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Adaptive Joint Estimation of
Temporal Vertex and Edge Signals

Yi Yan, Tian Xie, and Ercan E. Kuruoglu

Abstract—The adaptive estimation of coexisting temporal ver-
tex (node) and edge signals on graphs is a critical task when
a change in edge signals influences the temporal dynamics of
the vertex signals. However, the current Graph Signal Processing
algorithms mostly consider only the signals existing on the graph
vertices and have neglected the fact that signals can reside on
the edges. We propose an Adaptive Joint Vertex-Edge Estimation
(AJVEE) algorithm for jointly estimating time-varying vertex
and edge signals through a time-varying regression, incorporating
both vertex signal filtering and edge signal filtering. Accom-
panying AJVEE is a newly proposed Adaptive Least Mean
Square procedure based on the Hodge Laplacian (ALMS-Hodge),
which is inspired by classical adaptive filters combining simplicial
filtering and simplicial regression. AJVEE is able to operate
jointly on the vertices and edges by merging two ALMS-Hodge
algorithms specified on the vertices and edges into a unified
formulation. A more generalized case extending AJVEE beyond
the vertices and edges is being discussed. Experimenting on real-
world traffic networks and population mobility networks, we have
confirmed that our proposed AJVEE algorithm could accurately
and jointly track time-varying vertex and edge signals on graphs.

Index Terms—graph signal processing (GSP), time series,
simplicial complexes, adaptive algorithms, and graph learning.

I. INTRODUCTION

GRAPHS have recently become a popular and impactful
research topic, owing to the effective representation

ability at representing interacting multivariate signals. Four
major challenges impede the effectiveness of classical signal
processing algorithms on multivariate time-varying signals that
reside on graph-like topological structures: the representation
of topological irregularity, the estimation of unknown data
based on known data, the removal of noise present in the
data, and the extraction of the cross-space-time time-variation.
In graph signal processing (GSP), graphs have demonstrated
their capacity to represent information in various real-world
scenarios and disciplines of studies. Graphs have been studied
extensively and attracted considerable attention due to their
irregular structure, as well as their effectiveness in representing
interactions among data [1], [2], [3]. Measurements taken by
multiple sensors could be used to construct sensor graphs
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based on the locations of the sensors, with the data features
embedded on the vertices. Examples of sensor graphs include
recordings of 5G signal reception strength graph [4], air-
quality graph [5], and nationwide temperature graph [6]. In
bioinformatics, biological networks could model the time-
varying gene interactions [7], functional brain imaging [8], and
biomedicine [9]. Graphical models are proposed in finance to
reflect the interplay of the stock market from the interaction
among stocks [10].

Signals in reality often contain time dimension information;
when processing the data on the graph vertices that evolve with
time, one could rely on the graph adaptive filters, which is a
combination of classical adaptive filters with the graph shift
operations. The first GSP adaptive algorithm proposed was
the graph adaptive least mean squares (GLMS) algorithm and
graph signals are estimated in an online fashion using l2-norm
optimization with the assumption of Gaussianity on the noise
of the signal [4]. Extensions of the GLMS have enhanced the
performances of adaptive GSP filters at improved convergence
speed [6], [11] and increased robustness under impulsive noise
[11], [12], [13], [14]. A graph diffusion based on the adaptive
GLMS was proposed in [15] and another graph adaptive
filter based on GLMS that uses a sign update strategy was
recently proposed in [16]. Kernel-based time-varying graph
signal reconstruction method was also proposed using space-
time models [17]. Another class of online algorithms that
processes time-varying nodal signals is to combine time-series
analysis techniques with GSP, for example, the graph vector
autoregressive model [18], the graph vector autoregressive
moving average model [19], [20], and the graph GARCH
model [21]. Time-varying vertex signal can also be processed
using offline algorithms based on time-vertex algorithms [22],
[23].

Despite the success of GSP, it solely considers data on
the graph vertices, meaning that higher-order signals, such as
signals on graph edges, are not being represented. To give a
few examples, traffic data on road networks recorded on the
edges [24], [25], gene interaction over time forms a set of
time-varying graph edges [7], multi-agent systems use time-
varying edge data to model the agent interactions [26]. A
citation complex can be viewed as a higher-ordered social
network and formed from constructing simplices among co-
author collaborations: the number of citations of a 2-author is
a signal on the graph edges and the number of citations of a
3-author paper is a signal on a triangle [27]. The spread of
COVID-19 among multiple regions can be represented using
a series of dynamic graph that records the confirmed cases
in each region on the vertex and the population mobility
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between two regions on the edges. In existing GSP algorithms
that process time-varying vertex signals, the interaction among
vertices is modeled using fixed parameters at all time instances
[21]. Failing to capture the time-varying interaction would lead
to an inaccurate estimation. One could attempt to apply GSP
to signals on the edges by projecting the edge signals onto
the vertices of its vertex-to-edge dual graph (line graph) as a
workaround, but as pointed out in [28] and [29], the projected
signals do not share the same GSP properties and assumptions,
which hinders the performance of the line graph workaround.

The recently emerged Topological Signal Processing (TSP)
has been established as an alternative point of view from
GSP for heterogeneous and higher-ordered types of signals,
overcoming the limitation of GSP by generalizing graphs to
simplicial complexes. The signals on the vertices of a graph
are considered as signals of the 0 order simplex, while higher
order simplices could be used to represent signals on the edges
and beyond [30], [31]. In [24], semi-supervised learning for
data on the graph edges is done using the Hodge Laplacians
and flow conservation. An analogy of spectral wavelets on
simplicial complexes called Hodgelets is proposed in [32].
The work of [33] further proposed topological Slepians, which
are the signals concentrated on the topological domain and
localized on the frequency domain. In [34], [35], finite impulse
response filters on simplicial complexes were discussed, and
the work of [36] further defined the convolution operation
for signals on a simplicial complex. Chebyshev polynomial
approximations of spectral filters on simplicial complexes
are provided in [36] and [37]. Recently the discussions on
online water flow imputation on graph edges were attempted
strictly using flow conservation in [38]; the simplicial vector
autoregressive (SVAR) was proposed in [39] on the same water
flow imputation task. The sampling of graph edges using the
line graph transformation is discussed in [40]. Deep learning
algorithms making use of simplicial complexes to process data
on the edges have been proposed by introducing nonlinearity to
TSP. Graph neural network for edge data based on the Hodge
Laplacian can be found in [28]. The work of [27] defined a
convolutional neural network based on simplicial complexes.
The attention mechanism is merged with the Hodge Laplacian
in [41] and [42].

The above Hodge Laplacian-based algorithms demonstrated
good performance at processing signals on graph edges, but
we may encounter additional challenges in more complicated
situations. First and foremost, prior TSP and GSP literature
primarily focused on signals in a single simplicial order. The
consideration of processing signals that reside in multiple
orders of simplices urges increased attention to consider the
signals that may appear and interact in multiple orders of
simplices. In the previously mentioned biological networks,
transportation networks, and population mobility networks
examples, the graph vertices and edges both contain signals,
with the edge signals influencing the behavior of the vertex
signals [7], [26], [43]. However, a deeper discussion should be
conducted on the processing of time-varying signals beyond
the graph vertices. Numerous real situations require online
time-varying data models; static algorithms may not perform
optimally to capture the dynamic change in the time-varying

data. Understanding the dynamic interactions within these
networks is a crucial task for facilitating real-time monitoring
and predictive decision-making to enhance efficiency and reli-
ability in real-world applications. On a side note, data gathered
from the real world is often noisy, meaning that the denoising
of simplicial data should be considered when formulating sim-
plicial representations. These challenges comprise addressing
topological irregularities, revealing data interactions across
multiple dimensions, eliminating data noise, and capturing
time-varying patterns. Therefore, it is a pressing necessity for
an online algorithm that focuses on time-varying multi-order
and multi-variate data on simplicial complexes to bridge the
cross-space-time signal gaps.

In this paper, we propose the Adaptive Joint Vertex-Edge
Estimation (AJVEE) algorithm as a strategy aimed at address-
ing the previously mentioned focuses for time-varying signals
existing on both the vertices and the edges by considering
the dynamic interplay between the signals on the vertices and
edges. To the best of our knowledge, this is the first paper
to consider the joint online estimation of time-varying signals
on both the vertices and the edges. The contributions of this
paper are listed as follows:

• We propose the AJVEE algorithm on graphs to conduct
an adaptive estimation of time-varying vertex and edge
signals. AJVEE uses a time-varying regression model to
capture the interaction of a time-varying vertex signal,
with the intensity of the interactions represented by a
time-varying signal on the graph edges.

• An adaptive Least Mean Square procedure based on the
Hodge Laplacian (ALMS-Hodge) is derived to facili-
tate AJVEE. The resulting ALMS-Hodge is suitable for
processing time-varying signals on simplicial complexes
using TSP. Different from previous adaptive GSP algo-
rithms that operate only on the graph vertices estimation
errors, the ALMS-Hodge can be deployed on higher-
ordered structures such as the edges, while considering
both the aggregated signal and the estimation error.

• By specifying one ALMS-Hodge on the vertices and
another on the edges, then merging them through a time-
varying regression incorporating both the node signal
shifts and edge signal shifts, AJVEE is able to oper-
ate jointly on the vertices and edges. Additionally, by
generalizing the ALMS-Hodge to simplicial complexes
with higher orders than the vertices and edges, we can
formulate and extend AJVEE beyond the vertices and
edges.

In Section II, we will provide preliminary knowledge in
representing graphs using simplicial complexes, as well as
basic signal processing techniques on simplicial complexes.
Derivations and analysis of the AJVEE are included in Sec-
tion III. Section IV gives a more generalized formulation of
AJVEE applied to time-varying signals on simplicial com-
plexes that are not restricted simply to the vertices and edges.
Experiment results on both synthetic data and real data are
discussed in Section V. Section VI concludes the paper with
a brief discussion of potential future work.
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II. PRELIMINARY KNOWLEDGE

A. Graph representation

Let us begin with a vertex (node) set V = {v1...vN0
}. We

will use the terms node and vertex interchangeably throughout
the paper. A k-simplex Xk is defined as a subset of V that
has cardinality k + 1. A simplicial complex K of order K
can be defined as a collection of k-simplices {Xk,1...Xk,Nk

},
with k = 0...K. A simplicial complex K has the property
that for a simplex Xk ∈ K, if another simplex with a lower
order Xk−1 is a subset of Xk, then Xk−1 ∈ K [30]. Following
this definition, a graph G = {V, E}, can be represented as a
simplicial complex, where the vertex set V is the 0-simplex-
set and the edge set E = {e1...eN1

} is connectivity between
vertices and the 1-simplex-set. A subscript k denotes which
k-simplex each variable belongs to and distinguishes among
different orders of simplex and simplicial complexes. The
variable Nk is used to represent the cardinality of the simplices
in K, where N0 = |V| is the number of vertices, N1 = |E| is
the number of edges, and N2 is the number of triangles.

To represent the relationship between two simplices of order
k − 1 and k in a simplicial complex, the incidence matrix
Bk ∈ RNk−1×Nk is used where the rows of Bk correspond to
the Nk elements in Xk−1 and the columns of Bk correspond
to the Nk elements in Xk. The values assignment of Bx are as
follows: if simplex xk−1(i) in Xk−1 is adjacent to a simplex
xk(j) in Xk, then the ijth element of Bk will have magnitude
1, with the sign determined by the predefined orientation in the
k-simplex. We should emphasize that the orientation, defined
by the ordering of the simplicial set, is not the same as the
direction, especially when k = 1 for the edges [44]. Notice
that the incidence matrix Bk is a boundary operator because
Bk represents how k−1-simplices bounds their upper adjacent
k-simplices. Similarly, we can define the dual of the boundary
operator by the transpose of the incidence matrix BT

k , which
is a coboundary operator.

B. Signal Processing on graphs and simplicial complexes

A simplicial signal xk = [xk,1...xk,Nk
]T on a simplicial

complex residing on the k-simplices is a mapping from the
k-simplex to RNk . In GSP, spectral operations on the vertex
signal x0 are made possible by defining the Graph Fourier
Transform (GFT) using the spectral decomposition of the
graph matrix [4]. In TSP, the Hodge Laplacian matrix plays the
role of the graph Laplacian matrix. For a simplicial complex
with order K, the Hodge Laplacians can be defined as follows:

Lk =


B1B

T
1 , k = 0,

BT
kBk +Bk+1B

T
k+1 = Lk,l + Lk,u, 0 < k < K,

BT
KBK , k = K.

(1)
The Hodge Laplacian Lk can be split into lower Hodge
Laplacian Lk,l = BT

kBk and upper Hodge Laplacian Lk,u =
Bk+1B

T
k+1, contributing from the lower-adjacency and the

upper-adjacency of k-simplices in a simplicial complex [36].

The TSP analogy of GFT is the Simplicial Fourier Trans-
form (SFT) based on the spectral decomposition of the Hodge
Laplacian matrix [30]:

Lk = UkΛkU
T
k . (2)

The eigenvalue matrix is Λk = diag(λk,1...λk,Nk
) with the

eigenvalues λk,i sorted in increasing order and considered
as the frequencies. Smaller eigenvalues are considered as
lower frequencies and larger eigenvalues are considered as
higher frequencies. Each eigenvalue in Λk has a corresponding
eigenvector in the eigenvector matrix Uk = [uk,1...uk,Nk

].
The forward SFT sk = UT

k xk of a spatial domain signal xk

transforms it to the frequency domain signal sk. The inverse
SFT is xk = Uksk transforms the frequency domain signal
back to the spatial domain. It is worth mentioning that the
GFT is a special case of the SFT for signals defined only
on the graph vertices [30]. The Hodge Laplacian is known as
the graph Laplacian when k = 0 and the graph Helmholtzian
when k = 1 [45]. To process the signals residing on the edges,
we can use SFT with k = 1.

With the SFT defined, we can apply simplicial filters Σ to
each frequency component in Lk to conduct spectral domain
operations on simplicial complexes. We could define several
spectral TSP filters and linearly combine them to obtain the
desired frequency response. A simple bandlimited filter in Xk

based on a frequency set Fk is constructed by a diagonal
matrix ΣF,k, where a 1 on the ith diagonal element indicates
that λi ∈ Fk and 0 otherwise [30]. The following procedure
is a simple yet complete bandlimited spectral filtering of xk:

x′
k = UkΣF,ksk = UkΣF,kU

T
k xk. (3)

If the signal xk is bandlimited with frequencies Fk, then xk =
UkΣF,kU

T
k xk. To simplify notation and make use of the

sparsity gained from eliminating some frequency components,
we will set Uk,F = support(UkΣF,k), where support() is the
operation of dropping the column with all zero elements. No-
tice that the filter ΣF,k is idempotent and self-adjoint, so with
the simplified notation we have Uk,FU

T
k,F = UkΣF,kU

T
k ,

and UT
k,FUk,F = I. According to the TSP sampling theory

for signals defined on K, partial observation is modeled using a
sampling operation on Dk,S [30]. The sampling set Sk defines
the diagonal matrix masking operation, where the sampling
matrix Dk,S = diag(dk,1...dk,Nk

), where dk,i = 1 if xk,i ∈ Sk

and 0 otherwise [30]. The sampling matrix Dk,S is idempotent
and self-adjoint as well.

Before proceeding to AJVEE, it is necessary to discuss how
to reconstruct a static signal xk when only partial observation
of the signal is obtainable. With the assumption that xk is
a bandlimited signal with frequencies Fk, a reconstruction
of xk is possible if the conditions ||Dk,S̄Uk,FU

T
k,F ||2 =

||Uk,FU
T
k,FDk,S̄ ||2 < 1 and |Fk| ≤ |Sk| are satisfied, where

Dk,S̄ = I−Dk,S [30].

III. ADAPTIVE JOINT VERTEX-EDGE ESTIMATION

In this section, we propose a joint estimation strategy,
targeting the case that the time-varying edge signal influences
the time-varying vertex signal, from a simplicial diffusion
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perspective on a graph. An online simplicial signal estimation
procedure named the ALMS-Hodge, based on the estimation
error and TSP-based simplicial aggregation, is proposed along
with AJVEE to provide adaptive updates in AJVEE.

A. Vertex regression influenced by time-varying edge signals

In AJVEE, a TSP approach is taken to represent data
interactions occurring between two simplices of order k = 1
and k = 0, corresponding to the edges and the vertices
respectively. A time-varying vertex regression with the regres-
sion parameters represented in the form of the time-varying
edge signal is modeled in AJVEE instead of using fixed
edge weights as seen in GSP. To begin, we will formulate
a time-varying regression of the vertices by representing the
regression parameters using edge time-varying signals:

x0[t+ 1] = L̂0[t]x0[t] = B̂1B̂
T
1 x0[t], (4)

where L̂0[t] is a time-varying regression matrix derived from
a graph topology containing a temporal edge signal, and t is
the time index. The term B̂1 in equation (4) is

B̂1 = (B1diag(sign(x1[t]) ◦
√

|x1[t]|))T , (5)

where x1[t] is the time-varying edge signal, diag(x1[t]) forms
a diagonal matrix from x1[t] and sign() computes the element-
wise sign. We should emphasize that this process is fundamen-
tally different from spatial node aggregation using purely the
graph Laplacian L0. The regression matrix L̂0[t] is formed by
mapping time-varying edge signals x1[t] onto the topology and
should not simply be perceived as a weighted version of the
static graph Laplacian matrix L0. By combining L̂0[t] time-
varying edge signals, we result in a time-varying influence of
x1[t] on x0[t] in the form of time-varying regression matrix
L̂0[t] that models the change of vertex signal x0[t].

A diffusion process on a graph is when vertex signals
propagate through the adjacency relationships to their locally
connected neighbors [46], [47]. If we break the matrix multi-
plication in (4) down, we will see that

xi[t+ 1] =

N∑
j=1

l̂ijxi[t], (6)

where l̂ij is the ith row and jth column of L̂0[t], and xi[t] is
the ith element of x0[t]. Realizing that in L̂0[t], l̂ij is non-zero
only when there is an edge, each summation in equation (6)
essentially is calculating the vertex signal at xi minus all the
neighboring vertex signals from 1-hop away. If we repeat (6)
for all N0 vertices, each vertex will be aggregated to its 1-hop
adjacent neighbor. If we look at (6) in a diffusion aspect, it
essentially means that all the vertices will be propagated to
their connected neighbors, meaning that the aggregation done
in (6) is equivalent to a diffusion. Notably, the pth power of L̂0

will be a time-varying diffusion in the p-hop neighborhood.
Following this logic, summing all the terms for p = 1...P
gives us a combined 1-hop to P -hop regression:

Ĥ0[t] =
P∑

p=0

θ̂pL̂
p
0[t], (7)

where θ̂p is the polynomial coefficient. The diffusive nature of
this formulation means that missing data on the vertices can
be imputed from neighborhood connections as the diffusion
progresses. Moreover, when the weights θ̂p in (7) are de-
fined based on a properly designed simplicial filter, simplicial
denoising can be achieved with this formulation; a spectral
analysis will be conducted in the next subsection as a guide
of how to define the weights. For simplicity, we assume that
the topology is known, but the signals on the vertices and
edges are noisy or have missing entries at the current time
t. Preferably, the topology does not change over time. An
example of synthetic data based on a real-world traffic network
of the above data model is shown in Fig. 1, where time-varying
signals are generated on both the graph vertices and the edges.

t = 1 t = 180

Fig. 1: A graph with time-varying signals on both the vertices
and the edges. (left color bar: edges, right color bar: vertices)

Another approach to forming the time-varying vertex re-
gression in (4) is to use spectral filters by setting the SFT
in (2) to k = 0 to form a simplicial (node) filter Σ0 to
approximate L̂0[t]. Let us represent the filter Σ0 using a
function h(Λ0[t]) = Σ0. Then, the regression (4) in terms
of the spectral filtering in (3) is

Û0[t]h(Λ0[t])Û
T
0 [t]x0[t] = h(L̂0[t])x0[t]. (8)

There is a limitation of using spectral methods in practice.
The simplicial filter Σ0 is defined by the frequency set F0

operating on the frequencies (eigenvalues) of L̂0[t]. This
means that spectral filtering operation in (8) requires the eigen-
decomposition at every time instance when the signals x1[t]
changes due to the time-varying formulation in (4). Moreover,
the eigendecomposition of the graph Laplacian suffers from
high computational cost and numerical instabilities when the
graph topology is large [48]. Thus, the spatial formulations are
preferred in practice while the spectral formulations provide a
signal processing analytical perspective.

Using a shifted Chebyshev polynomial Tp(L0[t]) similar
to what is shown in [48], we can approximate (8) with
the p-hop time-varying regression in (7). Assuming that the
spatial operations are conducted without considering the time
dimension, h(L̂0[t]) in (8) is

h(L̂0) ≈
P∑

p=0

θpTp(L̂0) = Ĥ0[t] =

P∑
p=0

θ̂pL̂
p
0[t], (9)

where θp is the coefficients of the Chebyshev polynomial and
P is the order of the polynomial. If we explicitly write out
the (9) and rearrange the terms, we see that (9) becomes (7).
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Even though the formulations in (7) provide diffusion-based
vertex regressions under the influence of edge signals, they
consider only the diffusion perspective but not the online esti-
mation perspective. In the next sections, we will improve this
formulation by considering the temporal changes to achieve
adaptive estimation.

B. The ALMS-Hodge procedure

Before completing AJVEE, we would like to propose a
novel adaptive filtering algorithm named the ALMS-Hodge
algorithm for online time-varying simplicial signal prediction
on the k-simplices. Let us consider a graph G as a simplicial
complex K containing time-varying signal xk[t]. In classical
signal processing, a simple data model can be used to represent
the time-varying dynamics of signals:

xk[t+ 1] = xk[t] + ∆k[t], (10)

where ∆k[t] is the change that lead xk[t] to xk[t+1]. Suppose
we have another signal yk[t], the noisy observation of xk[t]
that has missing elements. This signal yk[t] is modeled using
a sampling operation on Dk,S and an i.i.d. additive Gaussian
noise ηk[t] similar to what is found in GSP [4]:

yk[t] = Dk,S(xk[t] + ηk[t]). (11)

We could set up a cost function J(x̂k[t]) that minimizes the
squared error between yk[t] and xk[t] due to the fact that
an l2-norm optimization problem yields the optimal solution
under Gaussian noise assumption [49]:

J(x̂k[t]) = E||yk[t]−Dk,SUk,FU
T
k,F x̂k[t]||22 + g(x̂k[t]),

(12)
where x̂k[t] is the estimated bandlimited signal with the
same frequency bands as xk[t], and g(x̂k[t]) is a task-
specific simplicial aggregation. Combining bandlimitedness
of x̂k[t] and the idempotent property of Dk,S , the term
yk[t]−Dk,SUk,FU

T
k,F x̂k[t] in (12) is written as Dk,S(yk[t]−

Uk,FU
T
k,FDk,S x̂k[t]). We formulate (12) as a convex least

mean squares optimization problem

min
x̂k[t]

J(x̂k[t]), s.t. Uk,FU
T
k,F x̂k[t] = x̂k[t]. (13)

The solution of (13) could be found by stochastic gradient
seen in classical and graph adaptive filtering [6], [12], [50].

In AJVEE, an essential step in online estimation is to
effectively represent change ∆k[t] on each simplex using
TSP. Looking at (13), we can represent ∆k[t] as the inverse
direction of causes the largest error to minimize the error,
which is obtained by the (negative) gradient of J(x̂k[t]). By
letting ∆k[t] = −∂J(x̂k[t])

∂x̂k[t]
in (10), an adaptive update function

based on (10) for online simplicial signal estimation on order
k using the Hodge Laplacian can be derived as

x̂k[t+ 1] = x̂k[t] + ∆k[t] = x̂k[t]−
∂J(x̂k[t])

∂x̂k[t]

= x̂k[t] + 2h(Lk)ek[t]−Rkx̂k[t],

(14)

where ek[t] = Dk,S(yk[t] − x̂k[t]) is the estimation error of
all sampled part of the signal, and Rkx̂k[t] =

∂g(x̂k[t])
∂x̂k[t]

. Here,

for h(L̂k), we will assume a general formulation and use again
the Chebyshev approximation to obtain a spatial update:

h(Lk) = UkΣkU
T
k ≈ Hk =

P∑
p=0

θ̂pL
p
k, (15)

where the design of the filter Σk controls reconstruction
properties. Step size parameters µk and rk are assigned to
control the magnitude of the updates as conventionally seen
in classical adaptive filters [50]. The update function of our
ALMS-Hodge is derived as

x̂k[t+ 1] = x̂k[t] + µkHkek[t] + rkRkx̂k[t], (16)

where µk is the step size parameter and rk is the weight
parameter for the aggregation. The frequencies are defined as
larger eigenvalues corresponding to high frequencies, so we
can define Σk as low-pass, high-pass, or band-limited filters
similar to how these types of filters are designed in classical
signal processing. Viewed in the spectral domain, each update
term µkHkek[t] is applying the filter Σk to the SFT of the
error component ek[t]. As a result, at each time instance t, the
term Hkek[t] in (16) ensures the update of the ALMS-Hodge
is time-varying and is adaptively generated in the direction
opposite to the error. It can be shown that the ALMS-Hodge
in (16) converges, for the details please check Appendix A.

If the term rkRkx̂k[t] is ignored as seen in previous
adaptive GSP algorithms, the ALMS-Hodge will update solely
based on the errors ek[t] but not utilizing the signals xk[t]
itself. Thus, it is advantageous if we define aggregation terms
based on the underlying signal to enforce additional restric-
tions or enhancements. For example, if we want to emphasize
the property BT

kBkx̂k[t] = 0 on the lower adjacency of
Xk, then we can define an aggregation term g(x̂k[t]) =
||Bkx̂k[t]||22 in the cost function (12). Following the optimiza-
tion steps in (14), the resulting aggregation Rk,lx̂k[t] in the
update equation (23) is

rkRk,lx̂k[t] =
∂g(x̂k[t])

∂x̂k[t]
= 2νkLk,lx̂k[t], (17)

where rk = 2νk is the weight for the aggregation. Similarly,
we can define the upper adjacent aggregation Rk,ux̂k[t] using
the same approach by setting h(x̂k[t]) = ||BT

k+1x̂k[t]||22:

Rk,ux̂k[t] = Lk,ux̂k[t]. (18)

Let us bring in the concept of Hodge decomposition. A Xk

simplicial signal can be decomposed as follows [30]:

xk[t] = xk,H [t] +BT
k xk−1[t] +Bk+1xk+1[t]. (19)

The terms BT
k xk−1[t] and Bk+1xk+1[t] are the signal com-

ponents that can be induced from Xk−1 and Xk+1 signals
respectively. The term xk,H [t] in (19) is the harmonic compo-
nent corresponding to the portion of the signal that cannot be
induced from xk−1 or xk+1. It is worth mentioning that these
three components are orthogonal [30]. Inspired by the Hodge
decomposition, if we revisit the regression/diffusion defined
in (7), at each time instance t, we can also define aggregation
based on the boundary and coboundary. For example, if we
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want to aggregate the induced components from Xk−1 onto
Xk, we can use the boundary aggregation

Rk,bx̂k[t] = BT
k x̂k−1[t]. (20)

Similarly, the coboundary aggregation can be defined as

Rk,cx̂k[t] = Bk+1x̂k+1[t]. (21)

Note that the above four aggregations can be linearly combined
into a single term Rkx̂k[t] in AJVEE to achieve desired
effects.

Paying attention to (12) and (16), we see that the estimation
error ek[t] is only calculated using the sampled signals. To
compensate for this in the aggregation, the aggregation param-
eters are split as Rk = Rk,S +Rk,S̄ = Dk,SRk +Dk,S̄Rk.
Then, we assign different weightes to Rk,S and Rk,S̄ :

rkRkx̂k[t] = rk,SRk,S x̂k[t] + rk,S̄Rk,S̄ x̂k[t]. (22)

The logic behind this setup is that different weights were
assigned to the sampled and unsampled signals.

Even though the aggregation Rk is task-specific and defined
from the properties of the signal of interest, we can still gain
some insights by looking at them in the spectral domain.
Generally speaking, by the Hodge decomposition (19), the
nonzero eigenvalue-eigenvector pairs in BkB

T
k are orthogonal

to the nonzero eigenvalue-eigenvector pairs in BT
k+1Bk+1.

All the nonzero eigenvalue-eigenvector pairs in Lk are either
from BkB

T
k or BT

k+1Bk+1 [30]. Another interesting property
is BkBk+1 = 0 because in the Hodge decomposition (19),
the harmonic component of a simplicial Xk signal cannot
be induced from Xk+1 or Xk−1. From the orthogonality
property, the harmonic components are associated with the
zero eigenvalue-eigenvector pairs of Lk [30].

C. Joint estimation of vertex and edge signals

AJVEE is targeted at cases where time-varying edge signals
influence time-varying vertex signals. We can specify the
ALMS-Hodge onto the graph edges by specifying k = 1,
resulting in H1 =

∑P
p=0 θ̂1,pL

p
1. Using Chebyshev approx-

imation, the AJVEE update based on the ALMS-Hodge on
edge signals can then be obtained as:

x̂1[t+ 1] = x̂1[t] + µ1

P∑
p=0

θ̂1,pL
p
1e1[t]

+r1,SR1,S x̂1[t] + r1,S̄R1,S̄ x̂1[t].

(23)

To define the AJVEE expression on the graph vertices, we
specify k = 0 in the ALMS-Hodge, but what is different here
on the graph vertices is that, AJVEE will be following our
time-varying regression data model defined in Section III-A. It
should be highlighted again that the vertex signal x0[t] is under
the influence of the time-varying edge signal x1[t]. So, the
regression parameters are the current step edge signal estimate
x̂1[t] obtained at the previous time step t− 1. As a result, we
shall replace the matrix Hk in ALMS-Hodge in (16) with the
time-varying vertex regression Ĥ0[t] =

∑P
p=0 θ̂0,p(L̂0[t])

p to
incorporate the influence of the time-varying edge signal x1[t]
onto the time-varying vertex signals x0[t]. Then, to conduct

an estimation on x0[t] when it is under the influence of x1[t],
the vertex update strategy in AJVEE based on ALMS-Hodge
is

x̂0[t+ 1] = x̂0[t] + µ0

P∑
p=0

θ̂0,p(L̂0[t])
pe0[t]

+r0,SR0,S x̂0[t] + r0,S̄R0,S̄ x̂0[t],

(24)

where x̂0[t] is the estimation of vertex signals at time t, and
the residual e0[t] = y0[t]− x0[t] is the estimation error.

Instead of separately estimating the vertex and edge signals,
a joint estimation can be done by the simultaneous operation
of (23) and (24). We define a joint shift operator LJ [t] to
incorporate the adjacent relationship within one simplex order
together with the incidence relationship between different
orders of simplicity. Assuming that the signals are on the
vertices (0-simplex) and edges (1-simplex), and also assuming
that we have the triangle (2-simplex) adjacency but not the 2-
simplicial signals, we can formulate such joint shift operator
on the error terms e0[t] and e1[t] by

HJ [t] = blkdiag(µ0Ĥ0[t], µ1H1), (25)

where blkdiag() is the block-diagonal concatenation of two
matrices. Similarly, the signal aggregation matrices are con-
catenated as

RJ,S = blkdiag(r0,SR0,S , r1,SR1,S) and
RJ,S̄ = blkdiag(r0,S̄R0,S̄ , r1,S̄R1,S̄).

(26)

Accordingly, the signals, observations, and the estimation error
should also be concatenated:

x̂J [t] = vec(x̂0[t], x̂1[t]),

yJ [t] = vec(y0[t],y1[t]), and
eJ [t] = vec(e0[t], e1[t]).

(27)

The update function of the AJVEE can be constructed as

x̂J [t+ 1] = x̂J [t] +HJ [T ]eJ [t] +RJ,S x̂J [t] +RJ,S̄ x̂J [t].
(28)

The individual vertex signal and edge signal can be obtained
by mapping the corresponding elements in xJ [t+1] back into
x0[t+ 1] and x1[t+ 1].

The AJVEE operates in an online fashion where the time-
varying edge signal and the time-varying vertex signal are
estimated jointly using (28) at each time instance. It should
be emphasized that the AJVEE discussed here is not simply
estimating edge weights from graph vertex signals nor a link
prediction task; the graph edges are regarded as the 1-simplex
with signals existing on the edges. The complete AJVEE
algorithm is summarized in Algorithm 1.

D. Spectral analysis of AJVEE

There are two incidence matrices we are particularly inter-
ested in for the estimation of node and edge signals, namely
the node-to-edge incidence matrix is B1 and the edge-to-
triangle incidence matrix is B2. The matrix B1 is a divergence
operator because B1x1[t] ∈ RN0 calculates the difference be-
tween the outgoing edge signals and the incoming edge signals
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Algorithm 1 Adaptive joint vertex-edge estimation

Given the (unweighted) graph topology G[t]|t=0, spectral
filters Σ0 and Σ1

Initialize x̂0[0] and x̂1[0]
Construct H1 and Ĥ0[t]
Construct R1 and R0 based on prior knowledge using (17),
(18), (20), or (21)
Construct HJ [t] (25) and RJ [t] using (26)
while there are new observations y0[t] and y1[t] do

Define the changed components in ĤJ [t] and RJ again
Output joint signal x̂J [t+ 1] from yJ [t] using (28)

end while

at a vertex. An edge signal x1[t] is considered divergence-
free if B1x1[t] = 0 [24], [34]. The gradient operator BT

1

on the vertex signal x0 calculates the difference between the
endpoints in each edge along the edge orientation, inducing
a gradient flow xG[t] = BT

1 x0[t] ∈ RN1 on the edges.
The matrix BT

2 is a curl operator since B2x1[t] ∈ RN1

computes the net flow of the edges along each triangle. If
BT

2 x1 = 0 holds true, then the edge signal x1[t] is curl-
free [36]. The curl adjoint operator B2 induces the curl flow
onto the edges from the triangles by xC [t] = B2x2[t]. From
the Hodge decomposition, aggregations that utilize the four
abovementioned operators can be defined using (17), (18),
(20). and (21).

Taking an edge signal x1[t] as an example, in the spectral
domain, the Hodge decomposition in (19) implies that we can
modify the signal x1[t] and the update error e1[t] by modifying
the harmonic component, the gradient component, and the curl
component separately. Based on the Hodge decomposition,
the eigenvector matrix U1 and the corresponding eigenvalue
matrix Λ1 of L1 can be rearranged as shown below [36]:

U1 = [UH ,UG,UC ] and Λ1 = blkdiag(ΛH ,ΛG,ΛC),
(29)

where blkdiag() is the block diagonal operation. The matrices
UH , UG, and UC in (29) are the eigenvector matrix of the
harmonic component, the gradient component, and the curl
component respectively. The diagonal matrices ΛH , ΛG, and
ΛC contains the eigenvalue corresponds to the eigenvectors
in UH , UG, and UC . Because L1 can be represented as the
sum of L1,l and L1,u, the following expressions can be derived
using the logic in (29) [36]:

L1,l = U1blkdiag(0,ΛG,0)U
T
1 ,

L1,u = U1blkdiag(0,0,ΛC)U
T
1 .

(30)

Now, by looking at (29) and (30), it is apparent that by
carefully designing the filter Σ1 in (15) in the spectral domain,
we could achieve the direct modification of the harmonic
component, the gradient component, and the curl component
of the update e1[t] as well as the estimated signal x̂1[t].

A similar analysis can be conducted on the graph vertices
by decomposing L0 or L̂0[t]. It should be pointed out that the
vertices only have upper adjacency, which simplifies the spec-
tral analysis. Generally speaking, in vertex signal estimation
tasks the aggregation requires a smooth (low frequency) signal

assumption [3]. In the GSP perspective, if Ĥ0[t] is defined
based on an approximation of a low-pass filter ΣF,0, then it
enforces the estimated signal to be smooth [51].

IV. GENERALIZING AJVEE TO HIGHER-ORDERED
SIMPLICIAL COMPLEXES

In this section, the AJVEE is defined given a more general-
ized scenario where the time-varying simplicial signals on Xk

are influenced by the time-varying signals simplicial signals on
Xk+1. Given the topology, we can rely on defining the ALMS-
Hodge on Xk and Xk+1 shown in Section III-B. First, the
k-simplex regression in (4) will need to have the parameters
defined using the k+1-simplex. Then, we can define the joint
terms

x̂J [t] = vec(x̂k[t], x̂k+1[t]),

yJ [t] = vec(yk[t],yk+1[t]), and
eJ [t] = vec(ek[t], ek+1[t]),

(31)

where x̂J [t] is the joint time-varying Xk and Xk+1 signals,
yJ [t] is the joint observations, and eJ [t] is the joint estimation
error. To formulate the proper AJVEE on simplicial complexes
that are higher-ordered compared with graph vertices and
edges, we will have matrices defined using the TSP techniques
discussed in Section II:

HJ [t] = blkdiag(µkĤk[t], µk+1Hk+1),

RJ,S = blkdiag(rk,SRk,S , rk+1,SRk+1,S) and
RJ,S̄ = blkdiag(rk,S̄Rk,S̄ , rk+1,S̄Rk+1,S̄),

(32)

The update scheme of AJVEE still follows (28) after plugging
the above matrices into (28). However, conceptually, because
we are defining all operations using the Hodge Laplacian and
TSP, for k ̸= 0, AJVEE is no longer defined on the vertices
and edges. For example, if k = 2, then AJVEE becomes an
algorithm that jointly estimates the time-varying signals on the
triangles (2-simplex) that are under the influence of the time-
varying signals on the tetrahedrons (3-simplex). The general
case of AJVEE is illustrated in Algorithm 2.

Algorithm 2 Joint estimation of signals in Xk and Xk+1

Given: (unweighted) graph topology G[t]|t=0, spectral filters
Σk and Σk+1

Initialize x̂k[0] and x̂k+1[0]
Construct Hk and Ĥk+1[t]
Construct Rk and Rk+1 based on prior knowledge using
(17), (18), (20), or (21)
Construct HJ [t] and RJ [t] using (32)
while there are new observations yk[t] and yk+1[t] do

Define the changed components in ĤJ [t] and RJ again
Output joint signal x̂J [t+ 1] from yJ [t] using (28)

end while

V. EXPERIMENT RESULTS AND DISCUSSION

A. Experiment set up

The AJVEE proposed in Algorithm 1 will be examined on
the ability to jointly reconstruct time-varying vertex and edge
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signals under the conditions that the edge signal influences
the vertex signal. Since ALMS-Hodge is the building block
of AJVEE, we will conduct preliminary experiments on the
ALMS-Hodge for both steady-state and time-varying simpli-
cial signals in the k-simplices prior to the AJVEE experiments.

The datasets we conduct the experiments on are the Sioux
Falls transportation network, the Anaheim transportation net-
work, and the England COVID-19 dataset. The edge signal
missing rates for the Sioux Falls network and the Anaheim
network are 26% and 42% respectively. The England COVID-
19 dataset is a dynamic network that changes over time. In
the experiment, we perceive every newly appeared edge at the
topology in time t compared to the previous topology at t−1 as
an edge with signals missing, meaning that the corresponding
diagonal entry in D1,S is 0. All the experiments are conducted
in MATLAB 2022a and are repeated N = 100 times unless
specified otherwise. In the experiment, all the tested algorithms
will use lowpass filters. The diffusion initialization strategy
proposed in [16] is used to initialize the signals for all the
experiments. All algorithms running on the same task will have
the same filters with the same passband to ensure the fairness
of comparison. The performance of all the experiments is
measured using the normalized mean squared error (NMSE):

NMSEk[t] =
1

N

N∑
i=1

||(x̂k[t]i − xk[t])||22
||(xk[t])||22

, (33)

where ||(x̂k[t]i −xk[t])||22 is the squared error on the ith run.
The topology for the Sioux Falls transportation network

and the Anaheim transportation network are gathered from
the real world [52]. The Sioux Falls network consists of
N0 = 24 vertices and N1 = 38 edges and the Anaheim
network has N0 = 406 vertices and N1 = 624 edges. These
two transportation networks have provided static traffic flows
on the edges for the traffic under equilibrium [52]. As for the
England COVID-19 dataset, it is a series of 61 dynamic graphs
[43]. All 61 graphs have N0 = 129 vertices, with a different
number of edges N1[t] on each day. The vertices represent
different regions in England, recording the number of COVID-
19 cases in the region each day, and the edges represent
population mobility between regions; self-loops represent the
mobility within the region. Figure 7 displays the England
COVID-19 dataset at three different time points. Even though
there is no data on the 2-simplex in any of the datasets, the
upper adjacency of the edges can still be represented in L1,u

because the topological structures still exist.

B. ALMS-Hodge Analysis

Since the ALMS-Hodge is a component within AJVEE,
we first conduct a few experiments to assess the performance
of our ALMS-Hodge procedure in (16) at estimating a time-
varying edge signal in an online procedure on the Sioux Falls
network. To specify (16) onto the edges, we will be setting
k = 1, resulting in the edge signal estimation formula shown
in (23). The ALMS-Hodge is tested under the following two
experiment settings. First, fix the noise level and run the
ALMS-Hodge for 4 different step sizes. Second, fix the step

size and run the ALMS-Hodge for 4 different noise levels.
The edge signals are generated synthetically on the Sioux
Falls network and the Anaheim network by combining several
sinusoidal functions to make the static signal time-varying:

x1[t] =

P∑
p=1

apfp[t], (34)

where the signals ap are static edge signals. The term fp[t] is
a sinusoidal function. The missing edge signals in the Sioux
Falls network are modeled using the spectral sampling strategy
discussed in [6]. We will make online estimations for 200 time
steps. At each iteration, we have a new noisy observation of
the edge signal containing missing values. The low-pass filter
has a pass band of 50% smallest eigenvalues and is used to
obtain the weights θ̂1,p in (23) with P = 7. The experiments
in this section are repeated 10 times; the averaged edge signal
estimations of a few selected edges will be demonstrated along
with the NMSE1[t] for all N1 edge signals.

(a) The online estimation of one selected edge.

(b) The total NMSE at each time point for all edge signals.

Fig. 2: Performance of the ALMS-Hodge under fixed noise
and different step sizes.

For the fixed noise experiment, the noise is Gaussian distri-
bution with mean = 0 and variance = 0.1; four different step
sizes are µ1 = 0.1, 0.6, 1.2, and 1.8. The signal reconstruction
of the signal on one edge and the NMSE on the entire topology
is shown in Figure. 2a and Figure. 2b respectively. From the
edge signal estimation in Figure. 2a, we can see that the step
size parameter µ1 indeed controls the magnitude of the update.
For µ1 = 0.1, the magnitude of the update is too small, which
is reflected by visually inspecting Figure. 2a: the estimation
does not catch up with the time-varying change in the signal.
As for the case when µ1 is too large (µ1 = 1.8), the large
magnitude causes the estimation to fluctuate and unstable,
which can be observed from Figure. 2a as well. This confirms
that µ1 controls the amount of update of the ALMS-Hodge.
Inspecting the NMSE in Figure. 2b, we can gain some insights
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(a) Reconstruction of a missing edge signal.

(b) Denoising of an observed noisy signal.

Fig. 3: Performance of the ALMS-Hodge under fixed step size
and different noise levels.

on the design choice of µ1. The error of the estimation will
be large when µ1 is either too large or too small.

Now, we will be fixing the step size µ1 = 0.6 and
conducting an online estimation of a time-varying edge signal
under four different noise settings. The Gaussian noise all have
zero mean but four different variances σ = 0.1, 0.3, 0.5, and
0.7. The signal reconstruction of one missing edge is shown in
Fig 3a and the denoising of one observed edge signal is shown
in Fig 3b. Upon examination of Figure. 3, we verified that the
ALMS-Hodge can effectively conduct online estimations of
time-varying signals on the graph edges under Gaussian noise
with various noise levels.

C. Joint Estimation on Transportation Network

Returning to the question of joint estimation, we will be
testing AJVEE based on Algorithm 1 at jointly estimating
time-varying vertex and edge signals by utilizing AJVEE
within the ALMS-Hodge on the Sioux Falls network and the
Anaheim network. The edge signal generation and missing
data masking follow the same procedure in V-B. The ground
truth vertex signals are synthetically generated with additive
i.i.d. Gaussian noise ϵ0[t] with zero mean and variance = 0.1
on both the Sioux Falls network and the Anaheim network:

x0[t+ 1] = Ĥ0[t]x0[t] + ϵ0[t], (35)

We should point out that even though the vertex signal is
synthetic, which seems a bit abstract, it is built using properties
extracted from the underlying real-world topology. In the
context of a transportation network, one may perceive the
vertex signal as a measurement of congestion at an intersection
or a number of the crowd at a place of interest. The magnitude
of the vertex signal will be proportional to the amount of traffic
on the edges. Using AJVEE, we aim to predict the congestion
or population on the vertices using the predicted traffic on

the edges. Since this paper is not focused on transportation
network models, we will not further discuss the meaning of
vertex signals and use it purely as the target signal to be
estimated. Figure. 1 illustrates an example of such a time-
varying vertex signal under the influence of time-varying edge
signals on the Sioux Falls network.

To show the advantages of using a TSP approach (the
ALMS-Hodge) in AJVEE, we will compare AJVEE against
a non-TSP online edge signal estimation named Line Graph
LMS (LGLMS) from [53], which uses line graphs to map
edge signals on the vertices then processed by GSP. The
aggregations terms used by AJVEE in this experiment are
(17) for edge signals and (18) for vertex signals. Since the
signal aggregation terms are missing in the LGLMS, we added
the same signal aggregation terms that we use in AJVEE to
LGLMS. For edge signal estimation baselines, in addition to
the LGLMS algorithm, we also included a non-adaptive TSP
baseline using a basic low pass simplicial filter Σ1,lp similar
to (3): x̂1[t+1] = U1Σ1,lpU

T
1 x̂1[t]. The vertex estimation re-

sults of AJVEE will be compared with the following three GSP
baselines in addition to the LGLMS: the GLMS algorithm [4],
the adaptive Graph Least Mean pth algorithm (GLMP) [12],
and the adaptive Graph-Sign (G-Sign) algorithm[11]. Note that
by the algorithm definitions in their original literature, the
GSP methods are using a fixed graph Laplacian, so among
all the baselines only the LGLMS algorithm is aware that the
time-varying edge signals influence the vertices. The step sizes
and the aggregation weights are tuned using grid search; the
final parameter selections for AJVEE are shown in Table I.
To promote fair comparison, all the tested algorithms share
the same µ0 for vertex signal estimation and all the tested
algorithms share the same µ1 for edge signal estimation.

Fig. 4: Estimation on one of the edges (top) and one of the
vertices (bottom) of the Sioux Falls network.

The NMSE of the signal estimation results over the 100
runs are recorded in Fig. 5 for the Sioux Falls network and in
Fig. 6 for the Anaheim network. Additionally, an illustration
of the estimation results on one of the missing edges and
one of the vertices in the Sioux Falls network is shown in
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Fig. 5: NMSE of the AJVEE compared against separate
estimation in the Sioux Falls network. Top: edges. Bottom:
vertices.

Fig. 6: NMSE of the AJVEE compared against separate
estimation in the Anaheim network. Top: edges (the average
of NMSE1[t] is the dashed line). Bottom: vertices.

Fig. 4. From Fig. 5 and Fig. 6, AJVEE has lower NMSE than
the two baselines for the majority of the time points. From
the low NMSE, we can confirm that the AJVEE is accurate
at tracking the changes of time-varying edge signals. AJVEE
outperforms the LGLMS algorithm because the LGLMS does
not operate directly on the edge signal; the LGLMS algorithm
treats the original edge signal as vertex signals on a line
graph projection. However, the projected signal in LGLMS
is not guaranteed to be smooth on the 0-simplices, so using
the GSP nodal operations to predict edge signals based on a

smooth graph assumption on the line graph projection does
not perform well [29]. As for the TSP non-adaptive method,
the filtering operation U1Σ1,lpU

T
1 y1[t] is not optimized to

reduce time-dependent errors compared to the adaptive update
Ĥ1e1[t], which lead to the less compelling results compared
to AJVEE. The AJVEE has the lowest estimation error for

TABLE I: Parameters settings

vertex Parameters µ0 r0 F0 P

Sioux Falls 0.45 0.0005 [0, 0.4λ0,max] 7
Anaheim 0.75 0.05 [0, 0.4λ0,max] 7

Edge Parameters µ1 r1,S r1,S̄ F1 P

Sioux Falls 0.45 0.05 0.2 [0, 0.58λ1,max] 7
Anaheim 0.35 0.001 0.002 [0, 0.2λ1,max] 7

the vertex signal estimation shown in Fig. 5 and Fig. 6. The
GSP approaches do not quite match up to the performance of
AJVEE at predicting the time-varying vertex signals because
the GSP methods used a fixed graph Laplacian to process the
signals on the vertices. On the other hand, AJVEE utilizes the
tive-varying edge signal to represent the diffusion dynamics of
the vertex signals, which is more accurate at tracking the tem-
poral evolving patterns of the time-varying vertex signals. Our
proposed AJVEE framework in Algorithm 1 has demonstrated
the ability to effectively capture the time-varying edge signals
jointly with the time-varying vertex signals. LGLMS takes a
similar approach as AJVEE to use edge signals to represent
the time-varying regression, but the relatively inaccurate edge
signal estimation causes the LGLMS to have inaccurate vertex
signal estimation.

D. COVID-19 case forecasting in population mobility network

In this last experiment, we will use AJVEE to jointly
estimate real-world time-varying vertex and edge signals in
the England COVID-19 dataset using the procedure in Algo-
rithm 1. The goal of this real-world dataset is to predict the
confirmed number of COVID-19 cases in the future using the
currently given information. It has been shown in [43] that
in the England COVID-19 dataset, the number of confirmed
cases (vertex signals) is positively correlated to the population
mobility (edge signals), which indicates the validity of using
AJVEE to conduct the online estimation. This means that our
AJVEE framework is suitable to be applied to conduct online
forecasting of the next-day cases as a diffusion modeled by a
low-pass filter matches the diffusive nature of the data. Instead
of the offline approaches proposed in [43], we will take an
online approach to this problem and make a one-day-ahead
forecast of the number of cases.

For the England COVID-19 dataset, we will assume that
the underlying topology is known when a new time instance
arrives, but the simplicial signals on both the vertices and
edges remain unknown and waiting to be predicted. During
preprocessing, if multiple population mobility recordings exist
between two vertices, we summed them up into a single edge
and calculated the absolute sum of the population mobility. It
should be emphasized that here population mobility is simply
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t = 3 t = 30 t = 61

Fig. 7: Dynamic graphs that record COVID-19 cases on the vertices and population mobility on the edges (self-loops are
omitted). Upper row: ground truth. Lower row: predicted signals. Left color bar: edges (log scale). Right color bar: vertices.

signals on the edges and should not be perceived using the
concept of flows. The edge signals are scaled to 1/1000 of
the original value in the preprocessing and are scaled back
to the original scale after obtaining the output. We added
Gaussian noise to both the ground truth vertex and edge
signals. The dynamic nature of this dataset is modeled by
a dynamic sampling matrix in the edges D1,S [t] where we
compare the graph topology of the graph at the current time
point G[t] with newly obtained graph topology G[t+ 1]. If an
edge is present in both G[t] and G[t+1], then the corresponding
diagonal element in D1,S [t+1] will be 1. If an edge is present
in G[t + 1] but not in G[t], then the corresponding diagonal
element in D1,S [t+ 1] will be 0. Both aggregations (17) and
(18) are adopted in the experiment for predicting population
mobility. The predicted number of confirmed cases by AJVEE
will be compared against three online GSP algorithms: GLMS
[4], GLMP [12], and G-Sign [11]. All these GSP algorithms
are modified to be aware of the topology change, but they are
not provided with the time-varying population mobility on the
graph edges. The choice of this baseline is to demonstrate the
usefulness of acquiring the population mobility at predicting
the number of cases. We will also be using another simple
baseline from [43] where the noisy cases of the previous day
are used as the current estimation. This experiment reflects
a real-world example of utilizing the time-varying signals on
one simplicial dimension as an influence factor upon another
simplicial dimension.

The predicted population mobility and the predicted number
of cases at three different time points using Algorithm 1
are illustrated in Fig. 7. From Fig. 7, it is clear that the
recovered population mobility and the number of cases are
close to the ground truth. In Fig. 8, we calculated the average
absolute error of the predicted number of cases at each time
point in all the vertices. By inspecting Fig. 8, we observe
that our joint estimation framework has the lowest error most
of the time. The results in this experiment indicate that our
proposed AJVEE framework could utilize and predict jointly
the dynamic information on the edges and the vertices to solve

a real-world problem of online prediction of time-varying
signals. The current approach to this real-world problem is
a bit primitive. In the next section, we will discuss potential
improvements to our AJVEE framework to solve similar
problems.

Fig. 8: Average prediction error per region of daily COVID-19
cases in England .

VI. CONCLUSION AND FUTURE WORK

This paper presented the AJVEE framework for estimating
time-varying vertex signals and edge signals, in which the
dynamics of the vertex signals are in the form of time-varying
edge signals. The underlying online estimation method of
AJVEE is the ALMS-Hodge, an adaptive procedure backed by
spatial and spectral TSP techniques. By treating graphs as a
special case of a simplicial complex, two ALMS-Hodge with
different simplicial orders are specified on the vertices and
edges and then merged into the joint estimation. Even though
AJVEE is proposed on the vertices and edges, we also dis-
cussed a more generalized setting where AJVEE is extended
to higher-order structures. Experiments on both synthetic and
real data indicate that AJVEE can efficiently solve the task of
joint online estimation of time-varying vertex and edge signals.

Currently, one limitation of AJVEE is the underlying topol-
ogy is assumed to be known. One possible direction worth
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exploring is combining our AJVEE framework with topology
learning algorithms. This combination will further extend the
predictive power of AJVEE onto graphs that dynamically
evolve the topology over time. In our current AJVEE frame-
work, the influence from edge signals is being applied globally
to all the signals on vertices using operations defined by
the Hodge-Laplacian but without considering the change in
directions. This leads to a limitation in our current setup
that we are not able to process directed multi-edges between
nodes. The extension of TSP approaches to multi-graphs and
equivariant models will be another interesting direction.
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APPENDIX: ALMS-HODGE CONVERGENCE ANALYSIS

To make sure the ALMS-Hodge procedure in the AJVEE
outputs a stable estimation, we analyze the update of the
ALMS-Hodge algorithm under steady-state simplicial sig-
nal estimation. For ease of analysis, we will not be us-
ing the polynomial approximation of Hk shown in (9) in
this analysis but rather use the spectral definition Hk =
Uk,F (U

T
k,FDk,SUk,F )

−1UT
k,F . Suppose that we have a clean

simplicial signal xk, the update error x̃k[t] at time t is
the difference between the current estimation x̂k[t] and xk:
x̃k[t] = xk − x̂k[t]. The ALMS-Hodge is stable if the update
error converges under steady state estimation. To begin the
proof, we use the SFT to transfer the update function (16) in
the spectral domain:

s̃k[t+ 1] = s̃k[t] + µkU
T
k,FHkek[t] + rkU

T
k,FRkUk,F ŝk[t],

(36)
Since the aggregation term is recursive based on ŝk[t], we

will first prove the update error s̃k[t] converges independent of
the aggregation term. The estimation error ek[t] can be written
in terms of s̃k[t] and sk in the spectral domain as ek[t] =
DSUk,F (sk+ηk[t]− ŝk[t]). Then, dropping the aggregation,
(36) is rearranged into

s̃k[t+ 1] = Ωs̃k[t] + µkU
T
k,FHkDk,Sηk[t], (37)

where Ω = (I − µkU
T
k,FHkDk,SUk,F ). Equation (37) can

be expressed as a recursive update starting from t = 0:

s̃k[t+ 1] = Ωis̃k[0] + µk

t∑
i=1

Ωi−1UT
k,FHkDk,Sηk[t]. (38)

Now, we can find the update error in the mean squared sense
by calculating the variance of (38):

E∥s̃k[t+ 1]∥2 = E∥s̃k[0]∥2Φt+

µ2
kE

t−1∑
i=0

(UT
k,FHkDk,Sηk[t])

TΦi(UT
k,FHkDk,Sηk[t])

2.

(39)

For notation simplicity, we set Φ = ΩTΩ and use the
weighted Euclidean norm ∥s̃k[0]∥Φt = ∥s̃k[0]TΦts̃k[0]∥ in
(39). Then, we rearrange some terms by using the Trace trick
E
(
XTYX

)
= Tr

(
E
(
XXTY

))
, leading to

E∥s̃k[t+ 1]∥2 = E∥s̃k[0]∥2Φt + µ2
kTr

(
t−1∑
i=0

ΨΦi

)
, (40)

where Ψ = UT
k,FHkDk,SCkH

T
kUk,F and C = cov(η,η).

With some further derivations using two properties Tr(YX) =
vec(XT )vec(Y) and vec(XYZ) = (ZT ⊗X)vec(Y), we can
factor out the terms independent of the summation index i
from (40). The summation in (40) becomes a geometric series
when the condition ∥Ω∥ < 1 is satisfied, then

E∥s̃k[t+ 1]∥2 = E∥s̃k[0]∥2Φt + µ2
kvec(Ψ)T

t−1∑
i=0

Qivec(I),

(41)
where Q = ΩT ⊗Ω. Taking the limit with limt→∞ E∥s̃k[t+
1]∥2 and combining the condition of ∥Ω∥ < 1, we recognize
the right side of (41) converges to a constant. The only user-
defined parameter in the ALMS-Hodge without aggregation is
a positive step size µk. Using the properties of l2-norm, we can
have an inequality ∥Ω∥ < ∥I∥+ µk∥(UT

k,FHkDk,SUk,F∥ <
1. Now, because the sampling matrix Dk,S is idempotent and
self-adjoint, the matrix UT

k,FHkDk,SUk,F is symmetric, and
its l2-norm will be less or equal to its largest eigenvalue. This
means that the ALMS-Hodge has a bounded update error and
the algorithm converges if µk is chosen under the condition

0 < µk <
2

λmax(UT
k,FHkDk,SUk,F )

, (42)

where λmax() calculates the maximum eigenvalue of a matrix.
Now, with the selection condition of µk provided, let us look
back into (41). If we choose a smaller value for µk, the term
Ω will be large, so the squared error will converge to a smaller
value but will take more iterations to converge. On the other
hand, if we choose a larger value for µk, Ω is small, and the
algorithm converges faster but with higher error.

The ALMS-Hodge converges with the aggregation term. To
see this, an expression similar to (37) but with the aggregation
can be formulated as

s̃k[t+ 1] = Ωrs̃k[t] + µkU
T
k,FHkDk,Sηk[t]

+rUT
k,FRkUk,Fsk,

(43)

where sk = UT
k,Fxk and Ωr = (Ω + rUT

k,FRkUk,F ). Let
Φr = ΩT

r Ωr and Qr = ΩT
r ⊗ Ωr, then take the same

derivation steps as before, the update error in the mean squared
sense is

E∥s̃k[t+ 1]∥2 =E∥s̃k[0]∥2Φt
r
+ E∥rUT

k,FRkUk,Fsk∥2

+ µ2
kvec(Ψ)T

t−1∑
i=0

Qi
rvec(I).

(44)

The condition for (44) to converge is again ∥Ωr∥ < 1. Now,
using the property of the l2-norm, we have the inequality
∥Ωr∥ < ∥Ω∥ + ∥rUT

k,FRkUk,F∥. To be on the safe side,
and assuming that r > 0, the ALMS-Hodge converges if (42)
is met and if we have ∥Ω∥ + r∥UT

k,FRkUk,F∥ < 1. As a
result, the range of choice of selecting parameter r is

0 < r <
1−Ω

λmax(UT
k,FRkUk,F )

. (45)


	Introduction
	Preliminary knowledge
	Graph representation
	Signal Processing on graphs and simplicial complexes

	Adaptive joint vertex-edge estimation
	Vertex regression influenced by time-varying edge signals
	The ALMS-Hodge procedure
	Joint estimation of vertex and edge signals
	Spectral analysis of AJVEE

	Generalizing AJVEE to higher-ordered simplicial complexes
	Experiment Results and Discussion
	Experiment set up
	ALMS-Hodge Analysis
	Joint Estimation on Transportation Network
	COVID-19 case forecasting in population mobility network

	Conclusion and Future Work
	References

