have been commonly exploited to en-
force single-mode operation. Examples include distributed
Bragg reflector (DBR) fiber lasers, vertical cavity surface-
emitting lasers (VCSELs), and DBR diode lasers [47, 48]. All
of these architectures include sharply frequency-dependent el-
ements that may be used to achieve strong noise condensation.
High quality fabrication is necessary to minimize background
losses (e.g., scattering) at interfaces in order to observe the
intensity noise condensation described here.

Furthermore, we note that even stronger nonlinearities may
be achievable in systems such as microdisk and quantum dot
lasers due to enhanced confinement and ultralow mode vol-
umes [49]. For mode volumes achieving λ3, the dimension-
less Kerr coefficient can be orders of magnitude larger than
the values considered here. Lastly, combining our method-
ology with recent proposals for nanolasers with strong sub-
wavelength confinement [50] could yield even further inten-
sity noise reduction in output noise.

V. OUTLOOK

In this paper, we have shown how semiconductor lasers
with sharply frequency-dependent outcoupling and Kerr non-
linearity can be used to create lasers which possess intrinsic
bistability and self-pulsing capabilities in the classical do-
main as well as high levels of quantum mechanical inten-
sity noise squeezing both inside and outside the laser cav-
ity. The squeezing occurs across a huge bandwidth in noise
frequency, giving rise to near-Fock states with strong squeez-
ing in photon number. Furthermore, we have shown that the
squeezing is achievable from IR to THz wavelengths, poten-
tially unlocking numerous applications in sensing, computing,
and metrology. We anticipate that many existing experimental
platforms could realize the intensity noise reduction, bistabil-
ity, and self-pulsing effects described here, especially systems
employing a geometry that maximizes photonic (Kerr) non-
linearity.

This work naturally suggests additionally possibilities for
using nonlinear dispersive dissipation to control the output
state of semiconductor lasers. Examples of topics for addi-
tional investigation include the effect of nonlinear dispersive
loss on phase noise and linewidth, the effects of optical feed-
back on pulsing, bistability, and intensity/phase noise (e.g., in
external cavity lasers), and the simultaneous control of self-
pulsing and squeezing to generate pulsed squeezing. Semi-
conductor lasers are ubiquitous in many real-world applica-
tions and we envision that the use of nonlinear dispersive loss
could render them novel tools to control the mean field and
noise behavior of light across a wide range of wavelengths.
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A. HEISENBERG-LANGEVIN EQUATIONS OF MOTION

The Hamiltonian of a simple two-band semiconductor can be writen as

HSC =
∑

q

(ϵ(0)g + ϵe,q)c
†
qcq +

∑

q

ϵh,qh
†
qhq + Vint. (S1)

Here, cq and hq are the fermionic annihilation operators for conduction-band electrons and

valence-band holess at momentum q. They satisfy the fermionic commutation relations {cq, c†q′} =

δqq′ , and likewise for hq. Additionally, ϵ(0)g is the unrenormalized bandgap energy which separates

the two bands at zero momentum. Also note that the sums
∑

q are intended to note a sum over all

electron states q, including momentum, spin, and anything else that might be relevant. Finally, Vint

represent interactions (collisions between electrons, interactions of the electron with the lattice,

etc.). We will not need to consider the effects of this term, but its presence will lead to effects such

as collision-induced equilibration of carriers within a band, relaxation of carriers from the upper

band to the lower band, etc. Interactions can also lead to some shifts in the gain spectrum induced

by carrier screening and band-gap renormalization.

Now, we would like to introduce a single mode Kerr nonlinear cavity which has frequency ω0 and

annihilation operator a, so that the Hamiltonian of the cavity is Hcavity = ω0a
†a
(
1 + βa†a

)
with

β the per-photon Kerr nonlinearity. In order to describe lasing, the cavity should interact with

the semiconductor gain medium through its dipole moment. We can define analogs of the atomic

raising/lowering operators σ± for each electron label q as σq ≡ cqhq. Then, in the rotating wave

approximation (which assumes the light-matter coupling between the light and semiconductor is

weak), the interaction between cavity and semiconductor is

Hint =
∑

q

(
gqaσ

†
q + g∗qσqa

†) . (S2)

Then the Hamiltonian of the full laser is the sum of the contributions H = HSC+Hcavity+Hint. Our

goal then is to write equations of motion for quantities of interest, and then solve these equations

for steady state, transient, and noise properties of the laser. To do so, we will now write Langevin

equations of motion for the semiconductor laser. This amounts to computing the Heisenberg

equations of motion for the operators of interest, adding the relevant pumping and damping terms,

and finally computing the correlations between the Langevin forces which results to describe noise

behavior.
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For the polarization operator, we find

σ̇q = −iωqσq − γ⊥σq + igqa(ne,q + nh,q − 1) + fq, (S3)

where ωq is the energy difference between the valence and conduction bands for state q. We see

that σq oscillates in the same way that σi does for an atomic gain medium. Additionally, we see

that the quantity in parentheses (which we shall define as dq) in the second term acts like the

inversion in an atomic gain medium. Specifically, the occupation operators for the electrons and

holes can both takes values between 0 and 1. For a completely unexcited state (ne = nh = 0), the

grouped quantity is dq = −1. For a completely excited state (ne = nh = 1) we have dq = 1. Thus

dq can be thought of as the population inversion for each electron state q.

For the cavity photon annihilation operator,

ȧ = −iω0

(
1 + βa†a

)
a− κ

2
a− i

∑

q

g∗qσq + fa

= −iω0a
(
1 + βa†a

)
a− κ

2
a+

a

γ⊥

∑

q

|gq|2Dqdq + fa,
(S4)

where κ is the cavity number/energy damping rate, Dq ≡ γ⊥
i(ω−ωq)+γ⊥

and fa is the Langevin force

for the annihilation operator. In the second line, we adiabatically eliminated the polarization. Note

that β represents the per-photon Kerr nonlinear strength.

Lastly, for the electron occupation operator,

ṅe,q = Λe,q(1− ne,q)−Bqne,qnh,q − γ∥ne,q − γe(ne,q − (ne,q)0) + ig∗qa
†σq − igqσ

†
qa+ Fe,q. (S5)

In order from left to right, the terms are

• Population pumping. This is the pump rate due to carrier injection. When summing over

this term, we get the actual pump rate I at which free carriers are injected.

• Loss due to spontaneous emission. Excited carriers can be lost due to spontaneous emis-

sion. Since different q can have different energy splittings, one of these spontaneous emis-

sion events will not necessarily be into the laser mode of interest. The coefficient Bq is the

rate for a particular momentum state q.

• Nonradiative decay of population. This term represents the rate at which exited carriers

become unexcited in a manner which is proportional to the population (e.g., due to phonon

emission).
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• Carrier-carrier relaxation. This term represents relaxation to the equilibrium value (ne,q)0

within a band. The fact that γe tends to be very large compared to other relaxation rates

allows one to make the so-called “quasiequilibrium” approximation in which each band

acquires a Fermi-Dirac distribution. Moreover, because this term only redistributes carriers

to different q within the same band, it does not have an effect on the total inverted population.

Thus, when summing this term over electron states, it vanishes.

• Population depletion by stimulated emission into cavity mode. This is the only term

that can be derived from the Hamiltonian written above. This is the term that causes the

population of excited states to deplete when stimulated emission occurs.

Now, we identify

G(N)(1− iαL) ≡
2

γ⊥

∑

q

|gq|2dqDq (S6)

Γ(N) ≡ γ∥N +
1

V

∑

q

Bqne,qnh,q (S7)

N ≡
∑

q

ne,q. (S8)

where the linewidth enhancement factor αL ≡ dχr/dN
dχi/dN

, with χ = χr + iχi the susceptibility

of the active material [? ]. We can now identify the resonance frequency using a ≡ αeiϕ and

ϕ̇ = 1
2

d
dt
ln
(

a
a†
)
= ȧ

2a
− ȧ†

2a† , showing that

ω0 → ω0

(
1 + βn+

αL

2ω0

G(N)

)
, (S9)

so that the “carrier nonlinearity” is identified as σ ≡ αLGN/2ω0. With these substitutions and

neglecting the effects of spontaneous emission, the Heisenberg-Langevin equations in the main

text are obtained.

Here, we neglected any frequency-dependent phase shifts imparted by the Fano mirror. These can

be rigorously incorporated into the Heisenberg-Langevin equations using coupled mode theory,

as we do below in Sec. D. The result is a phase shift tan−1(δ(ω)/γ), where δ(ω) represents the

detuning from the Fano resonance and 2γ the width of the Fano resonance. We assume the second

cavity mirror (back reflector) is broadband and imparts no phase shift. The effect of including the

Fano mirror’s phase shift is to make the resonance frequency no longer analytically solvable given

n,N using Eq. S9. Instead, it must be solved numerically. However, we find that the effect of
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this dispersive phase shift is negligible over the detunings we consider: sweeping across the Fano

resonance gives a deviation from the prediction of Eq. S9 of at most 0.02γ, likely from the broad

width we assume for the Fano resonance under the adiabatic approximation.

A. Carrier equation of motion under optical excitation

In the case of free carrier excitation due to optical pumping, the mean field carrier equation of

motion derived from the Heisenberg-Langevin formalism reads [? ]

Ṅ =
ηPp

ℏωpVp

− γ∥N − nG(N), (S10)

where η is the pump efficiency, Pp the pump power, ℏωp the energy of a pump photon, and Vp

the pump volume. Assuming a pump volume Vp on the order of the active region volume and

excitation by a near-IR source (around 800 nm), typical pump powers are on the order of tens of

mW for examples considered in the main text with pump currents on the order of tens of mA.

B. Estimation of per-photon Kerr nonlinearity β

We briefly describe how the per-photon Kerr nonlinearity β can be estimated. Previous work has

derived the per-photon Kerr nonlinearity from a quantum mechanical Hamiltonian approach [? ]:

β =
3ℏω0

8ϵ20

∫
χ(3)(r)|u(r)|4d3r, (S11)

where the electric field profile is normalized as
∫
|u(r)|2ϵr(r)d3r = 1. To get an estimate of achiev-

able β, we consider a buried heterostructure laser with GaAs gain and Al0.34Ga0.66As cladding. The

active region has dimensions 0.1 µm × 5 µm × 1 mm, the lasing frequency is near the bandgap of

GaAs, ω0 = 2.16 × 1015 rad/s, and the refractive indices of GaAs and Al0.34Ga0.66As are 3.6051

and 3.3734 respectively. We take n2 ≈ −10−16 m2/W for Al0.34Ga0.66As [? ]. We solve Maxwell’s

equations in the core and cladding using a slab waveguide model, obtaining a confinement factor

Γ ≈ 0.3 and per-photon Kerr nonlinearity β ≈ −6× 10−10.
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B. MEAN-FIELD DYNAMICS: BISTABILITY AND SELF-PULSING

A. Bistability due to Kerr nonlinearity

Here, we quantify the bistability boundaries that arise when intensity-dependent loss is present.

As shown in Fig. 2, this bistability correlates with the phenomenon of self-pulsing and demarcates

an unstable region in the S-curve for the laser. Its boundaries can be found by noting that, in the

steady state,

I(n) = γ∥N(n) + nGN (N(n)−Ntrans)

N(n) =
κ(n)

GN

+Ntrans.
(S12)

The bistability boundaries (in pump I) are those values I(n) for which dI/dn = 0, for which we

require
dI

dn
= 0 =⇒ κn

(
γ∥
GN

+ n

)
+ κ(n) = 0. (S13)

One can see, for example, that in the absence of intrinsic loss, nc, the point of zero loss, satisfies

this condition, since κn(nc) = κ(nc) = 0.

B. Onset and cessation of self-pulsing

Self-pulsations begin when relaxation oscillations become undamped, Γ1 < 0 and Ω2
R > 0 (in

the initial steady state solution). They do not, however, persist throughout the entire region where

Γ1 < 0, as shown in Fig. 2 of the main text. When the laser begins at the left edge of bistability in

the S-curve (as in Fig. 2b) at steady state, the pulsations are transient and eventually collapse to the

steady state solution at the center of the Fano resonance with minimum loss at photon number nc

(this is the leftmost point of bistability). Note that the laser began at the second photon number n∗

(low intensity branch) that corresponds to the same pump power as photon number nc. Eventually,

we sweep through initial steady state photon numbers within the region of instability (still within

bistable operation) that is not normally accessible by pumping directly from threshold. When the

right edge of bistability is finally crossed, the laser enters the region with κn > 0, characterized

by heavily damped relaxation oscillations and intensity noise squeezing. When pumping from

threshold, the laser jumps from the low intensity to high intensity branch at the right bistable edge.
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FIG. S1: Evolution of the pulse profile for carrier density and photon number from the self-pulsing

to collapsed pulse regimes. As the initial photon number n0 approaches the left bistable edge, the pulse

plateaus for longer at the center of the Fano resonance. Thus, the effective width of the pulse is dynamic

within the regime over which self-pulsing occurs, depending on the initial state’s proximity to the left

bistable edge. Once the left bistable edge is crossed, the pulse collapses to a CW solution at higher photon

number than the initial state. Here, r0 denotes the initial pumping rate relative to threshold.

C. Pulse characteristics in self-pulsing regime

The self-pulsations demonstrate an interesting behavior in pulse shape, as shown in Fig. S1.

The initial sharp rise in the pulse profile is due to the undamping of relaxation oscillations, and

its timescale is thus set by 1/|Γ1|max ≈ 1/|nκn|max (O(1) ps in our simulations). The same

timescale characterizes the final drop in pulse power. In between these two features, two further

timescales are at play. The decay after peak pulse power is initially very fast (O(1) ps) due to the

strong damping of relaxation oscillations in the κn > 0 region. The decay slows as the photon

number approaches nc, governed by Γ1 evaluated at n ≈ nc. The final feature also sets the

longest timescale for the pulse. It is a plateau near n ≈ nc that emerges from “quasi” steady state

conditions. The carrier density can be calculated by solving the carrier equation of motion in the
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steady state as

N ≈ I0 + ncGNNtrans

γ∥ + ncGN

, (S14)

where I0 denotes the (fixed) pumping rate. Notice here that for n < n∗, N < N(nc), so that

G(N) < κ(n) as the photon number drops below nc and approaches the point where the pulsing

continues (Γ1 < 0). The timescale for the plateau is then given by τp = 1/|G(N)−κ(nc)|. Notice

that N → Nc, τp → ∞ as the initial steady state photon number n0 → n∗. When n0 = n∗, the

pulsations are transient and the laser approaches a steady state at n0 = nc, as shown in Fig. S1.

For n0 ≈ n∗, the plateau changes based on the initial steady state (i.e. pumping rate) and can

approach timescales of tens to hundreds of ps.

The peak pulse power is more difficult to predict, depending on the initial fluctuation from steady

state. However, it must occur at n > nc to saturate the pulse and begin its decline.

The pulse repetition rate is set by the carrier density recovery timescale when the pulse is off.

During this time, the photon number n ≈ 0, so that the mean-field dynamics of carrier density are

given by

N(t) =

(
Nmin −

I

γ∥

)
e−γ∥t +

I

γ∥
, (S15)

where I denotes the pump current and Nmin the minimum carrier density. If ∆N = Nmax −Nmin

is the difference in carrier density at the pulse maximum and minimum, the period between pulses

is given roughly by

Trep ≈ 1

γ∥
ln

(
I/γ∥ −Nmin

I/γ∥ −Nmax

)
. (S16)

For the system parameters in the main text, Trep ∼ 10 ns (100 MHz repetition rate).

C. INTENSITY NOISE

A. Langevin force correlators

In this section, we derive the photon number correlator in the presence of two-photon absorption

(TPA). We begin with the equation of motion for photon number probabilities in the presence of

TPA only, ṗn = −αTPA

2
n(n − 1)pn + αTPA

2
(n + 1)(n + 2)pn+2, where pn denotes the probability

of having n photons inside the laser cavity. Thus,
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⟨ṅ⟩ =
∑

j

jṗj

= −2αTPA

∑

j

j(j − 1)pj

= −αTPA[⟨n2⟩ − ⟨n⟩].

(S17)

The RHS reduces to −αTPA⟨n⟩2 assuming mean field theory, ∆n ≪ ⟨n⟩, recovering the equation

of motion ṅ = −αTPAn
2. Using the generalized Einstein relation, the correlator is ⟨2Dnn⟩ =

d
dt
⟨n2⟩ − 2⟨nDn⟩, where we express ṅ = Dn + Fn, with Dn a diffusion term and Fn a Langevin

force. Thus

⟨2Dnn⟩ =
(∑

n2ṗn

)
+ 2αTPA⟨n3 − n2⟩

= −αTPA⟨n(n− 1)2⟩+ 2αTPA⟨n2(n− 1)⟩

≈ 2αTPA⟨n⟩2,

(S18)

again assuming mean field theory. Allowing for one-photon gain and loss, ⟨2Dnn⟩ = 2κn +

αTPAn
2. The other nonzero diffusion coefficients are ⟨F †

NFN⟩ = ⟨2DNN⟩ = ϵI + Rspn +

γ∥N, ⟨F †
NFn⟩ = ⟨2DNn⟩ = −Rn, ⟨F †

ϕFϕ⟩ = ⟨2Dϕϕ⟩ = Rsp/2n where Rsp ≈ G(n,N) denotes

the rate of spontaneous emission into the cavity mode, Rabs ≈ 0 denotes the rate of absorption

(negligible above threshold), R = Rsp + Rabs, and ϵ = 0 (1) for quiet (noisy) pumping. These

correlators can be derived by computing the Einstein diffusion coefficients [? ] and give rise to

nonzero fluctuations in n,N about their steady state values. For intracavity noise calculations in

the main text, pump noise is always included. Output noise calculations are performed for both

noisy and quiet pumping schemes.

B. Analytic intensity noise spectra and Fano factor expressions

In this section, we provide a linearization of the semiconductor laser rate equations in the presence

of various nonlinearities and calculate relative intensity noise using this formalism. We obtain
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δṅ = −
(
κnn+

pG0

2(1 + p)

)
δn+ n (GN − κN) δN + Fn − nκωFϕ

δṄ = −
(
G0(1 + p/2)

1 + p
− In

)
δn−

(
GNn+ γ∥

)
δN + FN .

(S19)

where p = n/nsat denotes the saturation fraction for photon number and In ≡ dI/dn denotes

carrier generation by TPA. Note that G0, GN implicitly include the effects of gain saturation,

G0,N → G0,N/
√
1 + p. Results in the main text assume p, In → 0.

For simplicity of notation, we will introduce a = nGN + γ∥, b = n (GN − κN) , c = G0
1+p/2
1+p

−
In, d = n(κn − Gn),Γ1 = a + d,Ω2

R = ad + bc. Note that Ω2
R denotes the approximate relax-

ation oscillation frequency and Γ1 the decay of relaxation oscillations. Fourier transforming the

linearized rate equations,


−iΩ + d −b

c −iΩ + a




 δn(Ω)
δN(Ω)


 =


Fn − nκωFϕ

FN


 , (S20)

yielding

 δn(Ω)
δN(Ω)


 =

1

−Ω2 + (ad+ bc)− iΩ(a+ d)


 (−iΩ + a) (Fn − nκωFϕ) + bFN

−c (Fn − nκωFϕ) + (−iΩ + d)FN .


 (S21)

The intensity noise spectrum is then

⟨δn†(Ω)δn(Ω)⟩ = (Ω2 + a2)[⟨2Dnn⟩+ n2κ2
ω⟨2Dϕϕ⟩] + b2⟨2DNN⟩+ 2ab⟨2DNn⟩

(Ω2 − Ω2
R)

2 + Ω2Γ2
1

. (S22)

As a side note, ignoring the effect of Kerr nonlinearity but including dispersive loss and the as-

sociated amplitude-phase coupling, we see that RIN can be reduced by a factor (1 + κ2
ω)/(1 −

αLκω/2)
2 → 1/(1 + α2

L) if the slope κω is chosen appropriately, in agreement with earlier work

on amplitude-phase decorrelation (where intensity noise is reduced somewhat at the expense of

an increase in phase noise) [? ]. However, this method leads to frequency selective squeezing, as

opposed to the type of broadband squeezing we consider here.

We compute the Fano factor from Eq. S22 using the integrals
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I1 =

∫ ∞

0

1

(ω2 − x2)2 + y2
dω =

π

4y

√
2x2 + 2

√
x4 + y2

√
x4 + y2

I2 =

∫ ∞

0

ω2

(ω2 − x2)2 + y2
dω =

π

4

√
−2x2 + 2

√
x4 + y2

√
x4 + y2

+ x2I1,

where x, y ∈ R. With x2 = Ω2
R − Γ2

1

2
, y2 = Γ2

1

(
Ω2

R − Γ2
1

4

)
, we have I1 = π

2Γ1Ω2
R
, I2 = π

2Γ1
. Thus,

the Fano factor reads

F =
1

2nΓ1Ω2
R

(
[⟨2Dnn⟩+ n2κ2

ϕ̇
⟨2Dϕϕ⟩](Ω2

R + a2) + ⟨2DNn⟩ab+ ⟨2DNN⟩b2
)

(S23)

We now consider limiting expressions for F in various limiting cases:

1. For weak Kerr and carrier nonlinearities, κn, κN → 0, we have F → 1 + κ/(nGN) when

pumping far above threshold, recovering linear behavior. When n becomes large far about

threshold, the Fano factor approaches 1, resulting in Poissonian (coherent) statistics.

2. For strong Kerr nonlinearity but weak carrier nonlinearity, nκn ≫ κ0, n|κN |, γ∥, GN , the

Fano factor F → κ/(nκn) for large n, resulting in squeezing when nκn > κ.

3. For strong carrier nonlinearity but weak Kerr nonlinearity, n|κN | ≫ κ0, n|κn|, γ∥, we have

F → κ/(nGN) +GN/|GN − κN | → GN/|GN − κN | for large n. The carrier nonlinearity

reduces dependence of the rate of change of intensity fluctuations on carrier fluctuations

(GN → GN − κN ), lowering the relaxation oscillation frequency Ω2
R while leaving the

damping of these oscillations unchanged. This can amplify low-frequency intensity noise

slightly.

4. For simultaneously strong Kerr and carrier nonlinearities, n|κn,N | ≫ κ0, γ∥,

F → κ

n|GN + κn|

(
1 +

nG2
N

nκnGN + |GN − κN |κ

)
. (S24)

Roughly, this expression can be broken into Kerr nonlinearity (first term) and carrier non-

linearity (second term) contributions. The former describes squeezing via increased Ω2
R and

damping of relaxation oscillations due to “sharp” intensity-dependent loss, while the latter

reduces intensity noise-carrier noise coupling and thus Ω2
R. Kerr and carrier nonlinearities
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may therefore have competing effects, leading to interesting steady state and noise fluctua-

tion behavior.

C. Noise reduction using two photon absorption (TPA)

Two photon absorption (TPA), though not a dispersive loss, is weakly nonlinear in photon number

and thus may be expected to permit some squeezing in intensity noise. When TPA is present, for

large n,

F → 3κ

2n(GN + αTPA)

(
1 +

GN

αTPA + κ/n

)
, (S25)

where αTPA = κn. The minimum achievable Fano factor is 3/4, obtained when κ0/n ≪ αTPA ≪
GN (here κ0 denotes linear background loss). To obtain the TPA coefficient αTPA, we use the

relationship between intensity I and photon number I ∼ nℏωc/V , so that αTPA ∼ 2ℏωcLβTPA ·
FSR/V , where L, V respectively denote the length and volume of the cavity. For a cavity field

oscillating at ω ∼ 1015 Hz for GaAs at 1064 nm (βTPA = 260 m/TW), we find αTPA ∼ 10−8 ·FSR
for L ≈ 1 mm, V ≈ 10−16 m3. For typical intracavity photon numbers, the TPA contribution to

the loss is then 10−2 · FSR, a weak nonlinear background loss that is neglected for the examples

in the main text where the primary nonlinear dispersive loss is much stronger.

As shown in Fig. S2a, TPA creates a sublinear S-curve that arises from the monotonic dependence

of κ(n) on n. Fig. S2b demonstrates how TPA induces broadband intensity noise squeezing,

resulting in a weak suppression of Fano factor (integrated over all noise frequencies) in Fig. S2c.

Linear loss asymptotes to unit Fano factor for large pump powers, while TPA can result in minor

noise condensation (though this effect can be washed out if TPA is too strong or too weak, in

violation of κ0/n ≪ αTPA ≪ GN ). The source of Fano factor reduction for higher pump currents

is slightly different for both loss profiles. For linear loss, it occurs because steady state n increases

linearly with pump current while the fluctuations (∆n)2 have a sublinear dependence on pump

current. In contrast, for TPA, the photon number n is clamped at high pump current and the

photon number distribution is squeezed slightly due to the nonlinear loss κ(n).
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FIG. S2: Steady state and noise plots for two photon absorption. (a) Steady state intracavity photon

number as a function of pump current (S-curve), demonstrating sub-linear dependence of photon number

with pump current for two-photon absorption (TPA). (b) Photon number variance spectrum for two different

pump powers r = I/Ithres, with broadband squeezing for intensity-dependent TPA. (c) Fano factor plots

for linear and TPA loss profiles. The intensity dependence of TPA κ(n) ∝ n creates small (< 2 dB) drops

in Fano factor below the shot noise limit when pumped far above threshold. Here, α ≡ αTPA/FSR.

D. Noise reduction using nonlinear distributed feedback-based loss

In this section, we consider distributed feedback semiconductor lasers where a distributed Bragg

reflector (DBR) is fabricated on one (or both) ends/facets of the laser cavity, or a VCSEL-type

structure is employed. In this case, we use the analytical form for DBR reflectivity given by

coupled mode theory [? ? ] to obtain

κ(ω) = −FSR · log
∣∣∣∣

g sinh(θ)

Γ cosh(θ) + (αDBR + iδ) sinh(θ)

∣∣∣∣
2

, (S26)

where β = ωñ/c is the propagation constant (wavevector), g = ω∆n/(πc) is the approximate

coupling coefficient, δ = β− π/d, Γ2 = g2 + (αDBR + iδ)2, θ = NDBRdΓ, and αDBR the radiative

loss from the DBR. Here, NDBR denotes the number of pairs of layers in the DBR, d the thickness

of a pair of layers, ∆n the index contrast, ñ the effective index, and ω ≡ ω(n,N) the laser

frequency. Note that δ has the interpretation of a detuning from the Bragg value π/d (the center

of the Bragg stop-band of maximum reflectivity and thus lowest loss is at δ = 0). We would like

to operate in the “sharp loss” regime, which is where the stop-band switches over to a pass-band,

first occurring when θ = π =⇒ δ2 − g2 = π2/L2. For a lossless DBR, choosing the frequency
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ωc at which this sharp transition occurs fixes δ and therefore ∆n from the above relations:

∆n =
πc

ωc

√(
ñ

c
(ωc − ωt)

)2

−
(π
L

)2
, (S27)

where ωt denotes the center of the stop band, so that ωc − ωt is effectively the half-width of the

stop band. The coupling coefficient g, index contrast ∆n and stop band width 2(ωt − ωc) are thus

closely related.

To use Eq. S26, it is necessary to ensure the time response of the DBR is much faster than the free

spectral range. We extract this time response by performing an FFT of R(ω). For lossy DBRs,

R(ω) approaches a Lorentzian with width governed by αDBR, and the maximum reflectivity may

be far from unity. When the DBR is lossless, an analytical expression for the time response is

in general difficult to obtain. We observe that the time response is faster for DBRs of larger

bandgap (wider stop bands). Intuitively, outcoupling in a lossless DBR is through the coupling

coefficient g which scales with the index contrast ∆n and thus correspondingly with the stop band

width 2(ωc − ωt). This is distinct from the Fano resonances considered in the main text where

the loss profile was derived from interference between a “direct channel” pathway bypassing the

Fano resonance and an “indirect pathway” coupling to an intrinsic resonant mode of the photonic

crystal. In such a case, the time response of the effective nonlinear dispersive loss is governed

by the the complex resonance frequency of the Fano resonance (intuitively, how long light spends

trapped in the photonic crystal). Here, however, sharply frequency-dependent loss arises from a

different mechanism, namely the photonic bandgap of the DBR. A comparison of the two different

types of temporal responses are provided in Fig. S3.

The sharpness of κ(n) increases with the number of layers NDBR and Kerr nonlinear strength

(the former corresponds to sharper evanescent decay of modes in the photonic bandgap). For the

strongest nonlinearity and sharpest R(ω), multiple stop bands may be accessible, corresponding

to multiple regions of noise condensation and bistability for each transition from pass band to stop

band. An important distinction from the Fano resonances considered earlier is that the sharp loss

regions κn > 0 are now the lower bistability branches, accessible by simply pumping smoothly

from threshold.

From an experimental standpoint, the sharpest loss (and strongest squeezing) can be obtained by

maximizing the stop band width and number of layer pairs NDBR. The former is limited by the
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FIG. S3: Comparison of frequency and temporal response for Fano mirror and DBR losses. In the

top row, the DBR stop band is made sharper and its width is increased by increasing the number of layers.

This results in a shorter, ultrafast relaxation time. In contrast, in the bottom row, the Fano mirror frequency

response is made sharper by increasing the quality factor (Q) of the resonance, which has the effect of

decreasing the width of the resonance while increasing its lifetime.

intracavity saturation intensity and required index contrast ∆n, while the latter is limited by fab-

rication methods. Nevertheless, carefully-engineered DBR-based losses when coupled to strong

Kerr nonlinearity in semiconductor lasers may result in unprecedented broadband intensity noise

squeezing.

D. OUTPUT PHOTON NOISE

Here, we develop formalism to compute output photon noise in the presence of nonlinearity and

dispersive dissipation. Let a, d respectively denote the nonlinear cavity mode and the Fano mirror

mode, both of which couple to a continuum of far-field modes sk (here k labels momentum). From
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the full Hamiltonian of the system [? ], the Heisenberg equations of motion can be derived as

ȧ = −iωa(1 + βa†a)a+G(N)(1− iαL)a− i
∑

k

g∗ksk + FG

ḋ = −iωdd− i
∑

k

v∗ksk

ṡk = −iωksk − i(gka+ vkd).

(S28)

where ωa,d denote the resonance frequencies of the cavity and Fano mirror, β is the per-photon

Kerr nonlinearity, G(N) is the carrier-dependent gain (added phenomenologically), αL is the

linewidth enhancement factor, and gk, vk are the couplings of a, d to the far-field mode sk. FG(t)

is a Langevin force term for the gain. We neglect direct coupling between a and d, though this can

be readily incorporated into the Heisenberg equations. We can solve for sk as

sk(t) = sk(0)e
−iωkt − i

∫ t

dt′e−iωk(t−t′)[gka(t
′) + vkd(t

′)]. (S29)

We assume momentum independent coupling g = gk, v = vk and introduce κFSR = πρ|g|2, γ =

πρ|v|2. The input-output relation can then be found by taking t → ∞, performing an integral over

k, and Fourier transforming:

sout(ω) = −sin(ω) +
√
2κFSRa(ω) +

√
2γd(ω). (S30)

We can write the Fourier transformed Heisenberg equations for a, d as

−iωa = −iωa(1 + βa†a)a+ [G(N)(1− iαL)− κFSR]a−
√
κFSRγd+

√
2κFSRsin + FG

−iωd = −iωdd− γd−√
κFSRγa+

√
2γsin.

(S31)

Eliminating d(ω) as

d(ω) =

√
2γsin −√

κFSRγa

iδd + γ
, (S32)

with δd ≡ ωd − ω, we can write the Fourier transformed equation of motion for a and the input-

output relation as

−iωa = −iωa(1 + βa†a)a+ [G(N)(1− iαL)−Kl(ω)]a+

Fa︷ ︸︸ ︷
Kc(ω)sin + FG (S33)

sout(ω) = Ka(ω)a(ω)−Ks(ω)sin(ω), (S34)
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where

Ka(ω) =
√
2κFSR

(
1− γ

iδd + γ

)

Ks(ω) = 1− 2γ

iδd + γ

Kl(ω) = κFSR

(
1− γ

iδd + γ

)

Kc(ω) = Ka(ω).

(S35)

To compute noise, we begin with the intracavity fluctuations, which are governed by the linearized

system

M(Ω)




δa(Ω)

δa†(Ω)

δN(Ω)


 =




Fa(Ω)

Fa†(Ω)

FN(Ω)


 =




Kc(ω+)δsin(Ω) + FG(Ω)

K∗
c (ω−)δs

†
in(Ω) + F †

G(Ω)

FN(Ω)


 , (S36)

where for a generic operator X†(Ω) = [X(−Ω)]† follows from the definition X†(t) = [X(t)]†.

The fluctuation matrix has columns

Mx1(Ω) =




−iω+ + iωa(1 + 2β|α|2) +Kl(ω+)−G(N)(1− iαL)

−iωaβα
∗2

2G(N)α∗




Mx2(Ω) =




iωaβα
2

iω− − iωa(1 + 2β|α|2) +K∗
l (ω−)−G(N)(1 + iαL)

2G(N)α




Mx3(Ω) =




−GNα(1− iαL)

−GNα(1 + iαL)

−iω + γ∥ + 2GN |α|2


 .

(S37)

Here, x ∈ [1, 2, 3] to denote the row of M , ω± = ω ± Ω, and the steady state cavity amplitude α

is determined through

[i(−ωa(1 + β|α|2) + ω) +G(N)(1− iαL)−Kl(ω)]α = 0. (S38)
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Noise emerges from the nonzero correlators [? ? ]

⟨F †
G(ω)FG(ω

′)⟩ = G(N)δ(ω − ω′)

⟨F †
N(ω)FG(ω

′)⟩ = −αG(N)δ(ω − ω′)

⟨F †
N(ω)FN(ω

′)⟩ = [nG(N) + γ∥N + ϵI]δ(ω − ω′)

⟨sin(ω)s†in(ω′)⟩ = δ(ω − ω′),

(S39)

with ϵ = 0 for quiet pumping and ϵ = 1 for shot noise limited pumping. We can now compute the

output photon noise by noting

δnout(t) = s∗0δsout(t) + s0δs
†
out(t)

δnout(Ω) = s∗0δsout(Ω) + s0[δsout(−Ω)]†

= s∗0Ka(ω+)δa(Ω) + s0K
∗
a(ω−)δa

†(Ω)− [s∗0Ks(ω+)δsin(Ω) + s0K
∗
s (ω−)δs

†
in(Ω)]

(S40)

where here s0(ω) = Ka(ω)α(ω) is the steady state output (propagating) amplitude and the in-

tensity noise spectrum is given by ⟨δn†
out(Ω)δnout(Ω)⟩. Spectra in the limit of nondispersive loss

closely match those found by Yamamoto et al. [? ].

E. INTENSITY NOISE IN QCLS WITH NONLINEAR DISPERSIVE LOSS

The photon and carrier dynamics for QCLs are conventionally described using a three-level model

for the carrier populations [? ]

Ṅ j
3 = Ij −N j

3

(
1

τ32
+

1

τ31

)
− nG

(
N j

3 , N
j
2

)
+ F j

3

Ṅ j
2 =

N j
3

τ32
− N j

2

τ21
+ nG

(
N j

3 , N
j
2

)
+ F j

2

ṅ = n

(
−κ(n) +

m∑

j=1

G
(
N j

3 , N
j
2

)
)

+ Fn,

(S41)

where N j
3 , N

j
2 respectively denote the carrier populations in levels 3 and 2 in each gain stage j,

Ij denotes the injected current to gain stage j, and τ31, τ32, τ21 are the nonradiative decay time

constants indicated in Fig. 4c. A linear model for the gain G
(
N j

3 , N
j
2

)
= GN(N

j
3 − N j

2 ) is

employed. Langevin forces F j
n, F

j
3 , F

j
2 are added for the following noise analysis.
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We can simplify the analysis by introducing N2,3 =
∑

j N
j
3,2 and assuming all of the gain stages

are identical. Then, the dynamics for n,N2, N3 are described by a set of three coupled nonlinear

equations. Note that we neglect the dynamics of N1 (the carrier population in level 1) since the

populations of interest n,N2, N3 form a closed system of equations. Linearizing and Fourier

transforming the QCL rate equations, we find

M




δN3(Ω)

δN2(Ω)

δn(Ω)


 =




F3

F2

Fn − nκωFϕ




with the fluctuation matrix

M =




−iΩ + γ11 −γ12 γ13

−γ21 −iΩ + γ22 −γ23

−γ31 γ32 −iΩ− γ33


 ,

where γ11 = nGN + 1/τ32 + 1/τ31, γ12 = nGN , γ13 = γ23 = GN∆N, γ21 = nGN + 1/τ32, γ22 =

nGN + 1/τ21, γ31 = γ32 = nGN , γ33 = −nκn and ∆N = N3 − N2. The correlators be-

tween the Langevin forces are given by ⟨2Dnn⟩ = 2GNN3n, ⟨2Dϕϕ⟩ = GNN3/(2n), ⟨2D22⟩ =

2GNN3n + N3/τ32, ⟨2D33⟩ = 2GNN3n + N3/τ32 + N3/τ31, ⟨2D3n⟩ = −GN (N2 +N3)n,

⟨2D2n⟩ = GN (N2 +N3)n, ⟨2D32⟩ = − (GN(N2 +N3)n+N3/τ32).

In QCLs, the intensity noise is dominated by both spontaneous emission and nonradiative decay

of excited carriers, whereas in typical semiconductor lasers, it is only the former that matters [? ].

Thus, starting from the linearized matrix equations, we can approximate the DC intensity noise as

⟨δn†(0)δn(0)⟩ ≈ γ2
s (γ21 − γ22)

2⟨2D33⟩+ (γsγ21 − γ11γ22)
2⟨2Dnn⟩

(γ2
sγ23 + γ11γ22γ33 + γs(γ13(γ21 − γ22)− γ11γ23 = γ21γ33))

2 , (S42)

where γs = γ12 = γ31 = γ32 = nGN . In the absence of nonlinear dispersive loss, γ33 = 0 and

the DC intensity noise goes as (τs/τnr)
2 where 1/τs ≡ nGN is the rate of stimulated emission

(per carrier) and 1/τnr is an effective nonradiative decay rate of the carriers. The scaling with

the stimulated emission lifetime is expected given that the light approaches a coherent state as

the power increases. The inverse scaling with τnr reflects the fact that in QCLs, in contrast to

conventional semiconductor lasers, the carrier density is not clamped above threshold. Instead,

N2, N3 are dynamic and their fluctuations have fast response times, significantly affecting the

intensity noise even above threshold. We also note that the fast nonradiative decay of the carriers
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also leads to the relaxation oscillations in QCLs being overdamped, despite increasing intensity

noise. In this case, the increased intensity noise of QCLs compared to conventional lasers stems

from stronger low-frequency noise arising from the unclamped carrier populations above threshold

(which increase proportionately with pump current, together with the photon number). The effect

of nonlinear dispersive loss is to outcompete the nonradiative decay rates to dominate the intensity

noise. Thus, |γ33| ≫ 1/τnr is a necessary condition for this mechanism for squeezing to be

effective.

To provide analytical checks against previous theory on QCL intensity noise [? ], we compute

output photon noise as described above in Sec. D, agreeing qualitatively with Eq. 95 of [? ].

F. NONLINEAR DISPERSIVE LOSS WITH CARRIER AND KERR NONLINEARITIES

In this section, we describe how the interplay of carrier nonlinearity with dispersive loss can result

in unexplored “carrier bistability” behavior in conventional semiconductor lasers. We consider

carrier nonlinear strengths σ comparable to what they might be in, for example, GaAs-based gain

media [? ? ].

We first describe how multiple lasing steady states can exist when strong carrier nonlinearity and

dispersive loss are simultaneously present. In an ordinary semiconductor laser, the “gain equals

loss” requirement leads to a so-called “gain clamping” condition, wherein above threshold, the

inverted carrier density is fixed at some value, regardless of the intensity (i.e. the carrier density

N such that GN(N − Ntrans) = κ). This is depicted in Fig. S4a by the “linear loss” case which

shows only a single intersection point of the carrier-dependent gain and carrier-independent loss.

However, in the presence of strong carrier nonlinearity and sharply frequency-dependent outcou-

pling (with a Fano mirror for example), the loss of the cavity mode can depend nonlinearly on the

carrier density N , κ(ω(N)) = κ(N). As the carrier density changes, so does the cavity frequency,

and hence the damping rate via the frequency-dependent mirror. The “gain equals loss” condition

now reads GN(N − Ntrans) = κ(N). As shown in Fig. S4a, this leads to a situation where more

than one carrier density N can cause gain and loss to be equal, corresponding to multiple cavity

resonance frequencies. In the case of the Fano resonance, we see that up to three different steady

states are possible.

Fig. S4b shows how this phenomenon manifests in the steady state laser behavior. The depen-
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dence of steady state intensity on the pump current is still linear, but there can be up to three

independent branches, corresponding to different steady state N and different lasing frequencies.

For the Fano mirror example, one resonance frequency is always present such that the detuning

from the Fano resonance ∆ ≈ 0. Since this solution has lowest loss, and thus the lowest threshold,

lasing will occur here by default. The other branches are also stable, but disconnected from the

lowest branch. It may be possible to experimentally access these higher branches through dynamic

pumping schemes which generate transients that can travel from one branch to another.

When Kerr nonlinearity is also introduced, additional phenomena appear due to the simultaneous

nonlinear dependence of the damping rate on intensity and carrier number. It is important to note

that the profile κ(ω) is unchanged, though κ(n,N) will vary based on the nonlinear strengths.

Furthermore, the gain (and thus loss) is monotonically increasing in N . For typical materials (and

for the results presented in Fig. S4), σ < 0 increases the resonance frequency ωR(n,N) and thus

pushes lasing solutions rightward along κ(ω).

Consider first weak carrier nonlinearity (orange and green curves in Fig. S4c). Then, the carrier

nonlinearity can be treated as a perturbation to the initially symmetric Lorentzian loss κ(n). On

the κω ≡ dκ/dω > 0 (right) branch of the dispersive loss, the carrier nonlinearity shifts the loss

curve upward. On the other hand, the κω < 0 (left) branch shifts downwards since an increase in

ω corresponds to a point of lower loss (approaching detuning ∆ = 0).

Suppose we increase the carrier nonlinearity further (red curve in Fig. S4c). For n near threshold,

far below the “magic” photon number nc ≈ 106 of lowest loss, the carrier nonlinearity pushes

solutions rightward along the Lorentzian. However, the laser still lies on the κω < 0 branch - the

carrier nonlinearity pushes the mode closer to nc, which is near zero loss and thus N ≈ Ntrans.

This yields one steady state solution. For higher n, near but still below nc, we eventually reach

an n at which two solutions are possible: N ≈ Ntrans (lower loss) or N > Ntrans (higher loss).

Immediately afterwards, a third solution is possible with still higher loss/higher carrier density,

phenomenologically similar to the dashed curve in Fig. S4a. Finally, as κω drops past the inflection

point of κ(ω), a point corresponding to two solutions marks the end of the carrier bistability and for

the largest n we again obtain only one solution (the Lorentzian loss looks approximately linear).

For even stronger carrier nonlinearity (purple curve in Fig. S4c), the carrier bistability boundaries

shift leftward in photon number. Comparing the red and purple curves in Fig. S4c, the left bound-

ary eventually crosses zero and becomes negative, at which point the loss curve detaches into two
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parts: a sharp part at low loss and linear part at higher loss, separated by a range of pump cur-

rents over which no stable lasing solution occurs. When the right bistability boundary also crosses

n = 0 the sharp loss vanishes and laser operation only occurs on the linear high-loss branch (with

correspondingly larger threshold currents), as shown for the brown curve in Fig. S4c.

We now examine the effects of this carrier bistability on intensity noise. As shown in Fig. S4e,

the minimum achievable Fano factor is relatively independent of the level of carrier nonlinear-

ity. This can be seen by noting that the first term in Eq. S24 dominates the Fano factor at these

points. However, past the sharp loss region, the linear branch created by the carrier nonlinearity

possesses a higher loss that pulls the Fano factor upward for larger pump currents. For large carrier

nonlinearities, the system eventually hits bistability and a region of unstable lasing, transitioning

to (approximately) linear behavior again. For carrier nonlinearities much stronger than the Kerr

nonlinearity (brown curve), approximately linear loss is restored as described above and no inten-

sity noise reduction is observed. Mathematically, Eq. S24 essentially contains a combination of

dominant Kerr and dominant carrier nonlinearity terms, demarcated by pump currents smaller and

larger than the Fano factor minimum/sharp loss regime, respectively.
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FIG. S4: Effects of carrier and Kerr nonlinearities composed with dispersive loss. (a) In the presence

of only carrier nonlinearity σ, the resonance frequency and thus loss depend “directly” on carrier density

N , and steady states are set by the intersections of gain and loss. For strong σ and low background loss κ0,

multiple steady state carrier densities N can correspond to a given photon number n, resulting in different

steady state losses (detunings from the Fano resonance). The lowest loss solution (smallest detuning) is most

likely to lase, though extra solutions may be accessible by dynamic pumping schemes. (b) The schematic

effect of this “carrier bistability” is to create multiple branches in the S-curve of different slope/threshold

current. The presence of both strong carrier and Kerr nonlinearities result in the novel behaviors shown

in panels (c), (d), and (e). Carrier nonlinearity causes a deformation of the intensity-nonlinear Lorentzian

loss profile, eventually pinching off the “sharp loss” from the linear loss for sufficiently strong carrier

nonlinearity (purple curve). This stems from leftward motion of the carrier bistability boundaries and creates

a demarcation between linear (F ≫ 1) and nonlinear (F < 1) loss regimes which may be separated

by a region of lasing with no stable solution. System parameters used are the same as those in Fig. 2

with β = −10−10, κ0 = 10−2 · FSR, and γ = 2 × 1012 rad/s. The magnitudes of Kerr and carrier

nonlinearities taken here are comparable to what they might be in GaAs-based gain media: β ∼ −10−10

and σ ∼ −3 × 10−27 m3 (with the proviso of being taken as instantaneous and being evaluated at a single

wavelength).
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