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Abstract

In this paper, we consider a strongly convex stochastic optimization problem and propose three
classes of variable sample-size stochastic first-order methods: (i) the standard stochastic gradient de-
scent method; (ii) its accelerated variant; and (iii) the stochastic heavy ball method. In each scheme, the
exact gradients are approximated by averaging across an increasing batch size of sampled gradients. We
prove that when the sample-size increases geometrically, the generated estimates converge in mean to
the optimal solution at a geometric rate for schemes (i) – (iii). Based on this result, we provide central
limit statements whereby it is shown that the rescaled estimation errors converge in distribution to a
normal distribution with the associated covariance matrix dependent on the Hessian matrix, covariance
of the gradient noise, and the steplength. If the sample-size increases at a polynomial rate, we show that
the estimation errors decay at a corresponding polynomial rate and establish the associated central limit
theorems (CLTs). Under certain conditions, we discuss how both the algorithms and the associated limit
theorems may be extended to constrained and nonsmooth regimes. Finally, we provide an avenue to con-
struct confidence regions for the optimal solution based on the established CLTs and test the theoretical
findings on a stochastic parameter estimation problem.

1 Introduction

In this paper, we consider the strongly convex optimization problem (1):

min
x∈Rm

f(x) ≜ E[F (x, ξ)], (1)

where ξ : Ω → Rd is a random variable defined on the probability space (Ω,F ,P), F : Rm × Rd → R,
and the expectation is taken over the distribution of the random vector. Stochastic optimization problems
have been extensively studied, given the wide applicability of such models in almost all areas of science
and engineering, ranging from communication and queueing systems to finance (cf. [4, 55]). However, in
most situations, this expectation and its derivative are unavailable in closed form requiring the development
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of sampling approaches. Sample average approximation (SAA) [55] and stochastic approximation (SA)
represent two commonly used approaches for contending with stochastic programs. Our focus is on SA
schemes, first considered by Robbins and Monro [51] for seeking roots of a regression function with noisy
observations. The standard SA algorithm xk+1 = xk−αk∇F (xk, ξk), also known as the stochastic gradient
descent (SGD) algorithm, updates the estimate xk+1 based on a sampled gradient ∇F (xk, ξk). The conver-
gence analysis usually requires suitable properties on the gradient map (such as Lipschitzian requirements)
and the steplength sequence (such as non-summable but square summable). The almost sure convergence
of xk to x∗, the unique optimal solution of (1), was established in [5, 8, 11] on the basis of the Robbins-
Siegmund theorem [52] while ordinary differential equation (ODE) techniques have also been employed for
claiming similar statements in [7, 25, 32]. In addition, in [10], the authors developed a statistical diagnostic
test to detect the phase transition, during which the iterative procedure converges towards a region of interest
in the context of SGD with constant learning rate. Tight bounds on the rate of convergence can be obtained
by establishing the asymptotic distribution for the iterates (cf. [7, 11, 18, 25, 32]). An instructive review of
results up to around 2010 was provided in [47], while asymptotic normality of the suitably scaled iterates
for SA with decreasing step-sizes has been proven in [18, 25, 32]. To be specific, the rescaled error process
√
αk(xk − x∗) asymptotically converges in distribution to a normal distribution with zero mean and with

covariance depending on the Hessian matrix, the covariance of the gradient noise, and the steplength. Prior
work on CLTs for standard stochastic approximation for smooth convex optimization can be traced to the
seminal averaging paper by Polyak and Juditsky [50]. The asymptotic normality was further investigated
in [11] for SA with expanding truncations, an avenue that does not require Lipschitz continuity of the gra-
dients. The sequence of iterates generated by the constant steplength SA scheme has been shown to be a
homogeneous Markov chain with a unique stationary distribution; see [32, Chapter 9], [39, Chapter 17],
and [17].

CLTs for SA schemes are significant from the standpoint of algorithm design as well as inference.
(i) Algorithm design. Indeed, the optimal selection of the steplength depends on the Hessian matrix at x∗,
see e.g., [11, Chapter 3.4]. Since the Hessian at x∗ is unavailable, the optimal value of αk can only be
estimated, which has led to the development of adaptive SA methods (cf. [57, 63, 64]). Motivated by the
heavy dependence of SA schemes on steplength choices, the authors in [66] developed a self-tuned rule that
adapts the steplength sequence to problem parameters. In a similar vein, there has been an effort to develop
optimal constant steplengths. Specifically, it was shown in [40] that with suitably selected constant step-
sizes, the expected function values at the averaged iterate converge to the optimum with rate O(1/

√
k) in

merely convex case and rate O(1/k) in strongly convex case, matching the lower bounds [41]. It is further
shown in [38] that the constant SGD simulates a Markov chain with a stationary distribution, which might
be used to adjust the tuning parameters of constant SGD so as to improve the convergence rate, e.g., SGD
for fitting the generalized linear models [61] and approximating the Bayesian posterior inference [38].
(ii) Confidence statements. Furthermore, CLTs for SA schemes might allow for the possibility of construct-
ing confidence regions for the optimal solution (e.g. [3,12,27]). In particular, Hsieh and Glynn [27] designed
an approach to rigorously characterize confidence regions without explicitly estimating the covariance of the
limiting normal distribution, while Chen et al. [12] proposed a plug-in estimator and a batch-means estima-
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tor for the asymptotic covariance of the average iterate from SGD. In addition, Su and Zhu [58] advocated
performing SGD updates for a while and then splitting the single thread into several threads; notably, they
proceeded to construct t-based confidence interval that can attain asymptotically exact coverage probability.
The monograph [32] has extensively investigated CLTs for SA schemes under both constant and decreasing
steplengths. In the context of SAA schemes, there has been some recent work on developing confidence
statements for stochastic optimization [55] and stochastic variational inequality problems [33, 37].

Unfortunately, SA schemes with diminishing steps cannot recover the deterministic convergence rates
seen in exact gradient methods while constant steplength SA schemes are only characterized by conver-
gence guarantees to a neighborhood of the optimal solution. Variance-reduction schemes employing an
increasing batch-size of sampled gradients (instead of the unavailable true gradient) appear to have been
first alluded to in [2, 16, 26, 45] and analyzed in smooth and strongly convex [9, 19, 53, 54], smooth convex
regimes [22], nonsmooth (but smoothable) convex [28], nonconvex [34], and game-theoretic [35] regimes.
Notably, the linear rates in mean-squared error were derived for strongly convex smooth [54] and a subclass
of nonsmooth objectives [28], while a rate O(1/k2) and O(1/k) was obtained for expected sub-optimality
in convex smooth [22, 29] and nonsmooth [28], respectively. In each instance, the schemes achieve the cor-
responding optimal deterministic rates of convergence under suitable growth in sample-size sequences while
in almost all cases, the optimal sample-complexity bounds were obtained. An excellent discussion relating
sampling rates and the canonical rate (i.e. the Monte-Carlo rate) in stochastic gradient-based schemes has
been provided by Pasupathy et al. [46].

Gaps and motivation. This paper is motivated by the following gaps. (i) Despite a surge of interest in
variance-reduced schemes, both with and without acceleration, no limit theorems are available for claiming
asymptotic normality of the scaled sequence in either unaccelerated or Nesterov accelerated regimes coupled
with variance reduction. In particular, we have little understanding regarding whether such avenues have
detrimental impacts in terms of the limiting behavior. Such statements are also unavailable for the related
heavy-ball method. (ii) The geometric growth in sample-size required for achieving linear rates of conver-
gence may prove onerous in some settings. Are CLTs available in settings where the sample-size grows at
a polynomial rate? (iii) Finally, given a CLT, there is little by way of availability of rigorous confidence
statements, barring the work by Hsieh and Glynn [27]. Can such statements be developed for the proposed
class of variance-reduced first-order methods?

Justification and relationship to other variance-reduced schemes.
(i) Terminology and applicability. The moniker “variance-reduced” has been loosely used in stochastic
optimization to capture approaches that admit deterministic convergence rates. For instance, for minimiz-
ing finite-sum expected-residual minimization problems in machine learning, techniques such as stochastic
variance reduced gradient (SVRG) [30] and a fast incremental gradient method [14] achieve determinis-
tic rates of convergence. In general probability spaces, using increasing batch-sizes of gradients represent
progressively accurate approximations of the true gradient, as opposed to noisy sampled variants employed
in single sample schemes [19]. The resulting schemes, often referred to as mini-batch SA schemes, may
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achieve deterministic rates of convergence under suitable growth rates in sample-sizes.
(ii) Weaker assumptions, and stronger statements. The proposed variance-reduced framework has several
key benefits often unavailable in single-sample regimes: 1) Under suitable assumptions, such schemes often
achieve optimal deterministic rates in terms of iteration complexity (e.g. in constrained regimes, complexity
of an iteration is essentially that of computing a projection onto a convex set) while achieving near-optimal
sample complexity. This assumes profound importance when iterations are expensive as in high-dimensional
and nonlinear settings; 2) In addition, the benefits of acceleration are less clear in stochastic single-sample
regimes, absent such approaches (to the best of our knowledge). While the present treatment is in an uncon-
strained regime, we also discuss how extensions to constrained and nonsmooth regimes may be developed.
(iii) Sampling requirements. Variance-reduced schemes have obvious benefits when sampling is relatively
cheap compared to computational effort of an iteration. Though such schemes are often characterized by
near-optimal sample complexity, one might question how to contend with batch-sizes (denoted by Nk)
tending to +∞. This issue is somewhat of a red herring since most SA schemes are meant to provide
ϵ-approximations; (see the detailed discussions in Remark 3). With the ubiquity of multi-core architec-
ture, such requirements are not terribly onerous. In addition, we also establish the polynomial rates and
associated sample complexities for polynomially increasing sample size. They are particularly important
when sampling is expensive and one would like to modulate the sampling rate to ensure that the scheme is
practical.
(iv) CLTs and confidence statements. Apart from rate statements, we additionally establish CLT results for
the proposed variance-reduced framework. In particular, we provide a clean characterization of the limiting
distribution and show the dependence of the Hessian matrix, the condition number, the noise covariance, etc
in the prescription of the CLT. The confidence statements are established as well; we should note that we
are unaware of such statements in the context of accelerated and heavy-ball settings in a variance-reduced
regime.

Outline and contributions. To address these gaps, we present CLTs and confidence statements for
first-order stochastic variance-reduced algorithms for resolving (1), including the classical SGD [51], the
stochastic variants of the Nesterov’s accelerated method [43], and the heavy ball method [48]. We provide
statements when batch-sizes increases at either a geometric or a polynomial rate. Our main contributions
are summarized next.
(I) CLTs for variable sample-size gradient methods. In Section 2.1, we recall the variance-reduced (VR)
stochastic gradient algorithm with a constant steplength (see Algorithm 1), where the gradient is estimated
by the average of an increasing batch of sampled gradients. In Section 3, when the batch-size increases at
a geometric rate, we observe that the mean-squared error diminishes at a geometric rate (see Proposition 1)
and provide a preliminary Lemma 7 for establishing a CLT for a noised-corrupted linear recursion. Based on
this Lemma and the linear approximation of the gradient function at x∗, we may derive a CLT (see Theorem
1) in this setting. We proceed to show that the covariance of the limiting normal distribution depends on the
Hessian matrix at the solution, the condition number, the covariance of gradient noise, etc and the steplength.
Additionally, we show in Section 4 that when the batch-size is increased at a polynomial rate, the sequence
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of iterates converges at a corresponding polynomial rate (see Proposition 5). Then based on the CLT shown
in Lemma 9 for the time-varying linear recursion, the CLT for Algorithm 1 with polynomially increasing
batch-size is established in Theorem 5.
(II) CLTs for VR-accelerated gradient method. In Section 2.2, we consider a VR-accelerated gradient
algorithm with constant steplengths (see Algorithm 2). Then by leveraging the geometric rate of convergence
(Proposition 2), we establish amongst the first CLTs in accelerated regimes (Theorem 2) when the batch-size
increases at a geometric rate. It is well-known that the accelerated variant has better constants in the iteration
complexity in deterministic regimes and this is also seen in stochastic settings. Akin to earlier, when the
batch-size increases at a polynomial rate, a polynomial convergence rate and the corresponding CLT are in
Proposition 6 and Theorem 6.
III. CLTs for VR-heavy-ball schemes. In Section 2.3, we design a VR-heavy ball scheme with constant
steplengths (see Algorithm 3). In contrast with Algorithms 1 and 2, the heavy ball method is analyzed
for both quadratic and non-quadratic objective functions. When the batch-size increases geometrically, the
geometric rate of convergence are respectively shown in Proposition 3 and 4 for quadratic and non-quadratic
objective functions, while the corresponding CLT is established in Theorem 3 and Theorem 4. Similarly,
for polynomially increasing batch-size, a polynomial rate of convergence is shown in Proposition 7 and
8 for quadratic and non-quadratic objective functions, whereas the corresponding CLTs are respectively
established in Theorem 7 and Theorem 8.
IV. Confidence statements. In Section 5, inspired by [27], we provide rigorous confidence regions for the
optimal solution and function value. Then in Section 6, we implement some simulations on a parameter
estimation problem in the stochastic environment to validate the theoretical findings.

Notations. Let Im denote the identity matrix of dimension m and 0m ∈ Rm×m denote the matrix with
all entries equal zero. Let {Xk} be a sequence of random variables. Xk

d−−−→
k→∞

N(0,S) denotes that Xk con-

verges in distribution to a normal distribution N(0,S) with mean zero and covariance S, and Xk
P−−−→

k→∞
X

denotes that Xk converges in probability to X. By utilizing the definitions of the “small-o in probability” and
“big-O in probability” notations oP (·) and OP (·) provided in [62, Chapter 2.2], the expression ek = oP (1)

implies that a sequence of random variables {ek} converges to zero in probability. Similarly, the expression
ek =OP (1) implies that a sequence of random variables {ek} is bounded in probability. For a square matrix
P, we denote by ρ(P) and ∥P∥ its spectral radius and matrix two-norm, respectively.

2 First-Order Variable Sample-size Stochastic Algorithms.

Since the exact gradient ∇f(x) is expectation-valued and unavailable in a closed form, we assume that there
exists a stochastic first-order oracle such that for any x and ξ, a sampled gradient ∇F (x, ξ) is returned and
is assumed to be an unbiased estimator of ∇f(x). In this section, we present three first-order stochastic
algorithms to find the optimal solution to (1). Throughout the paper, time is slotted at k = 0, 1, 2, . . . and
an iterate at time k is denoted by xk ∈ Rm.
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2.1 Variance-reduced Gradient Method.

We present a variable sample-size stochastic gradient algorithm (Algorithm 1) to solve (1), where at iteration
k, the unavailable exact gradient ∇f(xk) is estimated via the average of an increasing batch-size of sampled
gradients.

Algorithm 1 Variance reduced SGD
Given an arbitrary initial value x0 ∈ Rm, a positive constant α > 0, and a positive integer sequence
{Nk}k≥0. Then iterate the following equation for k ≥ 0.

xk+1 = xk − α
∑Nk

j=1 ∇F (xk,ξj,k)

Nk
, (2)

where α > 0 is the constant steplength, Nk is the number of sampled gradients used at time k, and ξj,k, j =

1, · · · , Nk, denote the independent and identically distributed (i.i.d.) realizations of ξ.

If the gradient observation noise wk,Nk
is defined as

wk,Nk
≜

∑Nk
j=1 ∇F (xk,ξj,k)

Nk
−∇f(xk), (3)

then the update (2) can be rewritten as

xk+1 = xk − α(∇f(xk) + wk,Nk
). (4)

For any k, define Fk as Fk ≜ σ{x0, ξj,t, 1 ≤ j ≤ Nt, 0 ≤ t ≤ k − 1}. Then xk is adapted to Fk by
Algorithm 1. We impose the following conditions on the objective function, the conditional expectation and
the second moments of the sampled gradients produced by the stochastic first-order oracle.

Assumption 1 (i) f is continuously differentiable on Rm with a Lipschitz continuous gradient, i.e., there
exists a constant L > 0 such that ∥∇f(x)−∇f(x′)∥ ≤ L∥x− x′∥ for any x, x′ ∈ Rm. (ii) f is η-strongly
convex, i.e., (∇f(x)−∇f(x′))T (x− x′) ≥ η∥x− x′∥2 for any x, x′ ∈ Rm.

(iii) There exists a constant ν > 0 such that for any k ≥ 0 and j = 1, · · · , Nk, E [∇F (xk, ξ) | Fk] =

∇f(xk) almost surely and E
[
∥∇F (xk, ξ)−∇f(xk)∥2 | Fk

]
≤ ν2 almost surely (a.s.).

Since xk is adapted to Fk and the samples ξj,k, j = 1, · · · , Nk, are independent, we obtain from (3) and
Assumption 1(iii) that for any k ≥ 0,

E[wk,Nk
| Fk] =

∑Nk
j=1 E

[
∇F (xk,ξ)−∇f(xk) | Fk

]
Nk

= 0, and

E[∥wk,Nk
∥2 | Fk] =

∑Nk
j=1 E[∥∇F (xk,ξ)−∇f(xk)∥2|Fk]

N2
k

≤ ν2

Nk
.

(5)

hold almost surely.
Since f is strongly convex, it has a unique optimal solution denoted by x∗. Then by the optimality

condition, ∇f(x∗) = 0. We now introduce an inequality [3, Eqn. (2.1.24)] on f satisfying Assumptions 1(i)
and 1(ii):

(x− y)T (∇f(x)−∇f(y)) ≥ ηL∥x−y∥2
η+L + ∥∇f(x)−∇f(y)∥2

η+L , ∀x, y ∈ Rm. (6)
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We then establish a recursion on the mean-squared estimation error, which can be proved by making a simple
modification to the proof of [3, Theorem 2.1.15].

Lemma 1 Let Assumption 1 hold. Consider Algorithm 1 with α ∈( 0,2
η+L]. Then

E[∥xk+1 − x∗∥2] ≤
(
1− 2αηL

η+L

)
E[∥xk − x∗∥2] + α2ν2

Nk
, ∀k ≥ 0. (7)

Proof. From (4) it follows that

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2α(xk − x∗)T (∇f(xk) + wk,Nk
)

+ α2
(
∥∇f(xk)∥2 + 2∇f(xk)

Twk,Nk
+ ∥wk,Nk

∥2
)
.

(8)

Since ∇f(x∗) = 0, by using (6), we obtain that

(xk − x∗)T∇f(xk) ≥ ηL
η+L∥xk − x∗∥2 + 1

η+L∥∇f(xk)∥2. (9)

Since xk is adapted to Fk, by taking expectations conditioned on Fk on both sides of (8), and using (5) from
Assumption 1(iii), we obtain that

E[∥xk+1 − x∗∥2|Fk] ≤ ∥xk − x∗∥2 − 2α(xk − x∗)T∇f(xk) + α2∥∇f(xk)∥2 + α2ν2

Nk

(9)
≤
(
1− 2αηL

η+L

)
∥xk − x∗∥2 − α

(
2

η+L − α
)
∥∇f(xk)∥2 + α2ν2

Nk
, a.s. .

Then by choosing α ∈ (0, 2
η+L ] and taking unconditional expectations, we achieve (7). 2

2.2 Accelerated Gradient Method.

Nesterov’s accelerated gradient descent method generates a sequence that converges to the solution at a rate
O(qk) where q ≜ 1−

√
η/L for η-strongly convex and L-smooth functions [3], and with a rate O(1/k2) for

merely convex functions [43]. Nesterov proved that this is the best possible rate for any first-order method.
As such, we combine the Nestrov’s accelerated method with Algorithm 1 and propose an accelerated variable
sample-size stochastic gradient descent algorithm (Algorithm 2) so as to improve the rate of convergence.
Such a scheme has been employed for smooth strongly convex [28], smooth convex [22], and nonsmooth
(but smoothable) convex [28] stochastic optimization problems with associated rates of convergence given
by O(qk), O(1/k2), and O(1/k), respectively. The present paper takes a crucial step towards developing
CLTs and confidence regions for the optimal solution.

Algorithm 2 Variance-reduced Accelerated SGD
Given arbitrary initial values x0 = y0 ∈ Rm, positive constants α, β, and a positive integer sequence
{Nk}k≥0. Then iterate the following equations for k ≥ 0.

yk+1 = xk − α(∇f(xk) + wk,Nk
), (10a)

xk+1 = yk+1 + β(yk+1 − yk), (10b)

where wk,Nk
is defined as in (3), α > 0 and β > 0 are constant steplengths.
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Next, we establish an upper bound on the expected sub-optimality gap of the iterates generated by
Algorithm 2. Its proof is similar to that in [3]; hence it is omitted here but included in the supplementary
material for completeness. This is an important preliminary result to be used in the rate analysis of Algorithm
2.

Lemma 2 Let Algorithm 2 be applied to the problem (1). Suppose Assumption 1 holds and α ∈ (0, 1
L ]. Set

β = 1−γ
1+γ with γ =

√
αη. Then for any k ≥ 1,

E[f(yk)− f∗] ≤ (η+L)(1−γ)k

2 E[∥x0 − x∗∥2] + ν2
(
α+ (1−γ)γ

2η

) k−1∑
i=0

(1−γ)i

Nk−1−i
. (11)

2.3 The Heavy-Ball Method.

The classical heavy-ball method of Polyak [48] takes the form xk+1 = xk − α∇f(xk) + β(xk − xk−1)

with a steplength α > 0 and a momentum parameter β > 0. For the class of quadratic and strongly convex
functions, the author in [48] derives optimal step-size parameters and achieves the linear convergence rate
(
√
L − √

η)/(
√
L +

√
η). However for the class of non-quadratic but L-smooth and η-strongly convex

functions, the authors in [2] provide the global linear rate of convergence; however, this rate does not lead
to an acceleration compared with unaccelerated gradient descent method (cf. [23, Lemma 2.5]). Stochastic
variants of the heavy-ball method have been employed widely in practice (cf. [31,59,60] for applications to
machine learning). Recent efforts [20, 65] have analyzed the rate in stochastic settings and [65] derived a
sublinear rate O(1/

√
k) for general Lipschitz continuous convex objectives with bounded variance, while a

rate O(1/kβ) with β ∈ (0, 1) was provided in [20] for the case of the strongly convex quadratic functions.
Convergence properties remain unaddressed in variance-reduced regimes. Therefore, we consider a variable
sample-size variant of the stochastic heavy ball method assuming constant steplengths, in contrast with the
diminishing steplengths utilized in [20, 65] and prove the global linear convergence of the iterates. In the
developed Algorithm 3, we add a momentum term β(xk − xk−1) to the variable sample-size stochastic
gradient step (2) and obtain the update (12).

Algorithm 3 Variance-reduced heavy-ball SGD
Given an arbitrary initial value x0 ∈ Rm, two positive constants α, β > 0, and a positive integer sequence
{Nk}k≥0. Set x−1 = x0. Then iterate the following equation for k ≥ 0.

xk+1 = xk − α(∇f(xk) + wk,Nk
) + β(xk − xk−1), (12)

where wk,Nk
is defined as in (3), α > 0 and β > 0 are constant steplengths.

In the following lemma, we first give an upper bound on the expected mean-squared error of {xk} for
quadratic cost functions based on [49]. The proof can be found in Appendix A

Lemma 3 Suppose that Assumption 1 holds and f is a quadratic function with ∇2f(x) ≡ H for any
x ∈ Rm. Consider Algorithm 3, where α ∈ (0, 4/L) and β ≜ max{|1 − √

αη|2, |1 −
√
αL|2} < 1. Then

8



for any ι ∈ (0, 1−
√
β), there exist a constant c(ι) such that the following holds for any k ≥ 0.

E

∥∥∥∥∥
(
xk+1 − x∗

xk − x∗

)∥∥∥∥∥
2
 ≤ 2(c(ι))2(

√
β + ι)2(k+1)

[
∥x0 − x∗∥2

]
+ α2ν2(c(ι))2

k∑
t=0

(
√
β+ι)2(k−t)

Nt
. (13)

Additionally, we follow the idea of [2] in establishing the convergence rate of Algorithm 3 for L-smooth
and η-strongly convex functions that are non-quadratic. The proof is similar to that of [2], hence it is omitted
here but included in the supplementary material for completeness.

Lemma 4 Suppose that Assumption 1 holds. Consider Algorithm 3, where β ∈ (0, 1) and α ∈ (0, 2(1−β)
L+η ).

Then for any k ≥ 0.

E[∥xk − x∗∥2] ≤ 1
2m̂ηE

[
∥x0 − x∗∥2 + m̂(f(x0)− f(x∗))

]
qk+1 + α2ν2

2(1−β)2m̂η

k∑
i=0

qi/Nk−i. (14)

where m̂ ≜ 2α
1−β

(
β−αη
1−β + 2η

η+L

)
and q = max{q1, q2} with

q1 ≜
β

β + η
(
2(1−β)
L+η − α

) < 1 and q2 ≜ max
{
0, 1− 2αηL

(1−β)(L+η)+2βL

}
. (15)

Based on the above two lemmas, for both the quadratic and non-quadratic strongly convex functions,
we will separately derive both a geometric rate and asymptotic normality statements in Section 3 for Algo-
rithm 3 under geometrically increasing batch-sizes, whereas the corresponding results of Algorithm 3 under
polynomially increasing batch-sizes will be established in Section 4.

2.4 Pathway for addressing constrained and nonsmooth regimes.

We believe that the presented avenues hold promise for contending with constrained and nonsmooth regimes.
(i) Constrained problems. Consider the constrained problem

min
x∈X

f(x) ≜ E[F (x, ξ)], (16)

where X is a closed and convex set with a nonempty interior. Algorithm 1 can be extended to a constrained
regime with an additional projection onto the convex set X . Under suitable conditions, Lemma 1 holds and
xk converges almost surely to the optimal solution x∗. For the case when the optimal solution x∗ lies in the
interior of X , the sequence {xk}k≥K will lie in the interior of the constrained set in an almost sure sense for
sufficiently large K. Then by proceeding in a similar fashion as in Section 3, CLTs may be developed for
constrained problems. If however, solutions are on the boundary of the set, a possible resolution may lie in
computing CLTs of approximate minimizers of an unconstrained reformulation via penalization and barrier
methods [44].
(ii) Nonsmooth problems. When the f is not necessarily smooth, then one avenue lies in employing smooth-
ing approaches. Under some conditions [1], one can construct an (a, b)-smoothed convex approximation of
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f , denoted by fη where fη(x) ≤ f(x) ≤ fη(x)+ ηb and ∥∇fη(x)−∇fη(y)∥ ≤ a
η∥x− y∥ for all x, y. One

may then integrate iterative smoothing within the variance-reduced accelerated gradient scheme as follows.

yk+1 = xk − αk(∇fηk(xk) + wk,Nk
),

xk+1 = yk+1 + βk(yk+1 − yk).

Under suitable assumptions on αk, βk, ηk, Nk, the sequence {yk} converges to a unique solution of the
original problem. Under an assumption that f is smooth in a neighborhood of x∗, one can again develop
CLTs in this setting. If however, f is not necessarily smooth at x∗, then one avenue might lie in developing
C2 smoothing-based approximations and provide CLTs for ϵ-solutions.

A comprehensive examination of (i) and (ii) is beyond the scope of this paper but we believe the smooth
and unconstrained analysis presented in this paper is a crucial building block.

3 Central Limit Theorems under Geometrically Increasing Batch-size.

In this section, we establish CLTs for Algorithms 1, 2, and 3 when the number of sampled gradients, denoted
by Nk, increases at a geometric rate.

3.1 Rate and Oracle Complexities.

Based on Lemmas 1–4, we can establish the geometric rate of convergence along with the iteration and
oracle complexity guarantees for Algorithms 1-3. Related results regarding linear convergence for stochastic
gradient methods can be found in [9, 19, 29, 46, 54], while a linear rate of the accelerated variants has been
provided in [28, 53]. The proofs of Propositions 1-3 are similar to those in our prior work [34, Theorem 4.2
and Corollary 4.7].

Proposition 1 (Rate and Oracle Complexity for Algorithm 1) Let Assumption 1 hold and α ∈ (0, 2
η+L ].

Consider Algorithm 1, where Nk ≜ ⌈ρ−(k+1)
1 ⌉ for some ρ1 ∈ (q, 1) with q ≜ 1− 2αηL

η+L . Then

E[∥xk − x∗∥2] ≤ ρk1

(
E[∥x0 − x∗∥2] + α2ν2

1−q/ρ1

)
, ∀k ≥ 1. (17)

The iteration and oracle complexity for computing an ϵ−solution, defined as E[∥xk − x∗∥2] ≤ ϵ, are
O (κ ln(1/ϵ)) and O (κ/ϵ), where κ ≜ L

η denotes the condition number.

Proof. By substituting Nk = ⌈ρ−(k+1)
1 ⌉ into (7), using q = 1− 2αηL

η+L and ρ1 ∈ (q, 1), one obtains

E[∥xk+1 − x∗∥2] ≤ qE[∥xk − x∗∥2] + α2ν2ρk+1
1 ≤ qk+1E[∥x0 − x∗∥2] + α2ν2

k∑
t=0

qtρk+1−t
1

= qk+1E[∥x0 − x∗∥2] + α2ν2ρk+1
1

k∑
t=0

(q/ρ1) ≤
(
E[∥x0 − x∗∥2] + α2ν2

1−q/ρ1

)
ρk+1
1 .

10



Hence, we derive (17). Suppose we set α ≜ 2
η+L and ρ1 ≜

(
κ

κ+1

)2
> q =

(
κ−1
κ+1

)2
. From (17), it follows

that E[∥xk − x∗∥2] ≤ ϵ for any k ≥ K(ϵ), where

K(ϵ) ≜
ln

(
E[∥x0−x∗∥2]+ α2ν2

1−q/ρ1

)
+ln(1/ϵ)

2 ln(1+ 1
κ)

. (18)

It is noticed that ln(1 + 1/κ) ≥ (1 − κ
κ+1) = 1

(κ+1) . Consequently, the number of iterations required to
obtain an ϵ-optimal solution in a mean-squared sense, i.e. E[∥x − x∗∥2] ≤ ϵ, is O

(
κ ln (1/ϵ)

)
. Finally,

based on the iteration complexity bound (18), we achieve the following oracle complexity bound, measured
by the number of sampled gradients, for obtaining an ϵ-optimal solution:

K(ϵ)−1∑
k=0

Nk ≤
K(ϵ)∑
k=1

ρ−k
1 ≤

∫ K(ϵ)+1

1
ρ−t
1 dt ≤ ρ

−(K(ϵ)+1)
1

ln(1/ρ1)
=

E[∥x0 − x∗∥2] + α2ν2

1−q/ρ1

2ϵρ1 ln(1 + 1/κ)
= O

(κ
ϵ

)
. ■

In the following lemma, we show that the result of Proposition 1 holds as well when the noise condition
Assumption 1(iii) is replaced by some state-dependent noise condition.

Lemma 5 Consider Algorithm 1, where Nk ≜ ⌈ρ−(k+1)
1 ⌉ for some ρ1 ∈ (q, 1) with q ≜ 1 − 2αηL

η+L . Let
α ∈ (0, 2

η+L ] and Assumptions 1(i)-(ii) hold. In addition, suppose that there exist constants ν1, ν2 > 0 such
that

E[wk,Nk
|Fk] = 0 and E[∥wk,Nk

∥2|Fk] ≤
ν21+ν22∥xk∥2

Nk
, a.s., ∀k ≥ 0. (19)

Then there exists a constant c > 0 such that the following holds.

E[∥xk+1 − x∗∥2] ≤ ρk1

(
E[∥x0 − x∗∥2] + α2c

1−q/ρ1

)
, ∀k ≥ 0. (20)

Further, the iteration and oracle complexity for computing an ϵ-solution are bounded by O (κ ln(1/ϵ)) and
O (κ/ϵ), respectively.

Proof. Since xk is adapted to Fk, by taking expectations conditioned on Fk on both sides of (8), using
α ∈ (0, 2

η+L ], (9) and (19), we obtain the following.

E[∥xk+1 − x∗∥2|Fk] ≤
(
1− 2αηL

η+L

)
∥xk − x∗∥2 + α2(ν21+ν22∥xk∥2)

Nk
, a.s. .

By taking unconditional expectations, using Nk ≜ ⌈ρ−(k+1)
1 ⌉ and ∥xk∥2 ≤ 2(∥xk − x∗∥2 + ∥x∗∥2), we

obtain that

E[∥xk+1 − x∗∥2] ≤
(
1− 2αηL

η+L + 2α2ν22ρ
k+1
1

)
E[∥xk − x∗∥2] + α2ρk+1

1 (ν21 + 2ν22∥x∗∥2). (21)

Next, we show that E[∥xk − x∗∥2] is uniformly bounded by some constants.
Case 1: If 2α2ν22 ≤ ρ1 − q, then 1 − 2αηL

η+L + 2α2ν22ρ
k+1
1 ≤ q + 2α2ν22ρ1 ≜ q̃ < q + 2α2ν22 ≤ ρ1.

Hence, we conclude that q̃ < ρ1. Similarly to the derivation of (17), we obtain from (21) that for any k ≥ 0,

E[∥xk − x∗∥2] ≤ q̃E[∥xk − x∗∥2] + α2ρk1(ν
2
1 + 2ν22∥x∗∥2) ≤ ρk1

(
E[∥x0 − x∗∥2] + α2(ν21+2ν22∥x∗∥2)

1−q̃/ρ1

)
11



≤ E[∥x0 − x∗∥2] + α2(ν21+2ν22∥x∗∥2)
1−q̃/ρ1

≜ c1.

Case 2: If 2α2ν22 > ρ1 − q, we define k̃ ≜


ln

(
2α2ν22
ρ1−q

)
ln(ρ−1

1 )

. Then for any k ≥ k̃, ρ
−(k+1)
1 >

2α2ν22
ρ1−q and

hence 2α2ν22ρ
k+1
1 < ρ1 − q. Note from (21) that for any k ≤ k̃,

E[∥xk − x∗∥2] ≤
(
1 + 2α2ν22ρ1

)
E[∥xk−1 − x∗∥2] + α2(ν21 + 2ν22∥x∗∥2)

≤ (1 + 2α2ν22ρ1)
k̃
(
E[∥x0 − x∗∥2] + α2(ν21 + 2ν22∥x∗∥2)

(1 + 2α2ν22ρ1)
k̃ − 1

(1 + 2α2ν22ρ1)− 1

)
≜ c2.

By defining q̂ ≜ q + 2α2ν22ρ
k̃+1
1 , we have 1− 2αηL

η+L + 2α2ν22ρ
k+1
1 ≤ q̂ < ρ1 for any k ≥ k̂. Then it follows

from (21) that for any k ≥ k̃,

E[∥xk+1 − x∗∥2] ≤ q̂E[∥xk − x∗∥2] + α2ρk+1
1 (ν21 + 2ν22∥x∗∥2)

≤ q̂k+1−k̃E[∥xk̃ − x∗∥2] + α2(ν21 + 2ν22∥x∗∥2)
k−k̃∑
t=0

ρk+1−t
1 q̂t ≤ c2 +

α2(ν21+2ν22∥x∗∥2)
1−q̂/ρ1

.

Thus, for the case 2α2ν22 > ρ1 − q, we have that E[∥xk − x∗∥2] ≤ c2 +
α2(ν21+2ν22∥x∗∥2)

1−q̃/ρ1
for any k ≥ 1.

By combing 2α2ν22 ≤ ρ1 − q (Case 1) and 2α2ν22 > ρ1 − q (Case 2), we conclude that there exits some
constant c3 > 0 such that E[∥xk − x∗∥2] ≤ c3 for any k ≥ 1. This combines with (21) produces

E[∥xk+1 − x∗∥2] ≤
(
1− 2αηL

η+L

)
E[∥xk − x∗∥2] + α2ρk+1

1 (ν21 + 2ν22∥x∗∥2 + 2ν22c3︸ ︷︷ ︸
≜c

)

= qE[∥xk − x∗∥2] + α2cρk+1
1 .

The rest of the proof is the same as that of Proposition 1. ■

Next, we provide similar statements for Algorithm 2, and Algorithm 3 (for both quadratic and non-
quadratic objective functions), for which the proofs are omitted here but included in the supplementary
material for completeness.

Proposition 2 (Rate and Oracle Complexity for Algorithm 2) Let Assumption 1 hold. Consider Algo-
rithm 2, where α ∈ (0, 1

L ], γ ≜
√
αη, β ≜ 1−γ

1+γ , and Nk ≜ ⌈ρ−(k+1)
2 ⌉ with ρ2 ∈ (1 − γ, 1). Then for any

k ≥ 0,

E[f(yk)]− f∗ ≤ ρk2

(
η+L
2 E[∥x0 − x∗∥2] + ρ2ν2

ρ2−(1−γ)

(
α+ (1−γ)γ

2η

))
, (22)

and E[∥xk − x∗∥2] ≤ cρk2 for some constant c > 0. In addition, the iteration and oracle complexity for
obtaining an ϵ−solution are O (

√
κ ln(1/ϵ)) and O (

√
κ/ϵ), respectively.

12



Proposition 3 (Rate and Oracle Complexity for Algorithm 3 on Quadratic Functions) Suppose that As-
sumption 1 holds and f(·) is a quadratic function with ∇2f(x) ≡ H for any x ∈ Rm. Consider Algo-

rithm 3, where α ≜ 4
(
√
η+

√
L)2

, β ≜
(√

κ−1√
κ+1

)2
, and Nk ≜ ⌈ρ−(k+1)

3 ⌉ with ρ3 ∈ (β, 1). Then for any

ι ∈ (0,
√
ρ3 −

√
β), there exist a constant c(ι) such that

E

∥∥∥∥∥
(
xk+1 − x∗

xk − x∗

)∥∥∥∥∥
2
 ≤ c(ι)2

(
2E[∥x0 − x∗∥2] + α2ν2

1− (
√
β + ι)2/ρ3

)
ρk+1
3 . (23)

In addition, the iteration and oracle complexity required for obtaining an ϵ−solution in a mean-squared
sense are respectively O (

√
κ ln(1/ϵ)) and O (

√
κ/ϵ).

Proposition 4 (Rate for Algorithm 3 on Non-Quadratic Functions) Let Assumption 1 hold. Consider
Algorithm 3, where β ∈ (0, 1), α ∈ (0, 2(1−β)

L+η ), and Nk ≜ ⌈ρ−(k+1)
4 ⌉ with ρ4 ∈ (q, 1). Here q =

max{q1, q2} with q1 and q2 defined in (15). Then for any k ≥ 0.

E[∥xk − x∗∥2] ≤ 1
2m̂η

(
E
[
∥x0 − x∗∥2 + m̂(f(x0)− f(x∗))

]
+ α2ν2

(1−β)2(1−q/ρ4)

)
ρk+1
4 , (24)

where m̂ ≜ 2α
1−β

(
β−αη
1−β + 2η

η+L

)
.

Remark 1 From the complexity statements in Propositions 1 and 2, we see that the dependence on the
condition number is improved from κ (in Algorithm 1) to

√
κ by the accelerated Algorithm 2. The rate and

oracle complexity for the heavy-ball method (Algorithm 3) of quadratic function are similar to that observed
in Algorithm 2, while Algorithm 3 for non-quadratic functions might not lead an acceleration (in the sense
of the dependence on κ in the constant) of Algorithm 1 (see also Remark 9). In addition, Propositions 1-3
imply that a smaller κ leads to a smaller constant in the oracle complexity.

Remark 2 (Convergence in Probability) Because mean-squared convergence implies convergence in prob-
ability, on the basis of Propositions 1-4, we may conclude that the sequences {xk} and {yk} generated by
Algorithms 1-3 converge in probability to the optimal solution x∗.

Remark 3 We discuss the choices employed in Algorithm 2 for different settings of ϵ and κ in the following
table. In particularly, we observe that the sample size at the last iterate is relatively modest.

κ ϵ K β =
√
κ−1√
κ+1

ρ ∈ (β, 1) NK = ⌈ρ−K⌉
10 10−3 √

κ ln(1/ϵ) ≈ 22 ≈ 0.52 ρ = 0.55 ≈ 5.1e5

10 10−3 √
κ ln(1/ϵ) ≈ 22 ≈ 0.52 ρ = 0.85 ≈ 36

103 10−3 √
κ ln(1/ϵ) ≈ 219 ≈ 0.939 ρ = 0.97 ≈ 789

103 10−4 √
κ ln(1/ϵ) ≈ 292 ≈ 0.939 ρ = 0.97 ≈ 7.3e3

It can be seen that for well-conditioned problems (κ close to 1), the sampling rate at the last iteration
reaches 105 when ρ is chosen closer to β and ϵ = 10−3. However, it is possible to choose β closer to 1 to
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obtain far more reasonable sampling rates. In more practical settings with higher κ (e.g., κ = 103), it is seen
that sampling rates are relatively modest. In addition, by leveraging the parallelizable structure, current
multi-core and multi-processing techniques can contend with the challenge of computing gradient estimators
with large sample sizes. Finally, it is noticed that most large-scale machine learning problems defined on
finite sample spaces with cardinalities of 106 to 109 or even more. Application of variance-reduced gradient
methods (such as SVRG) necessitate taking full gradients intermittently, implying that computing a gradient
estimate with this sample-size is well within the reach of current computational constraints. ■

3.2 Preliminary Lemmas.

Before establishing CLTs for Algorithms 1-3, we first introduce a preliminary CLT on doubly-indexed ran-
dom variables [11, Lemma 3.3.1]. We state it as Lemma 6, whose proof is found in [24, Chapter 12].

Lemma 6 Let ξkt, t = 1, · · · , k be m-dimensional random vectors. Define

Skt ≜ E[ξktξTkt], Rkt ≜ E[ξktξTkt|ξk1, · · · , ξk,t−1], and Sk ≜
k∑

t=1

Skt (25)

Assume that E[ξkt|ξk1, · · · , ξk,t−1] = 0, sup
k≥1

k∑
t=1

E[∥ξkt∥2] < ∞, (26)

lim
k→∞

Sk = S, lim
k→∞

k∑
t=1

E[∥Skt −Rkt∥] = 0, (27)

and lim
k→∞

k∑
t=1

E[∥ξkt∥2I[∥ξkt∥≥ϵ]] = 0, ∀ϵ > 0. (28)

Then
∑k

t=1 ξkt
d−−−→

k→∞
N(0,S).

To establish the CLTs for Algorithms 1–3, we further require the following conditions.

Assumption 2 (i) ∇f : Rm → Rm is differentiable at x∗ with Hessian matrix H ∈ Rm×m, and

∇f(x) = H(x− x∗) +D(x)(x− x∗) with ∥D(x)∥ ≤ RD∥x− x∗∥ for some RD > 0. (29)

(ii) The noise sequence {wk,Nk
} further satisfies

lim
k→∞

(
NkE

[
wk,Nk

wT
k,Nk

|Fk

] )
= lim

k→∞

(
NkE

[
wk,Nk

wT
k,Nk

] )
= S0, a.s., (30)

and lim
r→∞

sup
k

E
[∥∥∥√Nkwk,Nk

∥∥∥2 I[∥√Nkwk,Nk
∥>r]

]
= 0, (31)

where I[a>b] = 1 if a > b, and I[a>b] = 0, otherwise.

Remark 4 We now provide two easily understood sufficient conditions to guarantee that Assumption 2(i)
holds. In (A), we assume that the gradient ∇f is twice differentiable with bounded second derivatives, i.e.
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f is assumed to be thrice differentiable while in (B), we require that f is twice differentiable with Lips-

chitz continuous Hessians. Define F as F (x) ≜


F1(x)

...
Fm(x)

 = ∇f(x), where Fj : Rm → R for each

j = 1, · · · ,m.

(A) Suppose F is twice continuously differentiable and that ∇2Fj(x) is bounded in x ∈ Rm for j =

1, · · · ,m. Then for any jth (j = 1, · · · ,m) component of F (x), by the second-order mean-value theorem,
we know there exists x̃j ∈ Rm on the line segment connecting x and x∗ such that

Fj(x) = Fj(x
∗) +∇Fj(x

∗)T (x− x∗) +
1

2
(x− x∗)T∇2Fj(x̃

j)(x− x∗)

= Fj(x
∗) +∇Fj(x

∗)(x− x∗) +

(
1

2
∇2Fj(x̃

j)(x− x∗)

)T

︸ ︷︷ ︸
≜Dj(x)

(x− x∗). (32)

Since ∥∇2Fj(x)∥ ≤ RDj for all x, we have that ∥Dj(x)∥ ≤ RDj∥x − x∗∥. Thus, we conclude that

D(x) ≜


D1(x)

...
Dn(x)

 satisfies ∥D(x)∥ =
√∑m

j=1 ∥Dj(x)∥2 ≤ RD∥x− x∗∥, where RD =
√∑m

j=1R
2
Dj

.

Since F (x∗) = 0 and ∇F (x∗) = H is a symmetric matrix, we derive (29) by stacking (32) for j = 1, · · · ,m.

(B). Suppose f is twice continuously differentiable with Lipschitz continuous Hessians with constant
LH . By the integral mean-value theorem for the gradient, we have that

∇f(x) = ∇f(x∗) +∇2f(x∗)(x− x∗) +

∫ 1

0

(
∇2f(x∗ + ζ(x− x∗))−∇2f(x∗)

)
(x− x∗)dζ

= H(x− x∗) +D(x)(x− x∗), where D(x) ≜
∫ 1

0

(
∇2f(x∗ + ζ(x− x∗))−∇2f(x∗)

)
dζ.

We now derive a bound on D(x) as follows.

∥D(x)∥ =

∥∥∥∥∫ 1

0

(
∇2f(x∗ + ζ(x− x∗))−∇2f(x∗)

)
dζ

∥∥∥∥
≤ max

0≤ζ≤1

∥∥(∇2f(x∗ + ζ(x− x∗))−∇2f(x∗)
)∥∥ ≤ LH∥x− x∗∥.

Again, we see that (29) holds. ■

Remark 5 Since the Lindeberg condition condition (31) is less easily verified, we provide a sufficient con-
dition for the ease of understanding and verification in practice. Suppose there exists a constant δ > 0 and
a finite value b > 0 such that E

[
∥
√
Nkwk,Nk

∥2+δ
]
≤ b for any k ≥ 0. Therefore,

E
[∥∥∥√Nkwk,Nk

∥∥∥2 I[∥√Nkwk,Nk
∥>r]

]
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≤ 1
rδ
E
[∥∥∥√Nkwk,Nk

∥∥∥2+δ
I[∥

√
Nkwk,Nk

∥>r]

]
≤ 1

rδ
E
[∥∥∥√Nkwk,Nk

∥∥∥2+δ
]
≤ b

rδ
.

This implies that supk E
[∥∥√Nkwk,Nk

∥∥2 I[∥√Nkwk,Nk
∥>r]

]
≤ b

rδ
. Hence (31) holds. ■

In the following, we establish the central limit theorem of a linear recursion, for which the proof is
provided in Appendix B. This result will be applied in the proof of Theorems 1-4.

Lemma 7 Suppose that P is a square matrix with spectral radius, denoted by ρ(P), strictly smaller than
1 (i.e., ρ(P) < 1), Nk = ⌈ρ−(k+1)⌉ with ρ ∈ (0, 1) for any k ≥ 0, and that {wk,Nk

} satisfies Assumption
2(ii). Let {ek} be generated by

ek+1 = Pek − αρ−(k+1)/2Gwk,Nk
+ ζk+1, (33)

where E[∥e0∥2] < ∞ and ζk
P−−−→

k→∞
0. Then

α−1ek
d−−−→

k→∞
N(0,Σ) with Σ ≜

∞∑
t=0

PtGS0G
T
(
Pt
)T

.

3.3 Central Limit Theorems.

Based on Proposition 1 and Lemma 7, using Assumption 2, we present the central limit theorem for Algo-
rithm 1 with geometrically increasing batch-sizes.

Theorem 1 (CLT of Algorithm 1 with Geometrically increasing Nk) Let Assumptions 1 and 2 hold. Con-
sider Algorithm 1, where α ∈ (0, 2

η+L ]. Set q ≜ 1 − 2αηL
η+L , Nk ≜ ⌈ρ−(k+1)

1 ⌉ with ρ1 ∈ (q, 1), and

P1 ≜ ρ
−1/2
1 (Im − αH). Then ρ(P1) < 1 and

α−1ρ
−k/2
1 (xk − x∗)

d−−−→
k→∞

N(0,Σ1), where Σ1 ≜
∞∑
t=0

Pt
1S0P

t
1. (34)

Proof. By using (29), we can rewrite (4) as

xk+1 − x∗ = xk − x∗ − αH(xk − x∗)− α(∇f(xk)−H(xk − x∗) + wk,Nk
)

= (Im − αH)(xk − x∗)− α(D(xk)(xk − x∗) + wk,Nk
). (35)

Define ek ≜ ρ
−k/2
1 (xk−x∗). Then by multiplying both sides of (35) by ρ

−(k+1)/2
1 and by using the definition

P1 ≜ ρ
−1/2
1 (Im − αH), we obtain

ek+1 = ρ
−1/2
1 (Im − αH)ρ

−k/2
1 (xk − x∗)− αρ

−(k+1)/2
1 (D(xk)(xk − x∗) + wk,Nk

)

= P1ek − αρ
−(k+1)/2
1 wk,Nk

+ ζk+1 with ζk+1 ≜ −αρ
−1/2
1 D(xk)ek. (36)
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In the following, we prove that ζk
P−−−→

k→∞
0. From (17), it follows that for any k ≥ 0,

var(ek) ≤ E[∥ek∥2] = E[∥xk − x∗∥2/ρk1] ≤ E[∥x0 − x∗∥2] + α2ν2

1− q/ρ1
≜ v2e with ve > 0. (37)

Chebyshev’s inequality asserts that if X is a random variable with mean µ and variance σ2, then for any real
number h > 0,

P(∥X − µ∥ ≤ hσ) ≥ 1− h−2. (38)

By setting h = χ−1/2 for any χ ∈ (0, 1) and applying (38) where X = ek, we have

P
(
∥ek − E[ek]∥ ≤ χ−1/2var(ek)

)
≥ 1− χ. (39)

Define the events A1 ≜
{
∥ek − E[ek]∥ ≤ χ−1/2var(ek)

}
, A2 ≜

{
∥ek − E[ek]∥ ≤ χ−1/2v2e

}
, A3 ≜{

∥ek∥ ≤ ∥E[ek]∥ + χ−1/2v2e
}
, A4 ≜

{
∥ek∥ ≤ E[∥ek∥] + χ−1/2v2e

}
, and A5 ≜

{
∥ek∥ ≤ ve + χ−1/2v2e

}
.

Note by (37) that A1 ⊆ A2. We observe that A2 ⊆ A3 by the inequality ∥x1 − x2∥ ≥ ∥x1∥ − ∥x2∥. Since
∥ • ∥ is convex in x, by the Jensen’s inequality we have ∥E[X]∥ ≤ E[∥X∥], and hence A3 ⊆ A4. Since
∥ • ∥2 is a convex function, by using (37) and Jensen’s inequality, we have E[∥ek∥] ≤

√
E[∥ek∥2] ≤ ve and

hence A4 ⊆ A5. Thus, we have A1 ⊆ A5. This together with (39) implies that for any k ≥ 0,

P(∥ek∥ ≤ ve + χ−1/2v2e) = P(A5) ≥ P(A1) = P
(
∥ek − E[ek]∥ ≤ χ−1/2var(ek)

)
≥ 1− χ.

That is to say that for any χ ∈ (0, 1),

P(∥ek∥ > ve + χ−1/2v2e) < χ, ∀k ≥ 0. (40)

Therefore, we conclude that ∥ek∥ is bounded in probability (i.e., ∥ek∥ = OP (1)).
Note by Proposition 1 and the Markov’s inequality that ∥xk − x∗∥ P−−−→

k→∞
0, i.e., ∥xk − x∗∥ = oP (1).

Then by invoking the bound that ∥D(x)∥ ≤ RD∥x − x∗∥, we conclude that ∥D(xk)∥ = oP (1). Recall
from [62, p.12] that symbols oP (·) and OP (·) satisfy

OP (1)oP (1) = oP (1). (41)

This together with ∥D(xk)∥ = oP (1) and ∥ek∥ = OP (1) implies ∥ζk+1∥ ≤ αρ
−1/2
1 ∥D(xk)∥∥ek∥ =

OP (1)oP (1)
(41)
= oP (1). Thus, we conclude that ζk

P−−−→
k→∞

0.

Since H is the Hessian matrix of f(x) at x = x∗, by Assumptions 1(i) and 1(ii), we conclude that H
has eigenvalues λ1, · · · , λm that satisfy 0 < η ≤ λm ≤ λm−1 ≤ · · · ≤ λ2 ≤ λ1 ≤ L. Then ∥Im−αH∥2 ≤
max{|1− αη|, |1− αL|}. We first show that |1− αη| ≥ |1− αL|. It can be seen that |1− αη| ≥ |1− αL|
when α ∈ (0, 1/L]. While for any α ∈ [1/L, 2

η+L ], |1 − αη| = 1 − αη, |1 − αL| = αL − 1, and hence
|1− αη| − |1− αL| = 2− α(η + L) ≥ 0. Then for any α ∈ (0, 2

η+L ],

∥Im − αH∥ ≤ |1− αη| = 1− αη ≤
√
1− 2αηL

η+L .
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The last inequality holds because α ≤ 2
η+L ⇒ 2L

η+L + αη − 2 ≤ 0 ⇒ 2αηL
η+L + (αη)2 − 2αη ≤ 0 ⇒

(1− αη)2 ≤ 1− 2αηL
η+L . Since q = 1− 2αηL

η+L and ρ1 ∈ (q, 1), we have that

∥P1∥ = ρ
−1/2
1 ∥(Im − αH)∥ ≤ (q/ρ1)

1/2 < 1. (42)

Since the spectral radius of a symmetric matrix P1 equals its two norm, i.e., ρ(P1) = ∥P1∥ < 1, by
invoking Lemma 7 and setting G = Im and P = P1 (symmetric), we conclude that the sequence α−1ek

generated by (36) converges in distribution to a normally distributed random variable with zero mean and
covariance Σ1 defined as in (34). Therefore, the result follows by recalling that ek = ρ

−k/2
1 (xk − x∗). ■

Based on Lemma 4, by employing similar proof arguments as in Theorem 1, we conclude that the
central limit result established in Theorem 1 holds as well under Assumptions 1(i)-(ii), Assumption 2, and
the state-dependent noise condition (19).

Remark 6 Suppose we set α = 2
η+L and ρ1 ≜

(
κ

κ+1

)2
in Algorithm 1. If V ∼ N(0, Im), it follows from

(34) that η+L
2

(
κ+1
κ

)k
(xk − x∗)

d−−−→
k→∞

N(0,Σ1). Namely,

xk
D
≈ x∗ + 2

η+L

(
1− 1

κ+1

)k
Σ

1/2
1 V for large k.

This result implies that the sequence {xk} converges in distribution to the optimal solution x∗ at rate ( κ
κ+1)

k,
and {xk} is asymptotically normally distributed for large k. This provides the possibility of assessing
confidence regions of the estimate from the normal distribution. In addition, the estimation error for large k
depends on the structure of the studied problem (including η, L, and the Hessian matrix H) and probability
distribution of the gradient noise, measured through the coupling matrix Σ1. Thus, the problem’s difficulty
is largely characterized by the covariance matrix Σ1.

Based on the CLT established in Theorem 1, we proceed to use the Delta method [55] to derive the
asymptotic distribution of the gradient and the objective function based on the estimation sequence {x(k)}.

Corollary 1 Consider Algorithm 1 and suppose all conditions of Theorem 1 hold. Then
(i) α−1ρ

−k/2
1 ∇f(xk)

d−−−→
k→∞

N(0,HΣ1H).

(ii) α−2ρ−k
1 (f(xk)− f(x∗))

d−−−→
k→∞

1
2N(0,Σ1)

THN(0,Σ1).

Proof. (i) Note by Assumption 2(i) that the gradient mapping ∇f(x) : Rm → Rm is differentiable at x∗

with Hessian matrix H. By using (34) and the Delta theorem [55, Eqn. (7.182)], we have that

α−1ρ
−k/2
1

(
∇f(xk)−∇f(x∗)

) d−−−→
k→∞

HN(0,Σ1).

Then by the fact that ∇f(x∗) = 0 and H is symmetric, the assertion (i) holds.
(ii) By using (34), ∇f(x∗) = 0, and the second-order Delta theorem [55, Theorem 7.70], one obtains

α−2ρ−k
1

(
f(xk)− f(x∗)

) d−−−→
k→∞

1

2
f

′′
u (x

∗) with u = N(0,Σ1),
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where f
′′
u (x

∗) denotes the second order directional derivative at x∗ along the direction u. Since f : Rm → R
is twice continuously differentiable, f

′′
u (x

∗) = uTHu. Then result (ii) follows from u = N(0,Σ1). ■

Akin to Theorem 1, based on Proposition 2 and Lemma 7, we can also establish the CLT for Algorithm
2 with geometrically increasing batch-sizes.

Theorem 2 (CLT for Algorithm 2 with Geometrically Increasing Nk) Suppose Assumptions 1 and 2 hold.
Consider Algorithm 2, where α ∈ (0, 1

L ], γ ≜
√
αη, β ≜ 1−γ

1+γ , and Nk ≜ ⌈ρ−(k+1)
2 ⌉ with ρ2 ∈ (1 − γ, 1).

Then

α−1ρ
−k/2
2

(
yk − x∗

yk−1 − x∗

)
d−−−→

k→∞
N(0,Σ2) with Σ2 ≜

∞∑
t=0

Pt
2

(
S0 0m

0m 0m

)(
Pt

2

)T
,

where P2 ≜ ρ
−1/2
2

(
(1 + β)(Im − αH) − β(Im − αH)

Im 0m

)
and ρ(P2) < 1.

Proof. By using (29), we can rewrite (10a) as

yk+1 − x∗ = (Im − αH)(xk − x∗)− α(D(xk)(xk − x∗) + wk,Nk
). (43)

Note by (10b) that xk − x∗ = (1 + β)(yk − x∗)− β(yk−1 − x∗). This together with (43) produces

yk+1 − x∗ = (Im − αH)((1 + β)(yk − x∗)− β(yk−1 − x∗))− α(D(xk)(xk − x∗) + wk,Nk
)

= (1 + β)(Im − αH)(yk − x∗)− β(Im − αH)(yk−1 − x∗)− α(D(xk)(xk − x∗) + wk,Nk
).

Define zk+1 ≜

(
yk+1 − x∗

yk − x∗

)
and H2 ≜

(
(1 + β)(Im − αH) − β(Im − αH)

Im 0m

)
. Then based on the

above equation, we obtain the following recursion.

zk+1 = H2zk − α

(
D(xk)(xk − x∗) + wk,Nk

0

)
. (44)

The eigenvalue decomposition of H is given by H = UΛUT , where Λ ≜ diag{λ1, λ2, · · · , λm} and
U is orthogonal. This allows us to rewrite H2 as

H2 =

(
U 0m

0m U

)(
(1 + β)(Im − αΛ) − β(Im − αΛ)

Im 0m

)(
U 0m

0m U

)T

.

Then the eigenvalues of the matrix H2 are given by the roots of the equation det
(
vI2m −H2

)
= 0, i.e.,

det

(
vIm − (1 + β)(Im − αΛ) β(Im − αΛ)

−Im vIm

)
= 0.

By the property det

(
A B

C D

)
= det(AD − BC) when the blocks A,B,C,D are square matrices of the

same size and CD = DC [56], we have

det
(
v
(
vIm − (1 + β)(Im − αΛ)

)
+ β(Im − αΛ)

)
= 0.
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Since the matrix in the above determinant is a diagonal matrix, it can be described by the following charac-
teristic equations for i = 1, · · · ,m.

v
(
v − (1 + β)(1− αλi)

)
+ β(1− αλi) = v2 − (1 + β)(1− αλi)v + β(1− αλi) = 0. (45)

By γ2 = αη and β = 1−γ
1+γ , we will show that the discriminant of the above quadratic equation is

nonpositive for each i = 1, · · · ,m.

∆i = (1 + β)2(1− αλi)
2 − 4β(1− αλi) = 4(1− αλi)

(
(1− αλi)

(1 + γ)2
− 1− γ

1 + γ

)
=

4(1− αλi)

(1 + γ)2
(
γ2 − αλi

)
=

4α(1− αλi)

(1 + γ)2
(η − λi) ≤ 0,

where the last inequality holds by the fact that for any i = 1, . . . ,m, 1 − αλi ≥ 1 − λi/L ≥ 0 and
η − λi ≤ 0. Consequently, (45) has two complex roots (1+β)(1−αλi)±i

√
−∆i

2 , where i denotes the imaginary

part. Thus, the magnitude of the roots is

√(
(1+β)(1−αλi)

2

)2
− ∆i

4 =
√
β(1− αλi). Since γ2 = αη,

β = 1−γ
1+γ , ρ2 ∈ (1− γ, 1), and λi ∈ [η, L], we obtain that

ρ(H2) = max
i

√
β(1− αλi) ≤

√
β(1− αη) =

√
(1−γ)(1−γ2)

1+γ = 1− γ < ρ2 < ρ
1/2
2 . (46)

Define εk ≜ ρ
−k/2
2 zk. By multiplying both sides of (44) by ρ

−(k+1)/2
2 , we obtain the following recursion

with ςk+1 ≜ −αρ
−(k+1)/2
2 D(xk)(xk − x∗) :

εk+1 = ρ
−1/2
2 H2εk − αρ

−(k+1)/2
2

(
D(xk)(xk − x∗) + wk,Nk

0

)
= P2εk − αρ

−(k+1)/2
2

(
wk,Nk

0

)
+

(
ςk+1

0

)
.

We proceed to show that ςk
P−−−→

k→∞
0. By Proposition 2, we see that E[ρ−k

2 ∥xk − x∗∥2] ≤ c for some

constant c > 0 and ∥xk − x∗∥ = oP (1) by the Markov’s inequality. Then by invoking the bound that
∥D(x)∥ ≤ RD∥x − x∗∥, we achieve ∥D(xk)∥ = oP (1). Similarly to the procedures for proving (40), we
can also show that ∥ρ−k/2

2 (xk − x∗)∥ = OP (1). Therefore, we conclude that

∥ςk+1∥ ≤ αρ
−1/2
2 ∥D(xk)∥∥ρ

−k/2
2 (xk − x∗)∥ = oP (1)OP (1)

(41)
= oP (1) ⇒ ςk+1

P−−−→
k→∞

0.

Because ρ(P2) = ρ
−1/2
2 ρ(H2) < 1 by (46), by setting P = P2, G =

(
Im

0m

)
and using Lemma 7,

we obtain that α−1εk
d−−−→

k→∞
N(0,Σ2) with Σ2 ≜ limk→∞

∑k
t=0P

t
2GS0G

T
(
Pt

2

)T
. Then by GS0G

T =(
S0 0m

0m 0m

)
and εk = ρ

−k/2
2 zk = ρ

−k/2
2

(
yk − x∗

yk−1 − x∗

)
, we prove the result. ■

Remark 7 By setting α = 1
L and ρ2 = 1 − 1

a
√
κ

for some a > 1 in Algorithm 2, we have that 1 − γ =

1 − 1√
κ
< ρ2, and Theorem 2 holds. Thus, we obtain L

(
1− 1

a
√
κ

)−k/2
(

yk − x∗

yk−1 − x∗

)
d−−−→

k→∞
N(0,Σ2).
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Hence the following holds with V ∼ N(0, I2m).(
yk

yk−1

)
D
≈

(
x∗

x∗

)
+

1

L

(
1− 1

a
√
κ

)k/2

Σ
1/2
2 V for large k

In a similar fashion, we establish the central limit theorem for the stochastic heavy ball method (Algo-
rithm 3) on quadratic objective functions with geometrically increasing batch-sizes based on Proposition 3
and Lemma 7.

Theorem 3 (CLT for Alg. 3 with Geometrically Increasing Nk on Quadratic Functions) Suppose that As-
sumptions 1 and 2(ii) hold, and f is a quadratic function with ∇2f(x) ≡ H for any x ∈ Rm. Consider

Algorithm 3, where α ≜ 4
(
√
η+

√
L)2

, β ≜
(
1− 2√

κ+1

)2
, and Nk ≜ ⌈ρ−(k+1)

3 ⌉ with ρ3 ∈ (β, 1) for any

k ≥ 0. Then

α−1ρ
−k/2
3

(
xk − x∗

xk−1 − x∗

)
d−−−→

k→∞
N(0,Σ3) with Σ3 ≜

∞∑
t=0

Pt
3

(
S0 0m

0m 0m

)(
Pt

3

)T
,

where P3 ≜ ρ
−1/2
3

(
(1 + β)Im − αH − βIm

Im 0m

)
and ρ(P3) < 1.

Proof. As has been shown in the proof of Lemma 3 (Equation (58)), we can rewrite the recursion (12) in a
matrix form as follows:(

xk+1 − x∗

xk − x∗

)
=

(
(1 + β)Im − αH −βIm

Im 0m

)
︸ ︷︷ ︸

≜H3

(
xk − x∗

xk−1 − x∗

)
− α

(
wk,Nk

0

)
.

Define εk ≜ ρ
−k/2
3

(
xk − x∗

xk−1 − x∗

)
. By multiplying the above equation with ρ

−(k+1)/2
3 , one obtains

εk+1 = P3εk − αρ
−(k+1)/2
3

(
Im

0m

)
wk,Nk

,

where P3 = ρ
−1/2
3 H3. Thus, ρ(P3) = ρ

−1/2
3 ρ(H3) < 1 by recalling ρ(H3) =

√
β from (60). This together

with Assumption 2(ii) proves the result by using Lemma 7. ■

Remark 8 Suppose we set ρ3 =
(
1− 1√

κ+1

)2
in Algorithm 3, then ρ3 > β and Theorem 3 holds; i.e.,

(
√
η+

√
L)2

4

(
1− 1√

κ+1

)−k
(

xk − x∗

xk−1 − x∗

)
d−−−→

k→∞
N(0,Σ3). If we denote V ∼ N(0, I2m), then

(
xk

xk−1

)
D
≈

(
x∗

x∗

)
+ 4

(
√
η+

√
L)2

(
1− 1√

κ+1

)k
Σ

1/2
3 V for large k.
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Next, based on Proposition 4 and Lemma 7, we also show the CLT of Algorithm 3 on non-quadratic
objective functions.

Theorem 4 (CLT for Alg. 3 with Geometrically Increasing Nk on Non-Quadratic Functions) Let Assump-
tion 1 and 2 hold. Consider Algorithm 3, where β = |1−√

αη|2 and α ∈ (0, 2(1−β)
L+η ). Let q = max{q1, q2}

with q1 and q2 defined in (15). Set Nk ≜ ⌈ρ−(k+1)
4 ⌉ with ρ4 ∈ (q, 1). Then

α−1ρ
−k/2
4

(
xk − x∗

xk−1 − x∗

)
d−−−→

k→∞
N(0, Σ̂3) with Σ̂3 ≜

∞∑
t=0

Pt
4

(
S0 0m

0m 0m

)(
Pt

4

)T
,

where P4 ≜ ρ
−1/2
4

(
(1 + β)Im − αH − βIm

Im 0m

)
and ρ(P4) < 1.

Proof. From (12) and Assumption 2(a) it follows that

xk+1 − x∗ = xk − x∗ + β(xk − xk−1)− αH(xk − x∗)− αD(xk)(xk − x∗)− αwk,Nk
.

Then we may rewrite the recursion in a matrix form as follows:(
xk+1 − x∗

xk − x∗

)
=

(
(1 + β)Im − αH −βIm

Im 0m

)
︸ ︷︷ ︸

≜H4

(
xk − x∗

xk−1 − x∗

)
− α

(
D(xk)(xk − x∗) + wk,Nk

0

)
.

Define εk ≜ ρ
−k/2
4

(
xk − x∗

xk−1 − x∗

)
. By multiplying the above equation with ρ

−(k+1)/2
4 , one obtains

εk+1 = P4εk − αρ
−(k+1)/2
4

(
Im

0m

)
wk,Nk

+

(
ςk+1

0

)
with ςk+1 ≜ −αρ

−(k+1)/2
4 D(xk)(xk − x∗),

where P4 = ρ
−1/2
4 H4.

Next, we show that ρ(H4) ≤
√
q similar to how we showed tha ρ(H2) ≤ 1 − γ in Theorem 2. Recall

the eigenvalue decomposition H = UΛUT , where U is orthogonal and Λ ≜ diag{λ1, λ2, · · · , λm} with
satisfy 0 < η ≤ λm ≤ λm−1 ≤ · · · ≤ λ2 ≤ λ1 ≤ L. Then we can rewrite

H4 =

(
U 0m

0m U

)(
(1 + β)Im − αΛ − βIm

Im 0m

)(
U 0m

0m U

)T

.

Similarly to the derivation of (45), the eigenvalues of H4 can be described by the following characteristic
equations.

pi(v) = (v − (1 + β − αλi))v + β = v2 − (1 + β − αλi)v + β = 0, i = 1, · · · ,m.

Since 0 < η ≤ λm ≤ λm−1 ≤ · · · ≤ λ2 ≤ λ1 ≤ L, we have |1−
√
αλi| ≤ max{|1−√

αη|, |1−
√
αL|}.

Note from α ∈ (0, 2(1−β)
L+η ) that α−

(
2√

L+
√
η

)2
< 2

L+η − 4
L+η+2

√
ηL

≤ 0. Thus, |1−√
αη| ≥ |1−

√
αL|

and |1−
√
αλi| ≤ |1−√

αη| = β. Then similar to (59), the discriminant of the equation pi(v) = 0 is

∆i = (1 + β − αλi)
2 − 4β = β2 − 2β(1 + αλi) + (1− αλi)

2 = (β − (1 + αλi))
2 − 4αλi ≤ 0.
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Then the spectral radius of H4 is

ρ(H4) =
√

β ≥ |1−√
αη| = 1−√

αη since αη < 1. (47)

Since κ > 1 and β ∈ (0, 1), we have (1 − β)(κ + 1) + 2κβ = κ + 1 + β(κ − 1) > κ + 1 > 4κ
κ+1 .

Therefore,

(1− β)2(κ+ 1) + 2κβ(1− β) > 4κ(1−β)
κ+1 = 4(1−β)L

L+η > 2αL.

⇒ 1− β > 2αL
(1−β)(κ+1)+2κβ = 2αLη

(1−β)(L+η)+2Lβ

⇒ β < 1− 2αLη
(1−β)(L+η)+2Lβ

(15)
≤ q2.

This together with (47) implies that ρ(H4) <
√
q2 ≤

√
q since q = max{q1, q2}.

From Proposition 4 it follows that E[ρ−k
4 ∥xk − x∗∥2] ≤ C for some constant C > 0 and hence ∥xk −

x∗∥ = oP (1). Then by invoking the bound that ∥D(x)∥ ≤ RD∥x− x∗∥, we obtain that ∥D(xk)∥ = oP (1).

Similarly to the procedures for proving (40), we can show that ∥ρ−k/2
4 (xk − x∗)∥ = OP (1). Therefore,

∥ςk+1∥ ≤ αρ
−1/2
3 ∥D(xk)∥∥ρ

−k/2
3 (xk − x∗)∥ = oP (1)OP (1)

(41)
= oP (1) ⇒ ςk+1

P−−−→
k→∞

0.

Since ρ(P4) = ρ
−1/2
4 ρ(H4) = ρ

−1/2
4

√
q < 1 by ρ(H4) <

√
q and ρ4 > q, the result follows by invoking

Lemma 7. ■

Since β = |1 − √
αη|2 and α ∈ (0, 2(1−β)

L+η ) imply that β is defined in an implicit sense, we add the
following remark to clarify their existence and show how does the spectral radius depends on the condition
number κ.

Remark 9 By substituting β = |1−√
αη|2 into the upper bound of α, it requires that

α <
2(1−|1−√

αη|2)
L+η ⇔ α(L+ η) < 4

√
αη − 2αη ⇔ α(L+ 3η) < 4

√
αη ⇔ α <

16η

(L+ 3η)2
.

Then by (47), we achieve ρ(H4) ≥ 1 − √
αη > 1 −

√
16η2

(L+3η)2
= 1 −

√
16

(κ+3)2
= 1 − 4

κ+3 ≥ 1 − 4
κ . In

comparison with the geometric rate 1 − 1/
√
κ+ 1 of Algorithm 3 for quadratic functions, the geometric

parameter of Algorithm 3 non-quadratic functions will not exceed 1 − 4
κ . Therefore, it does not lead to

an acceleration compared with variable sample-size stochastic gradient algorithm (Algorithm 1), which is
consistent with the statement in [23, Lemma 2.5].

4 Central Limit Theorems on Polynomial Batch-size.

There are many settings where a geometric increase in Nk is impractical. For instance, the generation
of a sampled gradient is computationally expensive; an example of this commonly arises in simulation
optimization problems in the context of large manufacturing or queueing simulations. To this end, we
consider the use of polynomial increases in sample-size, an avenue that allows for more gentle growth, and
proceed to investigate the rate of convergence and the associated central limit statements for Algorithms 1–
3. Polynomial rates have been studied in [34] as well as [46] but remain unaware of rate and complexity
statements as well as the ensuing CLTs in accelerated and heavy-ball regimes.
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4.1 Rate of Convergence.

We first recall some preliminary results that find utility in the rate analysis of the proposed algorithms with
the polynomially increasing batch-sizes.

Lemma 8 (i) [35, Eqn. (17)] For any q ∈ (0, 1) and v > 0, there holds

k∑
t=1

qk−tt−v ≤ qk e2vq−1−1
1−q + 2k−v

q ln(1/q) .

(ii) [35, Lemma 4] For any q ∈ (0, 1) and v > 0, qx ≤ cq,vx
−v for all x > 0 where cq,v ≜ e−v

(
v

ln(1/q)

)v
.

Based on Lemmas 1-4 in Section 2 and Lemma 8, we can establish polynomial rates of convergence of
the iterates generated by the three proposed methods. Omitted proofs are included in the supplementary
material for purposes of completeness.

Proposition 5 (Rate statement for Algorithm 1 under polynomially increasing Nk) Suppose Assumption
1 holds and that Nk ≜ ⌈(k + 1)v⌉ for some v > 0. Consider Algorithm 1 with α ∈ (0, 2

η+L ]. Define

q ≜ 1− 2αηL
η+L and cq,v ≜ e−v

(
v

ln(1/q)

)v
. Then

E[∥xk − x∗∥2] ≤

cq,vE[∥x0 − x∗∥2] + α2ν2cq,v(e2vq−1−1)
1−q + 2α2ν2

q ln(1/q)︸ ︷︷ ︸
Cv

 k−v, ∀k ≥ 1. (48)

Then the number of iterations and sampled gradients required to obtain an ϵ-optimal solution in the mean-
squared sense (i.e. E[∥x− x∗∥2] ≤ ϵ) are O

(
v (1/ϵ)1/v

)
and O

(
evvv (1/ϵ)1+1/v ), respectively.

Proposition 6 (Rate statement for Algorithm 2 under polynomially increasing Nk) Let Algorithm 2 be
applied to (1), where Nk ≜ ⌈(k + 1)v⌉ with some v > 0. Suppose Assumption 1 holds and α ∈ (0, 1

L ].
Define γ ≜

√
αη and β ≜ 1−γ

1+γ . Then there exists a constant C(v) > 0 such that

E[f(yk)]− f∗ ≤ C(v)k−v, ∀k ≥ 1.

Remark 10 Since f(x) − f(x∗) ≥ η
2∥x − x∗∥2, we have E[∥yk − x∗∥2] ≤ 2Cv

η k−v. Then from (10b) it
follows that E[∥xk − x∗∥2] ≤ 2(1 + β)2E[∥yk − x∗∥2] + 2β2E[∥yk−1 − x∗∥2] ≤ ck−v for some c > 0.
Thus, the mean-squared error of Algorithm 2 also displays the polynomial rate of convergence similar to
that shown in Proposition 5 for Algorithm 1. Because the mean-squared convergence implies converges in
probability, the sequences {xk} and {yk} generated by Algorithm 2 satisfy xk

P−−−→
k→∞

x∗ and yk
P−−−→

k→∞
x∗

when the conditions of Proposition 6 hold.

Proposition 7 (Rate of Alg. 3 on quadratic Functions with polynomially increasing Nk) Suppose that As-
sumption 1 holds and that f is a quadratic function with ∇2f(x) ≡ H for any x ∈ Rm. Consider Algorithm
3, where α ≜ 4

(
√
η+

√
L)2

, β ≜ (
√
κ−1√
κ+1

)2, and Nk ≜ ⌈(k + 1)v⌉ with v > 0. Then there exists a constant

C(v) > 0 such that E

∥∥∥∥∥
(
xk+1 − x∗

xk − x∗

)∥∥∥∥∥
2
 ≤ C(v)(k + 1)−v, ∀k ≥ 0.

24



Proposition 8 (Rate of Alg. 3 on Non-Quadratic Functions with polynomially increasing Nk) Let Assump-
tion 1 hold. Consider Algorithm 3, where β ∈ (0, 1), α ∈ (0, 2(1−β)

L+η ), and Nk ≜ ⌈(k + 1)v⌉ with v > 0.
Then there exists a constant C(v) > 0 such that

E[∥xk − x∗∥2] ≤ C(v)(k + 1)−v, ∀k ≥ 0.

4.2 Central Limit Theorems under Polynomially Increasing Nk.

In this part, we first establish the asymptotic normality of a time-varying linear recursion and provide the
proof in Appendix C. This result will be applied in proving Theorems 5-7.

Lemma 9 Suppose that the square matrix A satisfies ρ(A) < 1, Nk = ⌈(k+1)v⌉ with v > 0, and {wk,Nk
}

satisfies Assumption 2(ii). Let the sequence {ek} be generated by

ek+1 = Akek − α(k + 1)v/2Gwk,Nk
+ ζk+1, E[∥e0∥2] < ∞, (49)

where A0 = A, Ak ≜
(
k+1
k

)v/2
A for any k ≥ 1, and ζk

P−−−→
k→∞

0. Then

α−1ek
d−−−→

k→∞
N(0,Σ) with Σ ≜ lim

k→∞

k∑
t=1

(
k

t

)v

Ak−tGS0G
T
(
AT
)k−t

.

Based on Proposition 5 and Lemma 9, by using Assumption 2, we are now ready to derive the associated
central limit theorem for Algorithm 1 with polynomially increasing batch-sizes.

Theorem 5 (CLT of Algorithm 1 with Polynomially increasing Batch-sizes) Suppose that Assumptions
1 and 2 hold. Consider Algorithm 1, where α ∈ (0, 2

η+L ] and Nk ≜ ⌈(k + 1)v⌉ with some v > 0. Define
A ≜ Im − αH. Then ρ(A) < 1 and

α−1kv/2(xk − x∗)
d−−−→

k→∞
N(0,Σ4) with Σ4 ≜ lim

k→∞

k∑
t=1

(
k

t

)v

Ak−tS0A
k−t.

Proof. We begin by noting that xk
P−−−→

k→∞
x∗ and (35) holds. Define e0 ≜ x0 − x∗, ek ≜ kv/2(xk − x∗) for

any k ≥ 1, and ζk+1 ≜ −α(k + 1)v/2 D(xk)(xk − x∗) for any k ≥ 0. By multiplying both sides of (35)
with (k + 1)v/2, and using Ak =

(
k+1
k

)v/2
(Im − αH), we achieve

ek+1 =
(
k+1
k

)v/2
(Im − αH)kv/2(xk − x∗)− α(k + 1)v/2(D(xk)(xk − x∗) + wk,Nk

)

= Akek − α(k + 1)v/2wk,Nk
+ ζk+1, ∀k ≥ 1. (50)

By setting k = 0 in (35), and using A0 = A = Im − αH, we see that

e1 = x1 − x∗ = A0(x0 − x∗)− αw1,N1 − αD(x0)(x0 − x∗).
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Then by ζ1 = −αD(x0)(x0−x∗), we see that the (50) also holds for k = 0. Hence the recursion (50) holds
for any k ≥ 0. From (42) it follows that the symmetric matrix A satisfies

ρ(A) = ∥A∥2 = ∥Im − αH∥2 = ρ1/2∥P1∥2 ≤ q1/2 < 1.

We conclude from Proposition 5 that E[kv∥xk − x∗∥2] ≤ c for some constant c > 0, and ∥xk − x∗∥ =

oP (1). Then by invoking the bound that ∥D(x)∥ ≤ RD∥x − x∗∥, we obtain ∥D(xk)∥ = oP (1). Similarly
to the procedures for proving (40), we can show that ∥kv/2(xk − x∗)∥ = OP (1). Therefore,

∥ζk+1∥ ≤ α
(
1 + 1

k

)v/2∥D(xk)∥∥kv/2(xk − x∗)∥ = oP (1)OP (1)
(41)
= oP (1) ⇒ ζk+1

P−−−→
k→∞

0. (51)

Therefore, by using Lemma 9 with G = Im, we conclude that α−1ek
d−−−→

k→∞
N(0,Σ4). By the defini-

tion ek = kv/2(xk − x∗), we obtain the result. ■

Similarly to Theorem 5, based on Proposition 6 and Lemma 9, we now establish the central limit theorem
for Algorithm 2 under the assumption of polynomially increasing batch-sizes.

Theorem 6 (CLT of Algorithm 2 under Polynomially increasing Batch-sizes) Suppose Assumptions 1 and
2 hold. Consider Algorithm 2, where α ∈ (0, 1

L ] and Nk = ⌈(k + 1)v⌉ with some v > 0. Define γ ≜
√
αη,

β ≜ 1−γ
1+γ , and H2 ≜

(
(1 + β)(Im − αH) − β(Im − αH)

Im 0m

)
. Then ρ(H2) < 1 and

α−1kv/2

(
yk − x∗

yk−1 − x∗

)
d−−−→

k→∞
N(0,Σ5) with Σ5 ≜ lim

k→∞

k∑
t=1

(
k

t

)v

Hk−t
2

(
S0 0m

0m 0m

)(
HT

2

)k−t
.

Proof. Define zk+1 ≜

(
yk+1 − x∗

yk − x∗

)
, ε0 ≜ z0, and εk ≜ kv/2zk for any k ≥ 1. Therefore, by defining

ςk+1 ≜ −α(k + 1)v/2D(xk)(xk − x∗), and multiplying both sides of (44) by (k + 1)v/2, we obtain that

εk+1 =

(
k + 1

k

)v/2

H2εk − α(k + 1)v/2

(
Im

0m

)
wk,Nk

+

(
ςk+1

0

)
.

By defining G ≜

(
Im

0m

)
, A0 ≜ H2, and Ak ≜

(
k+1
k

)v/2
H2, there holds

εk+1 = Akεk − α(k + 1)v/2Gwk,Nk
+

(
ςk+1

0

)
, ∀k ≥ 1. (52)

From (44) it is seen that (52) holds for k = 0 as well. Thus, the recursion (52) holds for any k ≥ 0.

Note from Remark 10 that E[kv∥xk − x∗∥2] ≤ c for some constant c > 0, and ∥xk − x∗∥ = oP (1).
Then by invoking the bound that ∥D(x)∥ ≤ RD∥x − x∗∥, we derive ∥D(xk)∥ = oP (1). Similarly to the
procedures for proving (40), we can show that ∥kv/2(xk − x∗)∥ = OP (1). Therefore,

∥ςk+1∥ ≤ α
(
1 + 1

k

)v/2∥D(xk)∥∥kv/2(xk − x∗)∥ = oP (1)OP (1)
(41)
= oP (1).
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Hence ςk
P−−−→

k→∞
0. Then by using Lemma 9 and (46), we obtain that

α−1εk
d−−−→

k→∞
N(0,Σ5), where Σ5 ≜ lim

k→∞

k∑
t=0

(
k
t

)v
Hk−t

2 GS0G
T
(
HT

2

)k−t
.

Then by the fact that GS0G
T =

(
S0 0m

0m 0m

)
and εk = kv/2

(
yk − x∗

yk−1 − x∗

)
, we prove the result. ■

Remark 11 Suppose we set α = 2
L+η in Algorithm 1. Then q = 1 − 2αηL

η+L =
(
κ−1
κ+1

)2
. By (42), it

is seen that the matrix A, defined in Theorem 5, satisfies ∥A∥2 ≤ q1/2 = κ−1
κ+1 = 1 − 2

κ+1 . Suppose
α = 1

L in Algorithm 2. Then γ = 1/
√
κ and by (46), we know that H2, defined in Theorem 2, satisfies

∥H2∥2 = 1− γ = 1− 1√
κ
. Thus, we conclude from Theorems 5 and 6 that both the unaccelerated gradient

method (Algorithm 1) and its accelerated counterpart (Algorithm 2) have convergence rates with the same
order ∥xk−x∗∥ = O(k−v/2); however the accelerated scheme has a smaller constant than its unaccelerated
counterpart since ∥H2∥2 < ∥A∥2 due to the fact that 2

κ+1 ≤ 1√
κ

.

Similar to Theorem 5, based on Proposition 7 for quadratic objective functions (resp. Proposition 8 for
non-quadratic objective functions) and Lemma 9, we now state the central limit theorem for Algorithm 3
with polynomially increasing batch-size (proof omitted).

Theorem 7 (CLT of Alg. 3 on Quadratic Functions with polynomially increasing Nk) Let Assumptions
1 and 2(ii) hold. Suppose that f is a quadratic function with ∇2f(x) ≡ H for any x ∈ Rm. Con-

sider Algorithm 3, where α ≜ 4
(
√
η+

√
L)2

, β ≜
(√

κ−1√
κ+1

)2
, and Nk = ⌈(k + 1)v⌉, v > 0. Set H3 ≜(

(1 + β)Im − αH − βIm

Im 0m

)
. Then ρ(H3) < 1 and

α−1kv/2

(
xk − x∗

xk−1 − x∗

)
d−−−→

k→∞
N(0,Σ6) with Σ6 ≜ lim

k→∞

k∑
t=1

(
k

t

)v

Hk−t
3

(
S0 0m

0m 0m

)(
HT

3

)k−t
.

Theorem 8 (CLT of Alg. 3 on Non-Quadratic Functions with polynomially increasing Nk) Let Assump-
tions 1 and 2 hold. Consider Algorithm 3, where β = |1 − √

αη|2, α ∈ (0, 2(1−β)
L+η ), and Nk = ⌈(k +

1)v⌉, v > 0. Set H4 ≜

(
(1 + β)Im − αH − βIm

Im 0m

)
. Then ρ(H4) < 1 and

α−1kv/2

(
xk − x∗

xk−1 − x∗

)
d−−−→

k→∞
N(0, Σ̂6) with Σ̂6 ≜ lim

k→∞

k∑
t=1

(
k

t

)v

Hk−t
4

(
S0 0m

0m 0m

)(
HT

4

)k−t
.

5 Confidence Regions of the Optimal Solution.

A crucial motivation for developing CLTs lies in developing confidence statements. In this section, we
proceed to construct the confidence regions for the optimal solution x∗. Note that the limiting covariance
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matrix is dependent on the Hessian at the solution, which is unavailable. Furthermore, we do not have
an consistent estimator for the covariance matrix. Yet, in the absence of such an estimate, we proceed to
develop rigorous confidence statements, adopting an approach developed in [27].

Since Algorithms 1, 2, and 3 lead to similar central limit results, we show how to construct confidence
regions merely for the sequence {xk} generated by Algorithm 1. The simulation framework in [27] lies in
generating n independent replications of Algorithm 1, leading to n copies of the random iterate xk, denoted
by x1k, · · · , xnk. Then the sample mean and the covariance estimator are respectively defined as

x̄k =
1

n

n∑
i=1

xik and Sk =
1

n− 1

n∑
i=1

(xik − x̄k)(xik − x̄k)
T . (53)

Based on [6, Theorem 4 and Corollary 1] and [27, Theorem 2], we may achieve the following result. The
proof is given in Appendix D for completeness.

Proposition 9 Consider Algorithm 1. Suppose that the conditions of Theorem 1 hold and n ≥ m+1. Then
(i)

√
nα−1ρ

−k/2
1 (x̄k − x∗)

d−−−→
k→∞

N(0,Σ1).

(ii) n(x̄k−x∗)TS−1
k (x̄k−x∗)

d−−−→
k→∞

m(n−1)
n−m F (m,n−m), where F (m,n−m) denotes the F -distribution

with (m,n−m) degrees of freedom.

Proposition 9 can be used to construct the confidence region of the optimal solution. Define

Xmk(z) ≜
{
x | n(x̄k − x)TS−1

k (x̄k − x) ≤ m(n−1)
n−m z

}
, (54)

where z is selected such that P(F (m,n − m) ≤ z) ≥ 1 − δ with some δ ∈ (0, 1). Then we have the
following corollary.

Corollary 2 ( [27, Proposition 3]) Consider Algorithm 1. Suppose that n ≥ m + 1 and the conditions
of Theorem 1 hold. Then the confidence region Xmk(z) defined in (54) is asymptotically correct, i.e.,
lim
k→∞

P
(
x∗ ∈ Xmk(z)

)
= 1− δ.

The above result asserts that the estimated confidence region Xmk(z) asymptotically covers the optimal
solution x∗ with probability 100(1− δ)%. The approach is easily implementable because it merely requires
n independent replications of Algorithm 1, while without requiring a consistent estimator of the covariance
matrix of the stationary normal distribution. The confidence regions of Algorithm 2 and Algorithm 3 can be
constructed in a similar way. When it is expensive to run multiple independent trials, an alternative avenue
for reducing the complexity requirements can be found in [67], where the authors employ a batch-means
method for constructing the confidence region. This framework is reliant on a cancellation approach to
“cancel” out the covariance matrix that is hard to estimate. This extension will be considered in future work.

In the following, we show that the sequence
√

n(n−m)
n−1 S

−1/2
k (x̄k − x∗) converges to a suitably defined

multivariate t distribution, the proof of which is given in Appendix E.
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Proposition 10 Consider Algorithm 1. Suppose that the conditions of Theorem 1 hold and n > m + 2.
Then √

n(n−m)
n−1 S

−1/2
k (x̄k − x∗)

d−−−→
k→∞

Tn−m(0, Im,m), (55)

where a m-variate random vector X ∼ Tv(µ,Λ,m) (i.e., X is a t distribution with mean µ, covariance
matrix v(v − 2)−1Λ, v > 2) if it has a probability density function h given by

h(u) = Γ((v+m)/2)

(πv)v/2Γ(v/2)|Λ|1/2

{
1 + (u−µ)TΛ−1(u−µ)

v

}−v+m
2

, v > 2. (56)

The above result can also be adopted to construct the confidence regions. Define

X̃mk(U) ≜

{
x |

√
n(n−m)
n−1 S

−1/2
k (x̄k − x) ∈ U

}
,

where the region U is selected such that P
(
Tn−m(0, Im,m) ∈ U

)
≥ 1− δ with some δ ∈ (0, 1). Similarly

to Corollary 2, the confidence region X̃mk(U) defined above is asymptotically correct, i.e., lim
k→∞

P
(
x∗ ∈

X̃mk(U))
)
= 1 − δ. However, it might be harder to construct the confidence regions from the multivariate

t distribution than that from the F -distribution since the region U might not be easily obtained.

6 Numerical Simulations.

In this section, we carry out simulations for the parameter estimation problem. We aim to estimate the
unknown m-dimensional parameter x∗ based on the gathered scalar measurements {dk}k≥1 given by dk =

uTk x
∗ + νk, where uk ∈ Rm denotes the regression vector and νk ∈ R denotes the local observation noise.

Assume that {uk} and {νk} are mutually independent i.i.d. Gaussian sequences with distributions N(0, Ru)

and N(0, σ2
ν), respectively. Suppose the covariance matrix Ru is positive definite. Then we might model

the parameter estimation problem as the following stochastic optimization problem:

min
x∈Rm

f(x) ≜ E
[
∥dk − uTk x∥2

]
. (57)

Thus, f(x) = (x − x∗)TRu(x − x∗) + σ2
ν and ∇f(x) = Ru(x − x∗). Because the Hessian matrix Ru of

the objective function f is positive definite, x∗ is the unique optimal solution to (57). Suppose that we can
observe the regressor uk and the measurement dk, then the noisy observation of the gradient ∇f(x) can be
constructed as uku

T
k x − dkuk. Set the dimension of x∗ as m = 5. We run Algorithm 1 with α = 2

L+η ,

Algorithm 2 with α = 1
L and β =

√
κ−1√
κ+1

, and Algorithm 3 with α = 4
(
√
η+

√
L)2

and β =
(√

κ−1√
κ+1

)2
, where

x0 = y0 = 0 and the batch-size Nk = ⌈ρ−k⌉ with ρ = κ2

(κ+1)2
. In the remainder of this section, VSS-

SGD, VSS-ACC, VSS-HB represent the abbreviations of Variance-Reduced SGD (Algorithm 1) , Variance-
Reduced Accelerated SGD (Algorithm 2) , Variance-Reduced Heavy-Ball SGD (Algorithm 3), respectively.

Convergence rate, iteration and oracle complexity. We run Algorithms 1, 2, 3, and the standard
SGD algorithm xk+1 = xk −αk∇f(xk, ξj,k) with αk = R−1

u /k setting to be the optimal tuning steplength,
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Figure 1: Linear Rate
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Figure 2: Iteration Complexity
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Figure 3: Oracle Complexity

and terminate the schemes when E[∥xk−x∗∥2]
∥x∗∥2 ≤ 10−3. We then examine their empirical rate of convergence,

iteration and oracle complexity. Here the empirical mean is calculated by averaging across 100 trajectories.
The convergence rate of the relative error E[∥xk−x∗∥2]

∥x∗∥2 is shown in Figure 1, which demonstrates that the
iterates generated by Algorithms 1-3 converge in mean to the optimal solution at a linear rate. We see that
the accelerated scheme (Algorithm 2) has the fastest empirical rate, while the heavy ball method (Alg. 3)
tends to stabilize later in the process. The empirical relationship between the accuracy ϵ and K(ϵ) is shown
in Figure 2, where K(ϵ) denotes the number of iterations required to make E[∥xk−x∗∥2]

∥x∗∥2 < ϵ. It is seen that
the standard SGD algorithm requires far more iterations than the proposed variance reduced schemes for
obtaining an approximate solution with the same accuracy. The empirical relationship between ϵ and O(ϵ) is
shown in Figure 3, where O(ϵ) denotes the number of sampled gradients required to make E[∥xk−x∗∥2]

∥x∗∥2 < ϵ.

We observe that for obtaining an estimate with the same accuracy, the accelerated scheme (Alg. 3) requires
the smallest number of sampled gradients, while the variable sample-size SGD method (Alg. 1) requires
more sampled gradients than standard SGD.
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Figure 4: Histograms of ρ−k/2(x5k − x∗) at k = 50 along fitted normal distributions
Limiting distributions. We run 1000 independent sample paths of Algorithms 1, 2, and 3 and terminate

at k = 50. The empirically obtained largest eigenvalue of the covariance matrix Sk (estimated by (53)) at
k = 50 are 1.648× 10−5, 1.649× 10−6, 1.825× 10−6, respectively. This might imply that the accelerated
scheme (Algorithm 2) has the best performance measured by the covariance of the stationary distribution.
Since the unknown parameter x∗ is multi-dimensional, we merely show the limiting distribution of one
component of the rescaled error ρ−k/2(xk − x∗). The histograms of ρ−k/2(x5k − x∗) at k = 50 are shown
in Figure 4 along with the fitted normal distribution (the red curve), where x5k denotes the fifth component

30



0 5 10 15
0

20

40

60

VSS-SGD

0 5 10 15
0

20

40

60

80

VSS-ACC

0 5 10 15
0

20

40

VSS-HB

Figure 5: Histograms of ρ−k(f(xk)− f(x∗)) at k = 50

of xk. It is also seen that the rescaled error is (approximately) normally distributed and among these, the
accelerated scheme has the smallest variance. In addition, the histograms of the rescaled suboptimality
gap ρ−k(f(xk) − f(x∗)) at k = 50 are shown in Figure 5. We can further conclude that the empirical
sub-optimality gap of the accelerated scheme is the best among the proposed variable sample-size schemes.
We further run the SGD method xk+1 = xk − R−1

u ∇f(xk, ξj,k)/k. The histogram along with the fitted
normal distribution of

√
N(x5N − x∗) is displayed in Figure 6, while the empirical sub-optimality gap

N(f(xN ) − f(x∗)) is shown in Figure 7, where N ≜
∑50

k=1Nk denotes the number of sampled gradients
utilized by Algorithms 1-3.
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Figure 7: Hist. of N(f(xN )− f(x∗))

Coverage probability of the constructed confidence region. In a single replication, we generate n

independent sample paths for Algorithms 1, 2 and 3 and terminate each sample path when the total number of
sampled gradients used reaches Nmax. Then we can construct the 95% confidence region by (54) and check
whether the true parameter lies in the constructed confidence region. We estimate the coverage probability
(i.e., the proportion of replications that the confidence region contains the true value) by conducting 1000
replications. The estimated coverage probability for Algorithms 1-3 with different selection of sample paths
n and simulation budget Nmax is shown in Table 1. It shows the impact of the number of independent runs
on the quality of the confidence intervals. It can be seen that the coverage probabilities are getting closer
to the nominal level of 95% when the number of sample paths n grows larger. In particular, we see that
n ≥ 10 seems to produce relatively accurate confidence bands but for n ≤ 8, the intervals did drop in
quality (measured in terms of coverage probability). Thus, we conclude from empirical simulations that a
modest number of independent runs can generate relatively high quality confidence intervals. While it is
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seen from Table 1 that the simulation budget Nmax does not significantly impact the coverage probability;
however, a larger Nmax does lead to narrowing of the confidence region.

VSS-SGD VSS-ACC VSS-HB

Nmax = 103
n = 6 0.671± 0.221 0.652± 0.2259 0.665± 0.223

n = 8 0.904± 0.0869 0.872± 0.1117 0.893± 0.0995

n = 10 0.946± 0.0511 0.923± 0.0591 0.951± 0.0466

n = 15 0.973± 0.0263 0.966± 0.0329 0.961± 0.0375

Nmax = 104
n = 6 0.664± 0.2233 0.62± 0.2358 0.646± 0.2289

n = 8 0.872± 0.117 0.877± 0.108 0.896± 0.0933

n = 10 0.929± 0.066 0.944± 0.0592 0.949± 0.0484

n = 15 0.965± 0.0338 0.946± 0.0511 0.961± 0.0375

Nmax = 105
n = 6 0.651± 0.2274 0.656± 0.2259 0.664± 0.2233

n = 8 0.87± 0.1132 0.871± 0.1125 0.896± 0.0933

n = 10 0.912± 0.083 0.937± 0.0591 0.919± 0.0745

n = 15 0.952± 0.0457 0.964± 0.0347 0.956± 0.0421

Table 1: The estimated coverage probability of Algorithms 1-3. The ideal coverage probability is 0.95.

Polynomially increasing batch-sizes. We run Algorithms 1-3 with the batch-size increasing at a
polynomial rate Nk = ⌈kv⌉, v = 2. The convergence rate of the relative error E[∥xk−x∗∥2]

∥x∗∥2 is shown in

Figure 8, while the histograms of kv/2(x5k − x∗) at k = 100 along with the fitted normal distribution are
shown in Figure 10. It can be seen that the accelerated scheme has the best performance because it displays
fastest convergence rate and the rescaled error has smallest variance.
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Figure 8: Poly. Batch-size Figure 9: Convergence rate of VSS-ACC (Alg. 2)
for different problem dimension m

The effect of the problem dimension. We take Algorithm 2 as an example. By adding further nu-
merical simulations, we examine the impact of m on algorithm performance. In particular, we implement
Algorithm 2 for m = 5, 10, 20, where α = 1

L , β =
√
κ−1√
κ+1

, Nk = max
{
⌈m3/4⌉, ⌈ρ−k⌉

}
with ρ = κ2

(κ+1)2
,
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Figure 10: Histograms of kv/2(x5k − x∗) at k = 100

and the initial values x0 = y0 = 0. The empirical counterpart of the convergence rate of the relative error
E[∥xk−x∗∥2]

∥x∗∥2 is shown in Figure 9, demonstrating that the larger m leads to a worse rate of convergence. We
additionally test the coverage probability of the constructed confidence region for Algorithm 2 for different
choices of m. In a single replication, we run Algorithm 2 for n = 30 independent sample paths and termi-
nate them when the total number of sampled gradients used reaches 5000. Then we can construct the 95%

confidence region by (54) and check whether the true parameter lies in the constructed confidence region.
Finally, we estimate the coverage probability by 1000 replications. The estimated coverage probabilities for
m = 5, 10, 20 are respectively 0.956± 0.0421, 0.953± 0.0448, and 0.945± 0.052.

7 Conclusions

In this work, we considered the strongly convex stochastic optimization problem and proposed three classes
of variance reduced stochastic gradient algorithms (unaccelerated, accelerated, and heavy ball methods),
where the unavailable exact gradient is approximated by an increasing batch of sampled gradients. We
then establish rate and complexity guarantees. Further, we establish amongst the first formal central limit
theorems for all the three schemes when the batch-size increased at either a geometric or a polynomial
rate. The covariance matrix specifies how problem structure (including the strong convexity parameter,
the Lipschitz constant, and the Hessian matrix) and distribution of gradient noise influences the algorithm
performance. In addition, we provide an avenue to construct the confidence region of the optimal solution
based on the central limit theorems. The paper concludes with an application of the proposed schemes
to the stochastic parameter estimation problem to validate our theoretical findings. Yet much remains to
be understood about the how one may develop analogs of such statements in constrained and nonsmooth
regimes. One avenue for addressing such challenges is via a smoothing framework [1] whereby a stochastic
gradient update is taken with respect to a smoothed objective and the smoothing parameter is progressively
reduced (cf. [28]). It is also of interest to explore whether the central limit result on the function value can
be obtained under weaker conditions. Finally, we intend to examine if confidence regions can be designed
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based on the batch-means method [67] when generating independent trials is expensive.
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A Proof of Lemma 3

First, we introduce an important relationship between the matrix norm and the spectral radius of the matrix,
originally proven by Gelfand and also shown in [49, Lemma 1 in Section 2.1].

Lemma 10 (Gelfand’s formula). It holds that ρ(P) = limk→∞ ∥Pk∥1/k, i.e., the spectral radius of P
gives the asymptotic growth rate of ∥Pk∥. Then for any ι > 0, there exists a constant c = c(ι) such that
∥Pk∥ ≤ c(ι)(ρ(P) + ι)k, ∀k ≥ 1.

Proof of Lemma 3. Note that ∇f(x)−∇f(x∗) = H(x−x∗) since f(x) is quadratic and ∇2f(x) ≡ H.

Then by using (12) and ∇f(x∗) = 0, we have

xk+1 − x∗ = xk − x∗ + β(xk − xk−1)− α(∇f(xk)−∇f(x∗))− αwk,Nk

= xk − x∗ + β(xk − xk−1)− αH(xk − x∗)− αwk,Nk

=
(
(1 + β)Im − αH

)
(xk − x∗)− β(xk−1 − x∗)− αwk,Nk

.

Denote by zk =

(
xk − x∗

xk−1 − x∗

)
. We then write this recursion in matrix form.

zk+1 =

(
(1 + β)Im − αH − βIm

Im 0m

)
︸ ︷︷ ︸

≜T

zk +

(
−αwk,Nk

0

)
. (58)

By the eigenvalue decomposition, H = UΛUT , where U is orthogonal and Λ ≜ diag{λ1, λ2, · · · , λm}
with λi ∈ [η, L], i = 1, · · · ,m being the eigenvalues of H. Then we can rewrite T as(

U 0m

0m U

)(
(1 + β)Im − αΛ − βIm

Im 0m

)(
U 0m

0m U

)T

.
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Then the eigenvalues of the matrix T are the roots of the equation det
(
vI2m −T

)
= 0, i.e.,

det

(
vIm − (1 + β)Im + αΛ βIm

−Im vIm

)
= 0.

By the property det

(
A B

C D

)
= det(AD − BC) when the blocks A,B,C,D are square matrices of the

same size and CD = DC [56], we have det
(
v
(
vIm − (1 + β)Im + αΛ

)
+ βIm

)
= 0. Since the matrix

in the determinant is diagonal, it can be described by the following characteristic equations.

pi(v) = (v − (1 + β − αλi))v + β = v2 − (1 + β − αλi)v + β = 0, i = 1, · · · ,m.

From η ≤ λi ≤ L and α < 4/L it follows that for any i = 1, · · · ,m : 1−
√
αL ≤ 1−

√
αλi ≤ 1−√

αη,
hence |1 −

√
αλi|2 ≤ max{|1 − √

αη|2, |1 −
√
αL|2} = β < 1. Thus, the discriminant of the equation

pi(v), denoted by ∆i, is nonpositive.

∆i = (1 + β − αλi)
2 − 4β = (1− β)2 − 2(1 + β)αλi + (αλi)

2

≤ (1− |1−
√
αλi|2)2 − 2(1 + |1−

√
αλi|2)αλi + (αλi)

2

= (1 + |1−
√
αλi|2)2 − 4|1−

√
αλi|2 − 2(1 + |1−

√
αλi|2)αλi + (αλi)

2

= (1− αλi + |1−
√

αλi|2)2 − 4|1−
√
αλi|2 = 0. (59)

Hence pi(v) = 0 has two complex roots 1+β−αλi±i
√
−∆i

2 , where i =
√
−1. Thus, the magnitude of the

roots is

√(
1+β−αλi

2

)2
− ∆i

4 =
√
β. Then

ρ(T) =
√
β, ∀k ≥ 1. (60)

This together with Lemma 10 implies that for any ι ∈ (0, 1−
√
β), there exists a constant c = c(ι) such that

∥Tk∥ ≤ c(ι)(
√
β + ι)k, ∀k ≥ 1. (61)

We can recursively write (58) as

zk+1 = Tk+1z0 −
k∑

t=0

Tk−tαwt,Nt .

⇒ ∥zk+1∥2 = zT0 (T
k+1)TTk+1z0 + α2

∥∥∥∥∥
k∑

t=0

Tk−twt,Nt

∥∥∥∥∥
2

− 2α(Tk+1z0)
T

k∑
t=0

Tk−twt,Nt . (62)

Note from (5) that

E[wT
i,Ni

wj,Nj ] = E
[
E[wT

i,Ni
wj,Nj | Fj ]

]
= E

[
wT
i,Ni

E[wj,Nj |Fj ]
]
= 0 for any i < j,

E[zT0 (Tk+1)T
k∑

t=0

Tk−twt,Nt ] =
k∑

t=0

E[zT0 (Tk+1)TTk−twt,Nt ] =

k∑
t=0

E
[
E[zT0 (Tk+1)TTk−twt,Nt | Ft]

]
= 0.
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Then by using (5), we derive

E

∥∥∥∥∥
k∑

t=0

Tk−twt,Nt

∥∥∥∥∥
2
 =

k∑
t=0

E
[
∥Tk−twt,Nt∥2

]
+ 2

∑
i<j

E
[
(Tk−iwi,Ni)

T (Tk−jwj,Nj )
]

=

k∑
t=0

E
[
∥Tk−twt,Nt∥2

]
≤

k∑
t=0

∥Tk−t∥2 ν
2

Nt

(61)
≤

k∑
t=0

c(ι)2(
√
β + ι)2(k−t) ν

2

Nt
.

Then by using (62) and (61), we obtain that

E[∥zk+1∥2] ≤ ∥Tk+1∥2E[∥z0∥2] + α2E

∥∥∥∥∥
k∑

t=0

Tk−twt,Nt

∥∥∥∥∥
2


≤ c(ι)2(
√
β + ι)2(k+1)E

[
∥z0∥2

]
+ α2ν2c(ι)2

k∑
t=0

(
√
β + ι)2(k−t) 1

Nt
.

By recalling E[∥z0∥2] =

∥∥∥∥∥
(

x0 − x∗

x−1 − x∗

)∥∥∥∥∥
2
 = 2E[∥x0 − x∗∥2] from x−1 = x0, the result follows. ■

B Proof of Lemma 7

Define the sequence {uk} as follows:

uk+1 = Puk − αρ−(k+1)/2Gwk,Nk
, u0 = 0. (63)

By combining (63) with (33), we obtain the following recursion:

ek+1 − uk+1 = P(ek − uk) + ζk+1 = Pk+1(e0 − u0) +

k∑
t=0

Pk−tζt+1. (64)

Lemma 10 together with ρ(P) < 1 implies that for any ϱ ∈ (ρ(P), 1), there exists a constant c(ϱ) such
that

∥Pk∥ ≤ c(ϱ)ϱk, ∀k ≥ 1. (65)

Then by using (65) and ζk
P−−−→

k→∞
0, we obtain from (64) that

∥ek+1 − uk+1∥ ≤ ∥Pk+1∥∥e0 − u0∥+
k∑

t=0

∥Pk−t∥∥ζt+1∥ ≤ c(ϱ)ϱk+1∥e0 − u0∥+ c(ϱ)

k∑
t=0

ϱk−to(1)
P−−−→

k→∞
0.

Thus, ek defined by (33) and uk produced by (63) converge to the same distribution asymptotically, if
indeed the limit exists. This follows from the fact that Xk

d−−→ X, ∥Xk − Yk∥
P−−→ 0 ⇒ Yk

d−−→ X

(see [62, Theorem 2.7(iv)]).
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From (63) and u0 = 0 it follows that

uk+1 = Pk+1u0 − α
k∑

t=0

Pk−tGρ−(t+1)/2wt,Nt = −α
k∑

t=0

Pk−tGρ−(t+1)/2wt,Nt .

This implies that

α−1uk = −
k−1∑
t=0

Pk−1−tGρ−(t+1)/2wt,Nt = −
k∑

t=1

Pk−tGρ−t/2wt−1,Nt−1 . (66)

Define ξkt ≜ −Pk−tGρ−t/2wt−1,Nt−1 for any t : 1 ≤ t ≤ k. We intend to apply Lemma 6. Therefore, we
have to check conditions (26)-(28). By using Assumption 1(iii), Nt ≥ ρ−(t+1), (5), and (65), we obtain that
E[ξkt|ξk1, · · · , ξk,t−1] = 0 and

E[∥ξkt∥2|ξk1, · · · , ξk,t−1] ≤ ∥Pk−t∥2∥G∥2ρ−tE[∥wt−1,Nt−1∥2|Ft−1]

≤ c(ϱ)2ϱ2(k−t)∥G∥2ρ−t ν2

Nt−1
≤ c(ϱ)2ν2∥G∥2ϱ2(k−t) a.s..

=⇒
k∑

t=1

E[∥ξkt∥2] ≤ c(ϱ)2ν2∥G∥2
k∑

t=1

ϱ2(k−t) =
c(ϱ)2ν2ϱ2∥G∥2

1− ϱ2
< ∞.

Thus, (26) holds. By recalling the definitions of Skt and Rkt in (25), using
∑k

t=1 ∥Pk−t∥2 ≤
∑k

t=1 c(ϱ)
2ϱ2(k−t) =

c(ϱ)2

1−ϱ2
from (65) and (30), and ρ−t/Nt−1 −−−→

t→∞
1, we have

k∑
t=1

E[∥Rkt − Skt∥] ≤
k∑

t=1

∥Pk−tG∥2E
[∥∥∥Nt−1E

[
wt−1,Nt−1w

T
t−1,Nt−1

|Ft−1

]
−Nt−1E

[
wt−1,Nt−1w

T
t−1,Nt−1

]∥∥∥]
+

k∑
t=1

∥Pk−tG∥2E
[∥∥∥(Nt−1E

[
wt−1,Nt−1w

T
t−1,Nt−1

|Ft−1

]
−Nt−1E

[
wt−1,Nt−1w

T
t−1,Nt−1

]) (
ρ−t/Nt−1 − 1

) ∥∥∥]
≤ ∥G∥2

k∑
t=1

c(ϱ)2ϱ2(k−t)o(1) −−−→
k→∞

0.

This verifies the second equality in (27). We now verify the first equality in (27).

Sk =
k∑

t=1

Skt =
k∑

t=1

Pk−tGE
[
ρ−twt−1,Nt−1w

T
t−1,Nt−1

]
(Pk−tG)T

=
k∑

t=1

Pk−tGS0(P
k−tG)T +

k∑
t=1

Pk−tGS0(P
k−tG)T

(
ρ−t/Nt−1 − 1

)
(67)

+

k∑
t=1

Pk−tG
(
Nt−1E

[
wt−1,Nt−1w

T
t−1,Nt−1

]
− S0

)
(Pk−tG)Tρ−t/Nt−1,

where the second and last terms tend to zero by using
∑k

t=1 ∥Pk−t∥2 ≤ c(ϱ)2

1−ϱ2
, ρ−t/Nt−1 −−−→

t→∞
1, and (30).

The first term on the right-hand side of (67) can be written as

S̃k ≜
k∑

t=1

Pk−tGS0(P
k−tG)T =

k−1∑
t=0

PtGS0G
T (Pt)T . (68)
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By (65),
∑∞

t=0P
tGS0G

T
(
Pt
)T is well defined and denoted by Σ. Then Σ−S̃k =

∑∞
t=k P

tGS0G
T
(
Pt
)T

and hence we derive from (65) that

∥Σ− S̃k∥ ≤
∞∑
t=k

∥PtGS0G
T (Pt)T ∥ ≤ ∥GS0G

T ∥
∞∑
t=k

∥Pt∥2

≤ ∥GS0G
T ∥c(ϱ)2

∞∑
t=k

ϱ2t = ∥GS0G
T ∥ c(ϱ)2

1−ϱ2
ϱ2k → 0 when k → ∞.

Therefore, the limit of (68) exists and equals Σ. This together with (67) and that the second and last terms
on the right hand side of (67) tend to zero, we achieve

lim
k→∞

Sk ≜ Σ = lim
k→∞

∞∑
t=0

PtGS0G
T
(
Pt
)T

.

Finally, we have to verify the Lindeberg condition (28). By using ξkt = −Pk−tGρ−t/2wt−1,Nt−1 ,
Nt−1 = ⌈ρ−t⌉, and (65), we obtain that

∥ξkt∥ ≤ ∥Pk−t∥∥G∥ρ−t/2∥wt−1,Nt−1∥ ≤ c(ϱ)ϱk−t∥G∥
√

Nt−1∥wt−1,Nt−1∥. (69)

Hence for any ϵ > 0,{
∥ξkt∥ > ϵ

}
⊂
{√

Nt−1∥wt−1,Nt−1∥ > ϵ∥G∥−1c(ϱ)−1ϱ−(k−t)
}
. (70)

Because for any t ≥ 1, ϱ−(k−t) −−−→
k→∞

∞. Then using (31), we obtain that

sup
t≥1

E
[
Nt−1∥wt−1,Nt−1∥2I[√Nt−1∥wt−1,Nt−1

∥>ϵ∥G∥−1c(ϱ)−1ϱ−(k−t)]

]
−−−→
k→∞

0.

Consequently, for any ϵ > 0, by using (69) and (70), the following holds:

k∑
t=1

E[∥ξkt∥2I[∥ξkt∥≥ϵ]] ≤
k∑

t=1

∥G∥2c(ϱ)2ϱ2(k−t)E
[
Nt−1∥wt−1,Nt−1∥2I[√Nt−1∥wt−1,Nt−1

∥>ϵ∥G∥−1c(ϱ)−1ϱ−(k−t)
]]

=

k∑
t=1

∥G∥2c(ϱ)2ϱ2(k−t)o(1) −−−→
k→∞

0.

Thus, the conditions (26)-(28) hold. Then by using Lemma 6, the fact that ek and uk have the same limit
distribution, and α−1uk = −

∑k
t=1 ξkt, we proves Lemma 7. ■

C Proof of Lemma 9.

We observe that ρ(A) < 1 together with Lemma 10 implies that for any ϱ ∈ (ρ(A), 1), there exists a
constant c(ϱ) such that

∥Ak∥ ≤ c(ϱ)ϱk, ∀k ≥ 1. (71)
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Define Φk,j ≜ Ak · · ·Aj with Φj,j+1 ≜ Im. Recall from the definitions A0 = A and Ak ≜
(
k+1
k

)v/2
A,

we obtain that Φk,0 = (k + 1)v/2Ak and Φk,t+1 =
(
k+1
t+1

)v/2
Ak−t. This combined with (71) produces

∥Φk,0∥ ≤ c(ϱ)ϱk (k + 1)v/2 , ∀k ≥ 0, (72)

and ∥Φk,t+1∥ ≤ c(ϱ)

(
k + 1

t+ 1

)v/2

ϱk−t, ∀k ≥ t ≥ 0. (73)

For any given a > 0, define q̃ ≜ ϱa and ṽ ≜ av/2. Then by using (73) and Lemma 8, we derive

k∑
t=0

∥Φk,t+1∥a ≤ c(ϱ)a
k∑

t=0

(
k + 1

t+ 1

)av/2

ϱa(k+1−(t+1)) ≤ c(ϱ)a (k + 1)ṽ
k+1∑
t=1

t−ṽ q̃k+1−t

≤ c(ϱ)a (k + 1)ṽ
(
q̃k+1 e2ṽ q̃−1−1

1−q̃ + 2(k+1)−ṽ

q̃ ln(1/q̃)

)
≤ c(ϱ)a

(
(k + 1)ṽ q̃k+1 e2ṽ q̃−1−1

1−q̃ + 2
q̃ ln(1/q̃)

)
≤ c(ϱ)a

(
cq̃,ṽ

e2ṽ q̃−1−1
1−q̃ + 2

q̃ ln(1/q̃)

)
, ∀k ≥ 1. (74)

Define an auxiliary sequence {uk} by

uk+1 = Akuk − α(k + 1)v/2Gwk,Nk
, u0 = 0. (75)

This combined with (49) produces the following recursion:

ek+1 − uk+1 = Ak(ek − uk) + ζk+1

= Φk,0(e0 − u0) +
k∑

t=0

Φk,t+1Gζt+1 = Φk,0e0 +
k∑

t=0

Φk,t+1ζt+1.

Then by using (72), (74), E[∥e0∥2] < ∞, and ζk+1
P−−−→

k→∞
0, we conclude that

∥ek+1 − uk+1∥ = ∥Φk,0∥∥e0∥+
k∑

t=0

∥Φk,t+1∥∥ζt+1∥
P−−−→

k→∞
0.

This implies that ek defined by (49) and uk defined as in (75) have the same limit distribution if exists. Thus,
it remains to find the stationary distribution of uk.

From (75) it follows that

uk+1 = Φk,0u0 − α
k∑

t=0

Φk,t+1G(t+ 1)v/2wt,Nt = −α
k∑

t=0

Φk,t+1G(t+ 1)v/2wt,Nt .

This implies that

α−1uk = −α

k−1∑
t=0

Φk−1,t+1G(t+ 1)v/2wt,Nt = −
k∑

t=1

Φk−1,tG tv/2wt−1,Nt−1 . (76)
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We intend to apply Lemma 6 by defining ξkt ≜ −Φk−1,tGtv/2wt−1,Nt−1 and check conditions (26),
(27), and (28). Using Nt−1 ≜ ⌈tv⌉ ≥ tv, (74), and Assumption 1(iii), we can verify (26). Also, using (30)
and (74), the definitions of Skt and Rkt in (25), the second equality of (27) holds. We now verify the first
equality in (27).

Sk =
k∑

t=1

Skt =
k∑

t=1

Φk−1,tGE
[
tvwt−1,Nt−1w

T
t−1,Nt−1

]
GTΦT

k−1,t

=
k∑

t=1

Φk−1,tGS0G
TΦT

k−1,t +
k∑

t=1

Φk−1,tGS0G
TΦT

k−1,t (t
v/Nt − 1) (77)

+

k∑
t=1

Φk−1,tG
(
Nt−1E

[
wt−1,Nt−1w

T
t−1,Nt−1

]
− S0

)
GTΦT

k−1,tt
v/Nt−1,

where the second and last terms tend to zero by (30), tv/Nt−1 −−−→
t→∞

1, and
∑k

t=1 ∥Φk−1,t∥2 < ∞ from
(74). While the first term on the right-hand side of (77), by using (74) one obtains

k∑
t=1

∥Φk−1,tGS0G
TΦT

k−1,t∥ ≤ ∥GS0G
T ∥

k∑
t=1

∥Φk−1,t∥2 < ∞..

Because
∑k

t=1 ∥Φk−1,tGS0G
TΦT

k−1,t∥ is monotonically increasing and bounded, its limit exists. Thus,
the limit of

∑k
t=1Φk−1,tGS0G

TΦT
k−1,t =

∑k
t=1

(
k
t

)v
Ak−tGS0G

T (Ak−t)T exists and is denoted by Σ.

Then Sk as defined as in (77) satisfies that

lim
k→∞

Sk = lim
k→∞

k∑
t=1

(
k

t

)v

Ak−tGS0G
T (AT )k−t ≜ Σ.

Thus, the first equality in (27) holds.
Finally, the Lindeberg condition (28) can similarly validated as that of Lemma 7. Then all conditions of

Lemma 6 hold. Thus, by Lemma 6 and (76), we conclude that α−1uk
d−−−→

k→∞
N(0,Σ). Because ek defined

by (49) and uk defined as in (75) have the same limit distribution, Lemma 9 is then proved. ■

D Proof of Proposition 9

Based on Theorem 1 it is seen that

eik ≜ α−1ρ
−k/2
1 (xik − x∗)

d−−−→
k→∞

Yi ∼ N(0,Σ1), i = 1, · · · , n, (78)

where Y1, · · · , Yn are n i.i.d. random vectors with distribution N(0,Σ1). Define

ē ≜
1

n

n∑
i=1

Yi and S ≜
1

n− 1

n∑
i=1

(
Yi − ē

)(
Yi − ē

)T
. (79)

44



Recall from [6, Theorem 4] that ē and S are independently distributed, and

ē ∼ N(0,Σ1/n) and (n− 1)S ∼ Wm(Σ1, n− 1), (80)

where Wm(Σ1, n− 1) denotes the m-dimensional Wishart distribution with n− 1 degrees of freedom and
the matrix parameter Σ1. Because Σ1 is invertible and n ≥ m + 1, the random matrix S is almost surely
invertible.

(i) Denote by e = col{e1, · · · , en} ≜ (eT1 , · · · , eTn )T ∈ Rmn with ei ∈ Rm, i = 1, · · · , n. Note that
g1(e) ≜ 1

n

∑n
i=1 ei is a continuous function. Since eik, i = 1, · · · , n are mutually independent, from (78)

it follows that

col{e1k, · · · , enk}
d−−−→

k→∞
col{Y1, · · · , Yn}. (81)

Then by the continuous mapping theorem [13, Theorem 1.14] and (80), we derive

√
nα−1ρ

−k/2
1 (x̄k − x∗) =

√
n
1

n

n∑
i=1

eik
d−−−→

k→∞

√
n
1

n

n∑
i=1

Yi =
√
nē ∼ N(0,Σ1). (82)

(ii) Since rank(Σ1) = m and
√
nē ∼ N(0,Σ1) by (82), we obtain

U1 ≜ (
√
nē)TΣ−1

1 (
√
nē) ∼ χ2(m), (83)

where χ2(m) denotes the chi-squared distribution with m degrees of freedom. Because rank(Σ1) = m,

ē ∈ Rm and S are independently distributed with ēTΣ1 being non-zero with probability one, from [6,
Corollary 1] it follows that

U2 ≜
ēTΣ−1

1 ē

ēT ((n− 1)S)−1 ē
∼ χ2(n−m) (84)

is independent of ē. Hence U1 and U2 are independent.
From (78) and (53) it follows that

x̄k − x∗ =
1

n

n∑
i=1

(xik − x∗) = αρ
k/2
1

n∑
i=1

eik,

Sk =
1

n− 1

n∑
i=1

(xik − x̄k)(xik − x̄k)
T =

α2ρk1
n− 1

n∑
i=1

(
eik −

1

n

n∑
i=1

eik
)(
eik −

1

n

n∑
i=1

eik
)
.

(85)

Note that g2(e) ≜ 1
n−1

∑n
i=1

(
ei − 1

n

∑n
i=1 ei

) (
ei − 1

n

∑n
i=1 ei

)T is a continuous function. Because the
matrix inverse functional is continuous in a neighborhood of any non-singular matrix, and

n∑
i=1

(
Yi −

1

n

n∑
i=1

Yi

)(
Yi −

1

n

n∑
i=1

Yi

)T
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is almost surely invertible from (80), we conclude that
(
g2(e)

)−1 is almost surely continuous in a neighbor-
hood of col{Y1, · · · , Yn}. Hence, g(e) = g1(e)

T
(
g2(e)

)−1
g1(e) is almost surely continuous in a neighbor-

hood of col{Y1, · · · , Yn}. Therefore, by the continuous mapping theorem [13, Theorem 1.14], and (81), we
have

n(x̄k − x∗)TS−1
k (x̄k − x∗)

(85)
= n

(∑n
i=1 eik
n

)T ( 1

n− 1

n∑
i=1

(
eik −

1

n

n∑
i=1

eik
)(
eik −

1

n

n∑
i=1

eik
)T)−1

∑n
i=1 eik
n

d−−−→
k→∞

n
∑n

i=1 Yi

n

(
1

n−1

n∑
i=1

(
Yi −

∑n
i=1 Yi

n

)(
Yi −

∑n
i=1 Yi

n

)T)−1 ∑n
i=1 Yi

n

(79)
= n(n− 1)ēT ((n− 1)S)−1 ē = (n− 1)

nēTΣ−1
1 ē

ēTΣ−1
1 ē

ēT
(
(n−1)S

)−1
ē

= (n− 1)
U1

U2
∼ m(n− 1)

n−m
F (m,n−m),

(86)

where the last one holds because U1 = nēTΣ−1
1 ē ∼ χ2(m) by (83), U2 =

ēTΣ−1
1 ē

ēT ((n−1)S)−1ē
∼ χ2(n−m) by

(84), U1 and U2 are independent. Thus, F (d1, d2) arises as the ratio of two appropriately scaled chi-squared
variates [15]. 1 ■

E Proof of Proposition 10

Since Σ1 is symmetric and invertible, by the property of Wishart distribution, we have that

Σ−1
1 (n− 1)SΣ−1

1
(80)∼ Σ−1

1 Wm(Σ1,m+ (n−m)− 1)Σ−1
1 ∼ Wm(Σ−1

1 ,m+ (n−m)− 1).

Note by (82) that
√
n(n−m)Σ1

−1/2ē ∼ N(0, (n −m)Im). Recall from [6, Theorem 4] that ē and S are
independent. Then by [36, Representation B], we conclude that(

(n− 1)Σ−1
1 SΣ−1

1

)−1/2√
n(n−m)Σ1

−1/2ē ∼ Tn−m(0,Σ1,m).

Thus, by the probability density function of Tv(µ,Λ,m) defined in (56), we see that

Σ1
−1/2

(
(n− 1)Σ−1

1 SΣ−1
1

)−1/2√
n(n−m)Σ1

−1/2ē ∼ Tn−m(0, Im,m).

Hence

((n− 1)S)−1/2
√
n(n−m)ē ∼ Tn−m(0, Im,m). (87)

Similarly to the derivation of (86), we can show that
(
g2(e)

)−1/2
g1(e) is almost surely continuous in a

neighborhood of col{Y1, · · · , Yn}. Then by the continuous mapping theorem [13, Theorem 1.14] and (81),
we achieve (55) by the following.

((n− 1)Sk)
−1/2

√
n(n−m)(x̄k − x∗)

1If the random variables U1 ∼ χ2(d1) and U2 ∼ χ2(d2) are independent, then U1/d1
U2/d2

∼ F (d1, d2).
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(85)
=
(
(n− 1)

1

n− 1

n∑
i=1

(
eik −

1

n

n∑
i=1

eik
)(
eik −

1

n

n∑
i=1

eik
)T)−1/2√

n(n−m)

∑n
i=1 eik
n

d−−−→
k→∞

(
(n− 1) 1

n−1

n∑
i=1

(
Yi −

∑n
i=1 Yi

n

)(
Yi −

∑n
i=1 Yi

n

)T)−1/2√
n(n−m)

∑n
i=1 Yi

n

(79)
= ((n− 1)S)−1/2

√
n(n−m)ē

(87)∼ Tn−m(0, Im,m). ■
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SUPPLEMENTARY MATERIAL.

The proof of Lemma 2 is motivated by [3, Section 2.2] and [1, Section 3.6.2].

F Proof of Lemma 2

We define ϕk(x) and pk as follows.

ϕ0(x) = f(x0) +
η

2
∥x− x0∥2, (F.1)

ϕk+1(x) = (1− γ)ϕk(x) + γ
(
f(xk) + (x− xk)

Th(xk) +
η

2
∥x− xk∥2

)
, (F.2)

pk+1 = (1− γ)pk +

(
α+

(1− γ)γ

2η

)
∥wk,Nk

∥2 + αwT
k,Nk

∇f(xk), p0 = 0, (F.3)

where h(xk) ≜
xk−yk+1

α = ∇f(xk) + wk,Nk
.

We first show by induction that for any k ≥ 0, ∇2ϕk(x) = ηIm. By (F.1) it is seen that ∇2ϕ0(x) = ηIm.
Suppose ∇2ϕk(x) = ηIm, then by (F.2), we obtain that

∇2ϕk+1(x) = (1− γ)∇2ϕk(x) + γηIm = ηIm.

Thus, ∇2ϕk(x) = ηIm for any k ≥ 0. Because ϕk is a quadratic function, we can rewrite ϕk(x) as

ϕk(x) = ϕ∗
k +

η

2
∥x− vk∥2 with vk ≜ argmin

x
ϕk(x), ∀k ≥ 0. (F.4)

We proceed to give a recursive form for vk+1 and ϕ∗
k+1. Noting from (F.4) that ∇ϕk(x) = η(x − vk).

Then by using the first-order optimality condition ∇ϕk+1(x) = 0 of the unconstrained convex optimization
minx ϕk+1(x), and the definition of ϕk+1(x) in (F.2), we obtain that

∇ϕk+1(x) = (1− γ)η(x− vk) + γh(xk) + γη(x− xk) = 0.

By rearranging the previous equation, we have that

vk+1 = (1− γ)vk + γxk − γh(xk)/η. (F.5)

By using (F.2) and (F.4), evaluating ϕk+1(x) at x = xk we obtain that

ϕ∗
k+1 = ϕk+1(xk)−

η

2
∥xk − vk+1∥2 = (1− γ)ϕk(xk) + γf(xk)−

η

2
∥xk − vk+1∥2

= (1− γ)ϕ∗
k +

η(1− γ)

2
∥xk − vk∥2 + γf(xk)−

η

2
∥vk+1 − xk∥2.

(F.6)

Note by (F.5) that

∥vk+1 − xk∥2 = ∥(1− γ)(vk − xk)− γh(xk)/η∥2

= (1− γ)2∥vk − xk∥2 +
γ2

η2
∥h(xk)∥2 −

2γ(1− γ)

η
(vk − xk)

Th(xk).
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This together with (F.6) leads to

ϕ∗
k+1 = (1− γ)ϕ∗

k + γf(xk) +
ηγ(1− γ)

2
∥xk − vk∥2 −

γ2

2η
∥h(xk)∥2 + γ(1− γ)(vk − xk)

Th(xk).

(F.7)

We then show by induction that the following holds for any k ≥ 0.

vk − xk =
1

γ
(xk − yk). (F.8)

From (F.1) it is seen that the minimizer of ϕ0 is v0 = x0. Then by the initial condition x0 = y0, we conclude
that (F.8) holds for k = 0. We inductively assume that (F.8) holds for k, and proceed to prove that (F.8)
holds for k+1. By substituting vk = xk + (xk − yk)/γ into (F.5), one obtains vk+1 = (1− γ)(xk + (xk −
yk)/γ) + γxk − γh(xk)/η. Hence

vk+1 − xk+1 =
1

γ

(
xk − γ2h(xk)/η

)
−
(
1

γ
− 1

)
yk − xk+1.

This together with h(xk) =
xk−yk+1

α and γ =
√
αη produces

vk+1 − xk+1 =
1

γ
(xk − αh(xk))−

(
1

γ
− 1

)
yk − xk+1

(10b)

=

1

γ
yk+1 −

(
1

γ
− 1

)
(1 + β)yk+1 − xk+1

β
− xk+1 =

1

γ
(xk+1 − yk+1),

where the last equality holds by β = 1−γ
1+γ . Thus, we have shows that (F.8) holds for any k ≥ 0.

Then by substituting(F.8) into (F.7), and using h(xk) = ∇f(xk) + wk,Nk
, we obtain that

ϕ∗
k+1 = (1− γ)ϕ∗

k + γf(xk) +
η(1− γ)

2γ
∥xk − yk∥2 −

γ2

2η
∥h(xk)∥2 + (1− γ)(xk − yk)

Th(xk)

= (1− γ)ϕ∗
k + γf(xk)−

γ2

2η
∥h(xk)∥2 + (1− γ)(xk − yk)

T∇f(xk)

+
η(1− γ)

2γ
∥xk − yk∥2 + (1− γ)(xk − yk)

Twk,Nk
(F.9)

≥ (1− γ)ϕ∗
k + γf(xk)−

γ2

2η
∥h(xk)∥2 + (1− γ)(xk − yk)

T∇f(xk)−
(1− γ)γ

2η
∥wk,Nk

∥2,

where the last inequality follows by η(1−γ)
2γ ∥a∥2 + (1− γ)aT b ≥ − (1−γ)γ

2η ∥b∥2.
We proceed to show that ϕ∗

k ≥ f(yk) − pk for any k ≥ 0. By the definitions (F.1) and (F.3), we see
that ϕ∗

0 = f(x0) = f(y0) and p0 = 0. Hence ϕ∗
k ≥ f(yk) − pk holds for k = 0. We inductively assume

that f(yk) ≤ ϕ∗
k + pk, and aim to show that f(yk+1) − ϕ∗

k+1 ≤ pk+1. Since f is L-smooth, by using
h(xk) =

xk−yk+1

α = ∇f(xk) + wk,Nk
, we obtain that

f(yk+1) ≤ f(xk) + (yk+1 − xk)
T∇f(xk) +

L

2
∥yk+1 − xk∥2
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≤ f(xk)− αh(xk)
T (h(xk)− wk,Nk

) +
Lα2

2
∥h(xk)∥2

≤ f(xk) +

(
Lα2

2
− α

)
∥h(xk)∥2 + α∥wk,Nk

∥2 + αwT
k,Nk

∇f(xk), (F.10)

where the last inequality holds because h(xk)
Twk,Nk

= ∥wk,Nk
∥2 + wT

k,Nk
∇f(xk). By the induction as-

sumption f(yk) ≤ ϕ∗
k + pk and the convexity of f , we obtain that

f(xk) = (1− γ)f(yk) + (1− γ) (f(xk)− f(yk)) + γf(xk)

≤ (1− γ)ϕ∗
k + (1− γ)pk + (1− γ)(xk − yk)

T∇f(xk) + γf(xk).

The above bound combined with (F.10) produces

f(yk+1) ≤ (1− γ)ϕ∗
k + γf(xk) + (1− γ)(xk − yk)

T∇f(xk) + (1− γ)pk

+

(
Lα2

2
− α

)
∥h(xk)∥2 + α∥wk,Nk

∥2 + αwT
k,Nk

∇f(xk).

It incorporated with (F.9) leads to the following relation:

f(yk+1)− ϕ∗
k+1 ≤

(
Lα2

2
− α+

γ2

2η

)
∥h(xk)∥2 + (1− γ)pk + αwT

k,Nk
∇f(xk)

+

(
α+

(1− γ)γ

2η

)
∥wk,Nk

∥2 ≤ pk+1, (F.11)

where the last inequality holds by the definition of pk+1 in (F.3) and Lα2

2 − α + γ2

2η = α(αL−1)
2 ≤ 0 from

α ≤ 1/L and γ2 = αη < 1. Therefore, we conclude that f(yk) ≤ ϕ∗
k + pk for any k ≥ 0.

Because f is η-strongly convex, from (F.2) and E[h(xk)|Fk] = ∇f(xk) it follows that

E[ϕk+1(x)|Fk] = (1− γ)ϕk(x) + γ
(
f(xk) + (x− xk)

T∇f(xk) +
η

2
∥x− xk∥2

)
≤ (1− γ)ϕk(x) + γf(x), ∀x ∈ Rm.

By taking unconditional expectations, we obtain that E[ϕk+1(x)] ≤ (1 − γ)E[ϕk(x)] + γf(x) for any
x ∈ Rm. Therefore, by rearranging terms and setting x = x∗ in the above inequality, we have

E[ϕk+1(x
∗)]− f(x∗) ≤ (1− γ)(E[ϕk(x

∗)]− f(x∗)) ≤ (1− γ)k+1(E[ϕ0(x
∗)]− f(x∗)).

Then by the fact that f(yk) ≤ ϕ∗
k + pk, there holds

E[f(yk)]− f(x∗) ≤ E[ϕk(x
∗)]− f(x∗) + E[pk] ≤ (1− γ)k(E[ϕ0(x

∗)]− f(x∗)) + E[pk]

≤ η + L

2
(1− γ)kE[∥x0 − x∗∥2] + E[pk], (F.12)

where the last inequality holds because ϕ0(x
∗)−f(x∗) = f(x0)−f(x∗)+ η

2∥x
∗−x0∥2 ≤ η+L

2 ∥x∗−x0∥2

by the L-smoothness of f and ∇f(x∗) = 0. Next, we derive a bound on E[pk]. By taking expectations on
both sides of (F.3), using p0 = 0 and (5), we obtain that

E[pk] = (1− γ)E[pk−1] +

(
α+

(1− γ)γ

2η

)
E[∥wk−1,Nk−1

∥2]
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=

(
α+

(1− γ)γ

2η

) k−1∑
i=0

(1− γ)iE[∥wk−i−1,Nk−i−1
∥2] ≤ ν2

(
α+

(1− γ)γ

2η

) k−1∑
i=0

(1− γ)i/Nk−1−i.

This together with (F.12) proves Lemma 2. ■

G Proof of Lemma 4

The proof of Lemma 4 is motivated by [2, Theorem 2].
Define

pk =
β

1− β
(xk − xk−1). (G.1)

Then by (12), we have

xk+1 + pk+1 = xk+1 +
β

1− β
(xk+1 − xk) =

1

1− β
xk+1 −

β

1− β
xk

=
xk − α(∇f(xk) + wk,Nk

) + β(xk − xk−1)

1− β
xk+1 −

β

1− β
xk

= xk + pk −
α

1− β
(∇f(xk) + wk,Nk

).

This implies that

∥xk+1 + pk+1 − x∗∥2 = ∥xk + pk − x∗∥2 − 2α

1− β
(∇f(xk) + wk,Nk

)T (xk + pk − x∗)

+
α2

(1− β)2
∥∇f(xk) + wk,Nk

∥2. (G.2)

With the definition of Fk and the update rule (12), we see that xk is adapted to Fk, and hence pk is
adapted to Fk. Then by taking conditional expectations on both sides of (G.2) on Fk, we obtain

E[∥xk+1 + pk+1 − x∗∥2|Fk] = ∥xk + pk − x∗∥2 − 2α

1− β
(∇f(xk) + E[wk,Nk

|Fk])
T (xk + pk − x∗)

+
α2

(1− β)2
(
∥∇f(xk)∥2 + 2∇f(xk)

TE[wk,Nk
|Fk] + E[∥wk,Nk

∥2|Fk]
)

(5)
≤ ∥xk + pk − x∗∥2 − 2α

1− β
∇f(xk)

T (xk + pk − x∗) +
α2

(1− β)2

(
∥∇f(xk)∥2 + ν2

Nk

)
(G.3)

(G.1)
= ∥xk + pk − x∗∥2 − 2α

1−β∇f(xk)
T (xk − x∗)− 2αβ

(1−β)2
∇f(xk)

T (xk − xk−1) +
α2

(1−β)2

(
∥∇f(xk)∥2 + ν2

Nk

)
.

Since ∇f(x∗) = 0, Assumption 1(i) and (ii) hold, we recall from [3, (2.1.24)] that

∇f(xk)
T (xk − x∗) ≥ ηL

L+η∥xk − x∗∥2 + 1
L+η∥∇f(xk)∥2. (G.4)

Since f is η-strongly convex from Assumption 1(ii), we have

f(xk−1)− f(xk) ≥ ∇f(xk)
T (xk−1 − xk) +

η
2∥xk−1 − xk∥2.
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⇒ ∇f(xk)
T (xk − xk−1) ≥ f(xk)− f(xk−1) +

η
2∥xk−1 − xk∥2. (G.5)

Then by substituting (G.4) and (G.5) into (G.3), we obtain

E[∥xk+1 + pk+1 − x∗∥2|Fk] ≤ ∥xk + pk − x∗∥2 + α2

(1−β)2

(
∥∇f(xk)∥2 + ν2

Nk

)
− 2α

1−β

(
ηL
L+η∥xk − x∗∥2 + 1

L+η∥∇f(xk)∥2
)
− 2αβ

(1−β)2

(
f(xk)− f(xk−1) +

η
2∥xk−1 − xk∥2

)
.

By taking unconditional expectations on both sides of the above equation, and rearranging the terms, we get

E[∥xk+1 + pk+1 − x∗∥2|Fk] +
2αβ

(1−β)2
(f(xk)− f(x∗)) ≤ ∥xk + pk − x∗∥2 + 2αβ

(1−β)2
(f(xk−1)− f(x∗))

+ α2ν2

(1−β)2Nk
− 2αηL

(1−β)(L+η)∥xk − x∗∥2 − αβη
(1−β)2

∥xk−1 − xk∥2 + α
1−β

(
α

1−β − 2
L+η

)
∥∇f(xk)∥2. (G.6)

Since ∇f(x∗) = 0 and Assumption 1(ii) holds, we recall from [3, (2.1.19)] that

2η(f(xk)− f(x∗)) ≤ ∥∇f(xk)∥2. (G.7)

By recalling that β ∈ (0, 1) and α ∈ (0, 2(1−β)
L+η ), the last term on the right-hand side of (G.6) becomes

negative. Thus, by substituting (G.7) into (G.6), we derive

E[∥xk+1 + pk+1 − x∗∥2|Fk] +
2α
1−β

(
β−αη
1−β + 2η

η+L

)
(f(xk)− f(x∗)) ≤ ∥xk + pk − x∗∥2

+ 2αβ
(1−β)2

(f(xk−1)− f(x∗))− 2αηL
(1−β)(L+η)∥xk − x∗∥2 − αβη

(1−β)2
∥xk−1 − xk∥2 + α2ν2

(1−β)2Nk
. (G.8)

Define ẑk =

(
xk − x∗

xk − xk−1

)
. From (G.1) it can be seen that

∥xk + pk − x∗∥2 = ẑTk Mẑk withM ≜

 Im
β

1−β Im
β

1−β Im

(
β

(1−β)2

)2
Im

 .

Then (G.8) can be rewritten as

E[ẑTk+1Mẑk+1|Fk] + m̂(f(xk)− f(x∗)) ≤ ẑTk Nẑk + n̂(f(xk−1)− f(x∗)) + α2ν2

(1−β)2Nk
, (G.9)

where

m̂ ≜ 2α
1−β

(
β−αη
1−β + 2η

η+L

)
, n̂ ≜ 2αβ

(1−β)2
, andN ≜

 (
1− 2αηL

(1−β)(L+η)

)
Im

β
1−β Im

β
1−β Im

β(β−αη)
(1−β)2

Im

 .

With the definitions of q1 and q2 in (15), it has been shown in [2, Appendix] that n̂ ≤ q1m̂ and q2M−N is
positive semidefinite. Then from (G.9) and q = max{q1, q2} ∈ (0, 1), we obtain that

E[ẑTk+1Mẑk+1|Fk] + m̂(f(xk)− f(x∗)) ≤ q
(
ẑTk Mẑk + m̂(f(xk−1)− f(x∗))

)
+ α2ν2

(1−β)2Nk

By taking unconditional expectations on both sides of the above inequality, we achieve

E[ẑTk+1Mẑk+1 + m̂(f(xk)− f(x∗))] ≤ qE
[
ẑTk Mẑk + m̂(f(xk−1)− f(x∗))

]
+ α2ν2

(1−β)2Nk
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≤ qk+1E
[
ẑT0 Mẑ0 + m̂(f(x−1)− f(x∗))

]
+ α2ν2

(1−β)2

k∑
i=0

qi/Nk−i

= qk+1E
[
∥x0 − x∗∥2 + m̂(f(x0)− f(x∗))

]
+ α2ν2

(1−β)2

k∑
i=0

qi/Nk−i, (G.10)

where the last inequality holds since x−1 = x0 and ẑ0 =

(
x0 − x∗

0

)
.

Since ∇f(x∗) = 0 and Assumption 1(ii) holds, we have f(xk)−f(x∗) ≥ 2η∥xk−x∗∥2. Then by using
(G.10) and recalling the positive semidefiniteness of M, we obtain

2m̂ηE[∥xk − x∗∥2] ≤ qk+1E
[
∥x0 − x∗∥2 + m̂(f(x0)− f(x∗))

]
+ α2ν2

(1−β)2

k∑
i=0

qi/Nk−i.

Thus the required result holds. ■

H Proof of Proposition 2

By using ρ2 ∈ (1− γ, 1) and substituting Nk = ⌈ρ−(k+1)
2 ⌉ into (11), we obtain that

E[f(yk)]− f∗ ≤ ρk2
η+L
2 E[∥x0 − x∗∥2] + ν2

(
α+ (1−γ)γ

2η

)
ρk2

k−1∑
i=0

(
1−γ
ρ2

)i
,

which leads to (22) by using the bound
∑k−1

i=0

(
1−γ
ρ2

)i
≤ 1

1− 1−γ
ρ2

= ρ2
ρ2−(1−γ) .

Because f is η-strongly convex and ∇f(x∗) = 0, we have f(x) − f(x∗) ≥ η
2∥x − x∗∥2. Thus, yk

generated by Algorithm 2 satisfies ∥yk − x∗∥2 ≤ 2
η (f(yk)− f∗). Then from (22) it follows that

E[∥yk − x∗∥2] ≤ cρk2 with c ≜ 2
η

(
η+L
2 E[∥x0 − x∗∥2] + ρ2ν2

ρ2−(1−γ)

(
α+ (1−γ)γ

2η

))
.

Note by (10b) that ∥xk − x∗∥ ≤ ∥(1 + β)(yk − x∗)∥+ ∥β(yk−1 − x∗)∥, and hence

E[∥xk − x∗∥2] ≤ 2(1 + β)2E[∥yk − x∗∥2] + 2β2E[∥yk−1 − x∗∥2]
≤ c

(
2(1 + β)2 + 2β2ρ−1

2

)
ρk2.

Therefore, sequences {xk} and {yk} converge to the optimal solution x∗ at a geometric rate O(ρk2) in the
mean-squared sense.

Suppose we set α ≜ 1
L . Then γ =

√
η
L = 1√

κ
and β =

√
κ−1√
κ+1

. Select ρ2 ≜ 1 − 1
2
√
κ

such that
ρ2 > 1− γ. We can show that the number of iterations required to obtain an ϵ-optimal solution in a mean-
squared sense is O

(
ln(1/ϵ)
ln(1/ρ2)

)
= O (

√
κ ln (1/ϵ)) since ln

(
1

1−1/(2
√
κ)

)
≈ 1

2
√
κ

for large κ, and hence the

oracle complexity
∑K(ϵ)−1

k=0 Nk = O (
√
κ/ϵ) . ■
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I Proof of Proposition 3

By substituting α = 4
(
√
η+

√
L)2

into β = max{|1−√
αη|, |1−

√
αL|}2, there holds β =

(
1− 2√

κ+1

)2
< 1.

Then Lemma 3 holds. Therefore, by using (13), Nk = ⌈ρ−(k+1)
3 ⌉, x−1 = x0, ρ3 ∈ (β, 1), and ι ∈

(0,
√
ρ3 −

√
β), there exists a constant c(ι) such that

E

∥∥∥∥∥
(
xk+1 − x∗

xk − x∗

)∥∥∥∥∥
2
 ≤ 2c(ι)2(

√
β + ι)2(k+1)E[∥x0 − x∗∥2] + α2ν2c(ι)2

k∑
t=0

(
√
β + ι)2(k−t)ρt+1

3 , ∀k ≥ 0.

Since ι ∈ (0,
√
ρ3 −

√
β), we have

√
β + ι ∈ (

√
β, ρ3). This together with

∑k
t=0(

√
β + ι)2(k−t)ρt+1

3 =∑k
t=0(

√
β + ι)2tρk+1−t

3 = ρk+1
3

∑k
t=0

(
(
√
β+ι)2

ρ3

)t
≤ ρk+1

3

1−(
√
β+ι)2/ρ3

, proving (23).

By (23), E[∥xk − x∗∥] ≤ cρk3 for some constant c > 0. Suppose ρ3 =
(
1− 1√

κ+1

)2
> β. Akin to the

proof of Proposition 1(ii), we can show that the number of iterations required to obtain an ϵ-optimal solution
satisfying E[∥xk − x∗∥2] ≤ ϵ is O

(
ln(1/ϵ)
ln(1/ρ3)

)
= O (

√
κ ln (1/ϵ)) since ln

(
1

1−1/(
√
κ+1)

)
≈ 1√

κ+1
for large

κ, and the oracle complexity
∑K(ϵ)−1

k=0 Nk = O (
√
κ/ϵ) . ■

J Proof of Proposition 4

By substituting Nk = ⌈ρ−(k+1)
4 ⌉ into (14), we obtain

E[∥xk − x∗∥2] ≤ 1
2m̂ηE

[
∥x0 − x∗∥2 + m̂(f(x0)− f(x∗))

]
qk+1 + α2ν2

2(1−β)2m̂η
ρk+1
4

k∑
i=0

(q/ρ4)
i

≤ 1
2m̂ηE

[
∥x0 − x∗∥2 + m̂(f(x0)− f(x∗))

]
ρk+1
4 + α2ν2

2(1−β)2m̂η(1−q/ρ4)
ρk+1
4 ,

where the last inequality holds by ρ4 ∈ (q, 1). Then (24) holds. ■

K Proof of Proposition 5

By substituting Nk ≜ ⌈(k + 1)v⌉ into (7), using q = 1− 2αηL
η+L and Lemma 8(i), one obtains

E[∥xk − x∗∥2] ≤ qE[∥xk−1 − x∗∥2] + α2ν2k−v = qkE[∥x0 − x∗∥2] + α2ν2
k∑

m=1

qk−mm−v

= qkE[∥x0 − x∗∥2] + α2ν2
(
qk e2vq−1−1

1−q + 2k−v

q ln(1/q)

)
,

which together with Lemma 8(ii) proves (48). Then E[∥xk − x∗∥2] ≤ ϵ for any k ≥ K(ϵ) ≜
(
Cv
ϵ

)1/v
. By

noting that Cv = O(evvv), the iteration complexity is O(v(1/ϵ)1/v). Therefore, the number of sampled
gradients required to obtain an ϵ−NE is bounded by∑K(ϵ)−1

k=0 ⌈(k + 1)v⌉ ≤ K(ϵ) + (K(ϵ))v +
∑K(ϵ)−1

k=1 kv ≤
(
Cv
ϵ

)1/v
+ Cv

ϵ +
∫K(ϵ)
1 tvdt

=
(
Cv
ϵ

)1/v
+ Cv

ϵ + tv+1

v+1

∣∣∣K(ϵ)

1
=
(
Cv
ϵ

)1/v
+ Cv

ϵ + (v + 1)−1
(
Cv
ϵ

)1+ 1
v − (v + 1)−1.

54



Therefore, the oracle complexity is O
(
evvv (1/ϵ)1+

1
v

)
. ■

L Proof of Proposition 6

It is noticed by t = k − i and Lemma 8(i),

k−1∑
i=0

(1− γ)i(k − i)−v =

k∑
t=1

(1− γ)k−tt−v ≤ (1−γ)k(e2v(1−γ)−1−1)
γ + 2k−v

(1−γ) ln(1/(1−γ)) . (L.1)

By substituting Nk = ⌈(k + 1)v⌉ into (11), we obtain that

E[f(yk)]− f∗ ≤ (1−γ)k(η+L)E[∥x0−x∗∥2]
2 + ν2

(
α+ (1−γ)γ

2η

) k−1∑
i=0

(1− γ)i(k − i)−v.

This together with Lemma 8(ii) and (L.1) proves the required result. ■

M Proof of Proposition 7

By substituting Nk = ⌈(k + 1)v⌉ into (13), we obtain that for any ι ∈ (0, 1 −
√
β), there exists a constant

c(ι) such that for any k ≥ 0,

E

∥∥∥∥∥
(
xk+1 − x∗

xk − x∗

)∥∥∥∥∥
2
 ≤ 2(c(ι))2(

√
β + ι)2(k+1)E[∥x0 − x∗∥2] + α2ν2(c(ι))2

k+1∑
t=1

(
√
β + ι)2(k+1−t)t−v

≤ 2(c(ι))2(
√

β + ι)2(k+1)E[∥x0 − x∗∥2]

+ α2ν2(c(ι))2
(
(
√

β + ι)2(k+1) e
2v(

√
β + ι)−2 − 1

1− (
√
β + ι)2

+
2(k + 1)−v

2(
√
β + ι)2 ln(1/(

√
β + ι))

)
,

where the last inequality holds by using Lemma 8(i) and recalling that
√
β + ι ∈ (

√
β, 1). This together

with Lemma 8(ii) yields the result. ■

N Proof of Proposition 8

By substituting Nk = ⌈(k + 1)v⌉ into (14), we obtain that

E[∥xk − x∗∥2] ≤ 1
2m̂ηE

[
∥x0 − x∗∥2 + m̂(f(x0)− f(x∗))

]
qk+1 + α2ν2

2(1−β)2m̂η

k∑
i=0

qi(k + 1− i)−v,∀k ≥ 0.

By using Lemma 8(i), we derive
∑k

i=0 q
i(k + 1 − i)−v =

∑k+1
t=1 qk+1−tt−v ≤ qk+1 e2vq−1−1

1−q + 2(k+1)−v

q ln(1/q) .
Thus,

E[∥xk − x∗∥2] ≤ 1
2m̂ηE

[
∥x0 − x∗∥2 + m̂(f(x0)− f(x∗))

]
qk+1 + α2ν2

2(1−β)2m̂η

(
qk+1 e2vq−1−1

1−q + 2(k+1)−v

q ln(1/q)

)
.

This together with Lemma 8(ii) yields the result. ■
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