
ON FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS
FOR COMPACT LOCALLY SYMMETRIC ORBIFOLDS

BINGXIAO LIU

Abstract. We consider a certain sequence of flat vector bundles on a compact
locally symmetric orbifold, and we evaluate explicitly the associated asymp-
totic Ray-Singer real analytic torsion. The basic idea is to computing the
heat trace via Selberg’s trace formula, so that a key point in this paper is
to evaluate the orbital integrals associated with nontrivial elliptic elements.
For that purpose, we deduce a geometric localization formula, so that we can
rewrite an elliptic orbital integral as a sum of certain identity orbital integrals
associated with the centralizer of that elliptic element. The explicit geometric
formula of Bismut for semisimple orbital integrals plays an essential role in
these computations.
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1. Introduction

Let (Z, gTZ) be a closed Riemannian manifold of dimension m, and let F → Z be
a complex vector bundle equipped with a Hermitian metric hF and a flat connection
∇F,f . Let (Ω·(Z,F ), dZ,F ) be the associated de Rham complex valued in F . It is
equipped with an L2-metric induced by gTZ , hF . Let DZ,F,2 be the corresponding
de Rham - Hodge Laplacian. The real analytic torsion T (Z,F ) is a real valued
(graded) spectral invariant of DZ,F,2 introduced by Ray and Singer [39, 40]. When
Z is odd-dimensional and (F,∇F,f ) is acyclic, this invariant does not depend on the
metric data gTZ , hF . Ray and Singer also conjectured that, for unitarily flat vector
bundle F (i.e., ∇F,fhF = 0), this invariant coincides with the Reidemeister torsion,
a topological invariant associated with (F,∇F,f ) → Z. This conjecture was later
proved by Cheeger [13] and Müller [35]. Using the Witten deformation, Bismut and
Zhang [9, 10] gave an extension of the Cheeger-Müller theorem for arbitrary flat
vector bundles.

If Z is a compact orbifold, and if F is a flat orbifold vector bundle on Z, the
Ray-Singer analytic torsion T (Z,F ) extends naturally to this case (see Definition
2.2.3). In particular, if F is acyclic, and if Z as well as all the singular strata have
odd dimensions, then T (Z,F ) is independent of the metric data (see [45, Corollary
4.9]). We refer to [30, 45], etc for more details.

In this paper, we consider a certain sequence of (acyclic) flat vector bundles
{Fd}d∈N on a compact locally symmetric space Z, and we study the asymptotic
behavior of T (Z,Fd) as d→ +∞. When Z is manifold, such question was already
studied by Müller [36], by Bismut-Ma-Zhang [6, 7] and by Müller-Pfaff [38, 37]. In
particular, Bismut-Ma-Zhang [6, 7] worked on the manifolds which are more general
than locally symmetric manifolds. When Z is a compact hyperbolic orbifold, such
question was studied by Fedosova in [18] using the method of harmonic analysis.
Here, we consider this question for an arbitrary compact locally symmetric orbifold
(of noncompact type).

Let G be a connected linear reductive Lie group equipped with a Cartan invo-
lution θ ∈ Aut(G) and an invariant nondegenerate symmetric bilinear form B. Let
K ⊂ G be the fixed point set of θ, which is a maximal compact subgroup of G. Put

(1.0.1) X = G/K.

Then X is a Riemannian symmetric space with the Riemannian metric induced
from B. For convenience, we also assume that G has a compact center, then X is
of noncompact type.

Now let Γ ⊂ G be a cocompact discrete subgroup. Set

(1.0.2) Z = Γ\X.

Then Z is a compact locally symmetric space. In general, Z is an orbifold. Let
ΣZ denote the orbifold resolution of the singular points in Z, whose connected
components correspond exactly to the nontrivial elliptic conjugacy classes of Γ.

Since G has compact center, the compact form U of G exists and is a connected
compact linear Lie group. If (E, ρE , hE) is a unitary (analytic) representation of
U , then it extends uniquely to a representation of G by unitary trick. This way,
F = G×KE is a vector bundle onX equipped with an invariant flat connection ∇F,f

(see Subsection 3.4 and (4.1.8)) and a unimodular Hermitian metric hF induced by
hE . Moreover, (F,∇F,f , hF ) descends to a flat Hermitian orbifold vector bundle on
Z, which is still denoted by (F,∇F,f , hF ). Let DZ,F,2 denote the corresponding de
Rham - Hodge Laplacian.
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The fundamental rank δ(G) (or δ(X)) of G (orX) is the difference of the complex
ranks of G and of K. As we will see in Theorem 4.1.4, if δ(G) ̸= 1, we always have

(1.0.3) T (Z,F ) = 0.

If F is defined instead by a unitary representation of Γ, this result is obtained
by Moscovici and Stanton [34, Corollary 2.2]. If Γ is torsion-free, with F defined
via a representation of G as above, (1.0.3) was proved in [7, Remark 8.7] by using
Bismut’s formula for orbital integrals [4, Theorem 6.1.1] (also see [31, Theorems 5.4
& 5.5]). A new proof was given in [37, Proposition 4.2](with a correction given in
[33, p44]). Note that in [31, Remark 5.6], Ma has indicated that, using essentially
[31, Theorem 5.4], the identity (1.0.3) still holds if Γ is not torsion-free (i.e., Z is an
orbifold), which gives us exactly Theorem 4.1.4 in this paper. Due to this vanishing
result, we only need to deal with the case δ(G) = 1.

We now describe the sequence of flat vector bundles {Fd}d∈N which is concerned
here. Note that U contains K as a Lie subgroup. Let T be a maximal torus of
K, and let TU be the maximal torus of U containing T . Let u be the Lie algebra
of U , and let tU ⊂ u be the Lie algebra of TU . Let R(u, tU ) be the associated
real root system with a system of positive roots R+(u, tU ). Then let P++(U) ⊂ t∗U
denote the set of (real) dominant weights of U with respect to the above root
system. If λ ∈ P++(U), let (Eλ, ρ

Eλ) be the irreducible unitary representation of
U with the highest weight λ. We extend it to a representation of G. We require
λ to be nondegenerate, i.e., as G-representations, (Eλ, ρ

Eλ) is not isomorphic to
(Eλ, ρ

Eλ ◦ θ). We also take an arbitrary λ0 ∈ P++(U). If d ∈ N, let (Ed, ρ
Ed , hEd)

be the unitary representation of U with highest weight dλ+λ0. By Weyl’s dimension
formula, dimEd is a polynomial in d. This way, we get a sequence of (unimodular)
flat vector bundles {(Fd,∇Fd , hFd)}d∈N on X or on Z.

Note that in Subsection 8.1 (see also [2, Lemma 4.1]), the nondegeneracy of λ
implies that, for d large enough,

(1.0.4) H ·(Z,Fd) = 0.

Furthermore, dimZ is odd when δ(G) = 1. Then for any sufficiently large d,
T (Z,Fd) is independent of the different choices of hEd (or hFd).

Let E[Γ] be the finite set of elliptic classes in Γ. Set E+[Γ] = E[Γ]\{1}. The
first main result in this paper is the following theorem.

Theorem 1.0.1. Assume that δ(G) = 1. There exists a (real) polynomial P (d) in
d, and for each [γ] ∈ E+[Γ], there exists a nice exponential polynomial PE[γ](d) in
d (i.e., a finite sum of the terms of the form αdje2π

√
−1βd with α ∈ C, j ∈ N, β ∈ Q,

see Definition 7.6.1), such that there exists a constant c > 0, for d large, we have

(1.0.5) T (Z,Fd) = P (d) +
∑

[γ]∈E+[Γ]

PE[γ](d) +O(e−cd).

Moreover, the degrees of P (d), PE[γ](d) can be determined in terms of λ, λ0.

In [36, Theorem 1.1], for a hyperbolic 3-manifold Z, Müller computed explicitly
the leading term of T (Z,Fd) as d → +∞. In [6, 7], under a more general setting
for a closed manifold Z, Bismut, Ma and Zhang proved that there exists a constant
c > 0 such that [7, Remark 7.8]

(1.0.6) T (Z,Fd) = TL2(Z,Fd) +O(e−cd),

where TL2
(Z,Fd) denotes the L2-torsion [29, 32] associated with Fd → Z. Moreover,

they constructed universally an element W ∈ Ω•(Z, o(TZ)) (where o(TZ) denotes
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the orientation bundle of TZ) such that if n0 = degEd, then

(1.0.7) TL2
(Z,Fd) = dn0+1

∫
Z

W +O(dn0).

The integral of W in the right-hand side of (1.0.7) is called a W -invariant. If we
specialize (1.0.7) for a compact locally symmetric manifold Z, we get

(1.0.8) TL2(Z,Fd) = dn0+1Vol(Z)[W ]max +O(dn0).

In [7, Subsection 8.7], the explicit computation on [W ]max was carried out for
G = SL2(C) to recover the result of Müller [36, Theorem 1.1].

We now compare (1.0.5) with (1.0.6). If ignoring that Γ may act on X non-
effectively, we can extend the notion of L2-torsion to the orbifold Z, so that
TL2(Z,Fd) is still defined in terms of the Γ-trace of the heat operators on X. Then
P (d) in (1.0.5) is exactly TL2

(Z,Fd). But different from (1.0.6), we still have the
nontrivial terms PE[γ](d), [γ] ∈ E+[Γ] in (1.0.5). We will see, in a refined version
of (1.0.5) stated in Theorem 1.0.2, that PE[γ](d) is essentially an linear combina-
tion of certain L2-torsions for ΣZ associated with [γ] and λ, λ0. Therefore, we can
define an L2-torsion for ΣZ as follows,

(1.0.9) T̃L2
(ΣZ,Fd) =

∑
[γ]∈E+[Γ]

PE[γ](d).

Then, as an analogue to (1.0.6), we restate our Theorem 1.0.1 as follows.

Theorem 1.0.1’. Assume that Γ acts on X effectively. For Z = Γ\X, as d→ +∞,
we have

(1.0.10) T (Z,Fd) = TL2
(Z,Fd) + T̃L2

(ΣZ,Fd) +O(e−cd).

Moreover, TL2
(Z,Fd) is a polynomial in d, and T̃L2

(ΣZ,Fd) is a nice exponential
polynomial in d. Their leading terms can be determined in terms of W -invariants
as in (1.0.8) .

To understand better on T̃L2
(ΣZ,Fd), we need to recall the results of Müller and

Pfaff in [37] (also in [38] for hyperbolic case) for a compact locally symmetric mani-
fold Z. They gave a proof to (1.0.6) using Selberg’s trace formula, and then showed
that TL2(Z,Fd) is a polynomial in d. The Theorem 1.0.1’ here is an extension of
their results, which shows a nontrivial contribution from ΣZ.

Let us give more detail on the results in [37]. Let DX,Fd,2 be the G-invariant
Laplacian operator on X which is the lift of DZ,Fd,2. For t > 0, let pX,Fd

t (x, x′)
denote the heat kernel of 1

2D
X,Fd,2 with respect to the Riemannian volume element

on X. For t > 0, the identity orbital integral IX(Ed, t) of pX,Fd
t is defined as

(1.0.11) IX(Fd, t) = Trs
Λ•(T∗

xX)⊗Fd,x [(NΛ•(T∗
xX) − m

2
)pX,Fd

t (x, x)],

where NΛ•(T∗
xX) is the number operator on Λ•(T ∗

xX), and the right-hand side of
(1.0.11) is independent of the choice of x ∈ X. Let MIX(Fd, s), s ∈ C denote the
Mellin transform (see (7.2.57)) of IX(Fd, t), which is holomorphic at 0. Set

(1.0.12) PIX(Fd) =
∂

∂s
|s=0MIX(Fd, s).

The L2-torsion is defined as

(1.0.13) TL2(Z,Fd) = Vol(Z)PIX(Fd).

Using essentially the Harish-Chandra’s Plancherel theorem for IX(Fd, t), Müller-
Pfaff [37] managed to show that PIX(Fd) is a polynomial in d (for d large enough).
Moreover, if λ0 = 0, there exists a constant Cλ ̸= 0 such that

(1.0.14) PIX(Fd) = CλddimEd +R(d),
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where R(d) is a polynomial in d of degree no greater than deg dimEd. They also
gave concrete formulae for Cλ in some model cases [37, Corollaries 1.4 & 1.5].

In Subsection 7.4, we use instead an explicit geometric formula of Bismut [4,
Theorem 6.1.1] for semisimple orbital integrals to give a different computation on
PIX(Fd). In Subsection 7.5, we verify that our computational results coincide with
the ones of Müller-Pfaff [37].

For the orbifold case, i.e., Γ contains nontrivial elliptic elements, a key ingredient
to Theorem 1.0.1 is to evaluate explicitly the elliptic orbital integrals associated with
[γ] ∈ E+[Γ]. For that purpose, we make use of the full power of Bismut’s formula
[4, Theorem 6.1.1]. Note that if Z is a hyperbolic orbifold, i.e. G = Spin(1, 2n+1),
the result in Theorem 1.0.1 (or Theorem 1.0.1’) was obtained by Fedosova in [18,
Theorem 1.1], where she evaluated the elliptic orbital integrals using Plancherel’s
theorem of Harish-Chandra.

In fact, we obtain in this paper a refined version of Theorem 1.0.1, where we give
more explicit descriptions on the exponential polynomials PE[γ](d) or T̃L2

(ΣZ,Fd).
Before stating this refined result, we need to introduce some notations and facts.

Fix k ∈ T , and let X(k) denote the fixed point set of k acting on X. Then
X(k) is a connected symmetric space with δ(X(k)) = 1. Let Z(k)0 be the iden-
tity component of the centralizer Z(k) of k in G. Then X(k) = Z(k)0/K(k)0

with K(k)0 = Z(k)0 ∩ K. Let U(k) denote the centralizer of k in U with Lie
algebra u(k) ⊂ u . Then U(k)0 is naturally a compact form of Z(k)0, the triplet
(X(k), Z(k)0, U(k)0) becomes a smaller version of (X,G,U), except that Z(k)0 may
have noncompact center. Note that TU is also a maximal torus of U(k)0. We get
the following splitting of roots

(1.0.15) R(u, tU ) = R(u(k), tU ) ∪R(u⊥(k), tU ),

where u⊥(k) is the orthogonal space of u(k) in u with respect to B. Let R+(u(k), tU ),
R+(u⊥(k), tU ) be the induced positive roots, and let ρu, ρu(k) denote the half of the
sum of the roots in R+(u, tU ), R+(u(k), tU ) respectively.

Let W (uC, tU,C) be the Weyl group associated with the pair (u, tU ). Put

(1.0.16) W 1
U (k) = {ω ∈W (uC, tU,C) | ω−1(R+(u(k), tU )) ⊂ R+(u, tU )}.

If σ ∈W 1
U (k), let ε(σ) denote its sign. For µ ∈ P++(U), set

(1.0.17) φU
k (σ, µ) = ε(σ)

ξσ(µ+ρu)+ρu
(k)

Πα∈R+(u⊥(k),tU )(ξα(k)− 1)
∈ C∗,

where ξα is the character of TU with (dominant) weight 2π
√
−1α. It is clear that

φU
k (σ, dλ+ λ0) is an oscillating term of the form c1e

2π
√
−1c2d with c1 ∈ C∗, c2 ∈ R.

If k is of finite order, then c2 ∈ Q.
By an equivalent definition of nondegeneracy in Definition 7.3.1, for σ ∈W 1

U (k),
σλ is a nondegenerate dominant weight of U(k)0 with respect to θ|Z(k)0 . Let Ek

σ,d

denote the unitary representations of U(k)0 (up to a finite central extension) with
highest weight dσλ + σ(λ0 + ρu) − ρu(k), d ∈ N, and let {F k

σ,d}d∈N be the corre-
sponding sequence of flat vector bundles on X(k).

Now we state our second main theorem, which refines our Theorem 1.0.1.

Theorem 1.0.2. Assume that δ(G) = 1.

(1) If Γ ⊂ G is a cocompact discrete subgroup, if γ ∈ Γ is elliptic, let S(γ)
denote the finite subgroup of Γ ∩ Z(γ) which acts on X(γ) trivially. Then
there exists a constant c > 0, and for each [γ] ∈ E+[Γ], there exists a nice
exponential polynomial in d denoted by PEX,γ(Fd), such that for Z = Γ\X,
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as d→ +∞, we have

T (Z,Fd) =
Vol(Z)

|S(1)|
PIX(Fd)

+
∑

[γ]∈E+[Γ]

Vol(Γ ∩ Z(γ)\X(γ))

|S(γ)|
PEX,γ(Fd) +O(e−cd).

(1.0.18)

(2) Fix an elliptic [γ] ∈ E+[Γ], then PEX,γ(Fd) depends only on the conjugacy
class of γ in G and is independent of the lattice Γ. If γ is conjugate to
k ∈ T by an element in G, then we have the following identity

(1.0.19) PEX,γ(Fd) =
∑

σ∈W 1
U (k)

φU
k (σ, dλ+ λ0)PIX(k)(F

k
σ,d),

Theorem 1.0.1 now is just a consequence of (1.0.18). Note that for [γ] ∈ E+[Γ],
the (compact) orbifold Γ ∩ Z(γ)\X(γ) represents an orbifold stratum in ΣZ (see
(3.4.13), Remark 3.4.3). An important observation on (1.0.18) is that the sequence
{T (Z,Fd)}d∈N encodes the volume information on Z as well as on ΣZ. Moreover,
combining (1.0.13), (1.0.18) with (1.0.19), we justify that the quantity T̃L2

(ΣZ,Fd)
defined by (1.0.9) is indeed a linear combination of L2-torsions such as TL2(Γ ∩
Z(γ)\X(γ), F γ

σ,d) for ΣZ.
Now we explain our approach to Theorem 1.0.2. Let us start with defining

PEX,γ(Fd) and (1.0.18). In fact, T (Z,Fd) can be rewritten as the derivative at 0
of the Mellin transform of

(1.0.20) Trs[(N
Λ•(T∗Z) − m

2
) exp(−tDZ,Fd,2/2)], t > 0,

where Trs[·] denotes the supertrace with respect to the Z2-grading on Λ•(T ∗Z).
If γ ∈ G is semisimple, let EX,γ(Fd, t) denote the orbital integral (see Subsection

3.3) of the Schwartz kernel of (NΛ•(T∗X)− m
2 ) exp(−tD

X,Fd,2/2) associated with γ.
Note that in EX,γ(Fd, t), we take the supertrace of the endomorphism on Λ•(T ∗X)⊗
F (see (4.1.16)). Moreover, EX,γ(Fd, t) depends only on the conjugacy class of γ
in G. Let MEX,γ(Fd, s) denote the Mellin transform of EX,γ(Fd, t), t > 0 with
appropriate s ∈ C. If γ = 1, they are just IX(Fd, t), MIX(Fd, s) introduced in
(1.0.11) - (1.0.12).

We use the notation in Subsection 3.5. Let [Γ] denote the set of the conjugacy
classes in Γ. By applying the Selberg’s trace formula to Z = Γ\X, we get

Trs[(N
Λ•(T∗Z) − m

2
) exp(−tDZ,Fd,2/2)] =

∑
[γ]∈[Γ]

Vol(Γ ∩ Z(γ)\X(γ))

|S(γ)|
EX,γ(Fd, t).

(1.0.21)

Now we compare (1.0.18) with (1.0.21). Then a proof to (1.0.18) mainly includes
the following three parts:

1. We show that if [γ] ∈ E[Γ], then MEX,γ(Fd, s) admits a meromorphic
extension to s ∈ C which is holomorphic at s = 0. Thus we define

(1.0.22) PEX,γ(Fd) =
∂

∂s
|s=0MEX,γ(Fd, s).

Such consideration also holds for arbitrary elliptic element γ ∈ G.

2. If γ ∈ Γ is elliptic, then it is of finite order, from (1.0.19), we get that
PEX,γ(Fd) is a nice exponential polynomial in d for d large enough.

3. We prove that all the terms in the sum of (1.0.21) associated with nonelliptic
[γ] ∈ [Γ] contribute as O(e−cd) in T (Z,Fd).
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Indeed, to handle the contribution of the nonelliptic [γ] ∈ [Γ], we use a spectral
gap of DZ,Fd,2 due to the nondegeneracy of λ. By [6, Théorème 3.2], [7, Theorem
4.4] which holds for a more general setting (see also [37, Proposition 7.5, Corollary
7.6] for a proof by using representation theory for symmetric spaces), there exist
constants C > 0, c > 0 such that for d ∈ N,

(1.0.23) DZ,Fd,2 ≥ cd2 − C.

That also explains (1.0.4) for large d. The Part 3 follows essentially from the same
arguments as in [37, Section 8] and [7, Subsections 6.6, 7.2, Remarks 7.8, 8.15]
which makes good use of (1.0.23) and the fact that nonelliptic elements in Γ admit
a uniform strictly positive lower bound for their displacement distances on X.

For elliptic γ ∈ Γ, we apply Bismut’s formula [4, Theorem 6.1.1] to evaluate
EX,γ(Fd, t). Then we can write EX,γ(Fd, t) as an Gaussian-like integral with the
integrand given as a product of an analytic function determined by the adjoint
action of γ on Lie algebras and the character χEd

of the representation Ed. By
coordinating these two factors, especially using all sorts of character formulae for
χEd

, we can integrate it out. We show that EX,γ(Fd, t) is a finite sum of the terms
as follows,

(1.0.24) t−j− 1
2 e−t(cd+b)2Q(d),

where j ∈ N, c ̸= 0, b are real constants, and Q(d) is a nice exponential polynomial
in d. It is crucial that c ̸= 0. Indeed, we will see in Subsection 7.3 that this quantity
c measures the difference between the representations (Eλ, ρ

Eλ) and (Eλ, ρ
Eλ ◦ θ).

As a consequence of (1.0.24), PEX,γ(Fd) in (1.0.22) is well-defined, which is
clearly a nice exponential polynomial in d (for d large enough). The details on
these computations are carried out in Subsection 7.2, where we apply the techniques
inspired by the computations in Shen’s approach to the Fried conjecture [44, Section
7] and also in its extension to orbifold case by Shen and Yu [45].

The formula (1.0.19) gives a new and geometric approach to the above results
on PEX,γ(Fd). It is nicer in the sense that each PIX(k)(F

k
σ,d) is already well

understood and related to the L2-torsions for the singular stratum of Z. For proving
it, we apply a geometric localization formula for EX,γ(Fd, t) as follows.

Theorem 1.0.3. Assume that δ(G) = 1. We use the same notation as in Theorem
1.0.2. Let γ = k ∈ T . Then for t > 0, d ∈ N,

(1.0.25) EX,γ(Fd, t) =
∑

σ∈W 1
U (k)

φU
k (σ, dλ+ λ0)IX(k)(F

k
σ,d, t).

After taking the Mellin transform on both sides of (1.0.25), we get exactly
(1.0.19). In Theorem 6.0.1, we will show a general version of the above geometric
localization formula for EX,γ(Fd, t) associated with any semisimple element γ ∈ G.

Our approach to Theorem 1.0.3 is a more delicate application of Bismut’s formula
[4, Theorem 6.1.1]. As we said, EX,γ(Fd, t), IX(k)(F

k
σ,d, t) are equal to integrals

of some integrands involving χEd
, χEk

σ,d
respectively. To relate the both sides of

(1.0.25), we employ a generalized version of Kirillov character formula (see Theorem
5.4.4) which gives an explicit way of decomposing χEd

|U(k)0 into a sum of χEk
σ,d

,
σ ∈ W 1

U (k). This character formula was proved by Duflo, Heckman and Vergne
in [16, II. 3, Theorem (7)] under a general setting, and we will recall its special
case for our need in Subsection 5.4. Then we expand the integral formula for
EX,γ(Fd, t) carefully into a sum of certain integrals involving χEk

σ,d
, σ ∈ W 1

U (k),
which correspond respectively IX(k)(F

k
σ,d, t) via Bismut’s formula. This way, we

prove (1.0.25).
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Theorem 1.0.3 can be interpreted as follows, the action of elliptic element γ on X
could lead to a geometric localization onto its fixed point set X(k) when we evaluate
the orbital integrals. Even though we only prove it for a very restrictive situation,
we still expect such phenomenon in general due to a geometric formulation for the
semisimple orbital integrals (see [4, Chapter 4]).

Finally, we note that in [7, Section 8], the authors explained well how to use
Bismut’s formula for semisimple orbital integrals to study the asymptotic analytic
torsion. Here, we go one step further in that direction to get a refined evaluation
on it. Bergeron and Venkatesh [2] also studied the asymptotic analytic torsion but
under a totally different setting. In [26, 28], the asymptotic equivariant analytic
torsion for a locally symmetric space was studied, and the oscillating terms also
appeared naturally in that case. Moreover, Finski [19, Theorem 1.5] obtained the
full asymptotic expansion of the holomorphic torsions for the tensor powers of a
given positive line bundle over a compact Hermitian orbifold.

This paper is organized as follows. In Section 2, we recall the definition of Ray-
Singer analytic torsion for compact orbifolds. We also include a brief introduction
to the orbifolds at beginning.

In Section 3, we introduce the explicit geometric formula of Bismut for semisim-
ple orbital integrals and the Selberg’s trace formula for compact locally symmetric
orbifolds. They are the main tools to study the analytic torsions in this paper.

In Section 4, we give a vanishing theorem for T (Z,F ), so that we only need to
focus on the case δ(G) = 1.

In Section 5, we study the Lie algebra of G provided δ(G) = 1. Furthermore, we
introduce a generalized Kirillov formula for compact Lie groups.

In Section 6, we prove a general version of Theorem 1.0.3.
In Section 7, given the sequence {Fd}d∈N, we compute explicitly EX,γ(Fd, t) in

terms of root systems for elliptic γ, in particular, we prove (1.0.24). Then we give
the formulae for PIX(Fd), PEX,γ(Fd).

Finally, in Section 8, we introduce the spectral gap (1.0.23) and we give a proof
to Theorem 1.0.2.

In this paper, if V is a real vector spaces and if E is a complex vector space, we
will use the symbol V ⊗ E to denote the complex vector space V ⊗R E. If both V
and E are complex vector spaces, then V ⊗ E is just the usual tensor over C.
Acknowledgments. I would like to thank Prof. Jean-Michel Bismut, and Prof.
Werner Müller for encouraging me to work on this subject, and for many useful
discussions. I also thank Dr. Taiwang Deng for educating me about the cohomology
of arithmetic groups, and Dr. Ksenia Fedosova for explanations of her results on
the hyperbolic case.

This work is carried out during my stay in Max Planck Institute for Mathematics
(MPIM) in Bonn. I also want to express my sincere gratitude to MPIM for providing
so nice research environment. Last but not least, I also would like to thank the
anonymous referee(s) for the suggestions and comments that greatly improved the
paper.

2. Ray-Singer analytic torsion

In this section, we recall the definitions of the orbifold and the orbifold vector
bundle. We also refer to [41, 42] and [1, Chapter 1] for more details. Then we
recall the definition of Ray-Singer analytic torsion for compact orbifolds, where we
refer to [30, 45] for more details. In particular, Shen and Yu in [45] extended many
important results on real analytic torsion from manifold setting to orbifold setting.

2.1. Orbifolds and orbifold vector bundles. Let Z be a topological space.
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Definition 2.1.1. If U is a connected open subset of Z, an orbifold chart for U is a
triple (Ũ , πU , GU ) such that

— Ũ is a connected open set of some Rm, GU is a finite group acting smoothly
and effectively on Ũ on the left;

— πU is a continuous surjective Ũ → U , which is invariant by GU -action;

— πU induces a homeomorphism between GU\Ũ and U .

If V ⊂ U is a connected open subset, an embedding of orbifold chart for the
inclusion i : V → U is an orbifold chart (Ṽ , πV , GV ) for V and an orbifold chart
(Ũ , πU , GU ) for U together with a smooth embedding ϕUV : Ṽ → Ũ such that the
following diagram commutes,

(2.1.1)

Ṽ
ϕUV //

πV

��

Ũ

πU

��
V

i // U

.

If U1, U2 are two connected open subsets of Z with the charts (Ũ1, πU1
, GU1

),
(Ũ2, πU2 , GU2) respectively. We say that these two orbifold charts are compatible
if for any point z ∈ U1 ∩ U2, there exists an open connected neighborhood V ⊂
U1∩U2 of z with an orbifold chart (Ṽ , πV , GV ) such that there exist two embeddings
of orbifold charts ϕU1V : (Ṽ , πV , GV ) → (Ũ1, πU1

, GU1
), ϕU2V : (Ṽ , πV , GV ) →

(Ũ2, πU2
, GU2

). In this case, the diffeomorphism ϕU2V ◦ϕ−1
U1V

: ϕU1V (Ṽ ) → ϕU2V (Ṽ )
is called a coordinate transformation.

Definition 2.1.2. An orbifold atlas on Z is couple (U , Ũ) consisting of a cover U
of open connected subsets of Z and a family of compatible orbifold charts Ũ =

{(Ũ , πU , GU )}U∈U .
An orbifold atlas (V, Ṽ) is called a refinement of (U , Ũ) if V is a refinement of U

and if every orbifold chart in Ṽ has an embedding into some orbifold chart in Ũ .
Two orbifold atlas are said to be equivalent if they have a common refinement, and
the equivalent class of an orbifold atlas is called an orbifold structure on Z.

An orbifold is a second countable Hausdorff space equipped with an orbifold
structure. It is said to have dimension m if all the orbifold charts which defines the
orbifold structure are of dimension m.

If Z, Y are two orbifolds, a smooth map f : Z → Y is a continuous map from Z
to Y such that it lifts locally to an equivariant smooth map from an orbifold chart
of Z to any orbifold chart of Y . In this way, we can define the notion of smooth
functions and the smooth action of Lie groups.

By [45, Proposition 2.12], if Γ is discrete group acting smoothly and properly
discontinuously on the left on an orbifold X, then Z = Γ\X has a canonical orbifold
structure induced from X.

In the sequel, let Z be an orbifold with an orbifold structure given by (U , Ũ).
If z ∈ Z, there exists an open connected neighborhood Uz of z with a compatible
orbifold chart (Ũz, Gz, πz) such that π−1

z (z) contains only one point x ∈ Ũz. Then
Gz does not depend on the choice of such open connected neighborhood (up to
canonical isomorphisms compatible with the orbifold structure), then Gz is called
the local group at z.

Put

(2.1.2) Zreg = {z ∈ Z : Gz = {1}}, Zsing = {z ∈ Z : Gz ̸= {1}}.
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Then Zreg is naturally a smooth manifold. But Zsing is not necessarily an orbifold.
In [21, Section 2], Kawasaki explained two different methods to view Zsing as an
immersed image of a disjoint union of orbifolds. We just recall that method which
appears naturally in Kawasaki’s local index theorems for orbifolds [21, 22].

If z ∈ Zsing, let 1 = (h0z), (h
1
z), · · · , (hlzz ) be the conjugacy classes in Gz. Put

(2.1.3) ΣZ = {(z, (hjz)) | z ∈ Zsing, j = 1, · · · , lz}.

Let (Ũz, Gz, πz) be the local orbifold chart for z ∈ Zsing such that π−1
z (z) contains

only one point. For j = 1, · · · , lz, let Ũhj
z

z ⊂ Ũz be the fixed point set of hjz, which
is a submanifold of Ũz. Note that Ũhj

z
z ⊂ Zsing. Let ZGz

(hjz) be the centralizer of
hjz in Gz. Then ZGz

(hjz) acts smoothly on Ũhj
z

z . Put

(2.1.4) Kj
z = ker(ZGz

(hjz) → Aut(Ũ
hj
z

z )).

Then (Ũ
hj
z

z , ZGz (h
j
z)/K

j
z , π

j
z : Ũ

hj
z

z → Ũ
hj
z

z /ZGz (h
j
z)) defines an orbifold chart near

(z, (hjz)) ∈ ΣZ. They form an orbifold structure for ΣZ. Let Zi, i = 1, · · · , l denote
the connected component of the orbifold ΣZ.

The integer mj
z = |Kj

z | is called the multiplicity of ΣZ in Z at (z, (hjz)). This
defines a function m : ΣZ → Z+. As explained in [21, Section 1], m is locally
constant on ΣZ, and let mi ∈ Z+ be the value of m on Zi for i = 1, · · · , l. We call
mi the multiplicity of Zi in Z. We will put

(2.1.5) Z0 = Z, m0 = 1.

Remark 2.1.3. In Definition 2.1.1, for an orbifold chart, we require the action GU

on Ũ to be effective. To emphasize this condition, the orbifold defined above is
often called an effective orbifold. In fact, we can drop this effectiveness, then we
get a general version of the (possibly ineffective) orbifold, for example, using the
orbifold groupoid (see [1, Definition 1.38]). The point-view of orbifold groupoid
provides a unified way to deal with effective and ineffective orbifolds.

As explained in [1, Example 2.5], for global quotient groupoids (including all the
effective orbifolds and certain ineffective orbifolds), a natural stratification called
the inertia groupoid was introduced as an extension of the one ∪l

i=0Z
i defined in

(2.1.3) - (2.1.5). It plays a key role in the study of the geometry of orbifolds. We will
go back to this point in Subsections 3.4 & 3.5. Through this paper, the terminology
orbifold will always refer to the effective one unless otherwise stated.

We say E to be an orbifold vector bundle of rank r on Z if there exists a smooth
map of orbifolds π : E → Z such that for any U ∈ U and (Ũ , GU , πU ) ∈ Ũ , there
exists an orbifold chart (ŨE , GE

U , π
E
U ) of E such that ŨE is an vector bundle on Ũ

of rank r equipped an effective action of GE
U and πE

U (Ũ
E) = π−1(U). Moreover,

there exists a surjective group morphism ψU : GE
U → GU such that the action of

GE
U on Ũ is identified via ψU with the action of GU on Ũ . If we have an open

embedding ϕUV : (Ṽ , πV , GV ) → (Ũ , πU , GU ), we require that it lifts to the open
embedding ϕEUV : (Ṽ E , πE

V , G
E
V ) → (ŨE , πE

U , G
E
U ) of the orbifold charts of E such

that ϕEUV : Ṽ E → ŨE is a morphism of vector bundles associated with the open
embedding ϕUV : Ṽ → Ũ . If every ψU : GE

U → GU is an isomorphism of groups,
we call E a proper orbifold vector bundle on Z.

Note that if E is proper, then the rank of E can be extended to a locally con-
stant function ρ on ΣZ. The orbifold chart of Zi is given by the triples such as
(Ũ

hj
z

z , ZGz
(hjz)/K

j
z , π

j
z : Ũ

hj
z

z → Ũ
hj
z

z /ZGz
(hjz)). By the above definition of E, we

have an orbifold chart (ŨE , GE
U = GU , π

E
U ) such that ŨE is a GU -equivariant vector

bundle on Ũ . Then for x ∈ Ũ
hj
z

z , hjz acts on the fibres ŨE
z linearly, so that we can
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set ρ(z, (hjz)) = TrŨ
E
z [hjz]. Then ρ is really a locally constant function on ΣZ. For

i = 1, · · · , l, let ρi be the value of ρ on the component Zi. We also put ρ0 = r.
We call s : Z → E a smooth section of E over Z if it is a smooth map between

orbifolds such that π ◦ s = IdZ . We will use C∞(Z,E) to denote the vector space
of smooth sections of E over Z.

Take an orbifold chart (Ũ , GU , πU ) ∈ Ũ of Z, GU acts canonically on the tangent
vector bundle TŨ of Ũ . The open embeddings of orbifold charts of Z also lift to
the open embeddings of their tangent vector bundles. This way, we get a proper
orbifold vector bundle TZ on Z, and the projection π : TZ → Z is just given by
the obvious projection T Ũ → Ũ . We call TZ the tangent vector bundle of Z. If
we equipped TZ with Euclidean metric gTZ , we will call Z a Riemannian orbifold
and call gTZ a Riemannian metric of Z.

Let Ω•(Z) denote the set of smooth differential forms of Z, which has a Z-graded
structure by degrees. The de Rham differential dZ : Ω•(Z) → Ω•+1(Z) is given
by the family of de Rham differential operators dŨ : Ω•(Ũ) → Ω•+1(Ũ). Then we
can define the de Rham complex (Ω•(Z), dZ) of Z and the associated de Rham
cohomology H•(Z,R). By [21, Section 1], there is a natural isomorphism between
H•(Z,R) and the singular cohomology of the underlying topological space Z.

Now let us recall the integrals on Z. Assume that Z is compact. We may take
a finite open covering {Ui}i∈I of the precompact orbifold charts for Z. Since Z is
Hausdorff, then there exists a partition of unity subordinate to this open cover. We
can find a family of smooth functions {ϕi ∈ C∞

c (Z)}i∈I with values in [0, 1] such
that Supp(ϕi) ⊂ Ui, and that

(2.1.6)
∑
i∈I

ϕi = 1.

Take ϕ̃i = π∗
Ui
(ϕi) ∈ C∞

c (Ũi)
GUi .

If α ∈ Ωm(Z, o(TZ)), let α̃Ui be its lift on the chart (Ũi, πUi , GUi). We define

(2.1.7)
∫
Z

α =
∑
i

1

|GUi
|

∫
Ũi

ϕ̃iα̃Ui
.

By [45, Section 3.2], if α ∈ Ωm(Z, o(TZ)), then α is also integrable on Zreg, so that

(2.1.8)
∫
Z

α =

∫
Zreg

α.

Also if α ∈ Ω•(Z, o(TZ)), we have

(2.1.9)
∫
Z

dZα = 0.

If (Z, gTZ) is a Riemannian orbifold, we can define the integration of functions
on Z with respect to the Riemannian volume element. If we have a Hermitian
orbifold vector bundle (F, hF ) → (Z, gTZ), one can define the L2 scalar product for
the space of continuous sections of F as usual. Then, after completion, we get the
Hilbert space L2(Z,F ).

The Chern-Weil theory on the characteristic forms extends to orbifolds, where
their constructions are parallel to the case of smooth manifolds. We refer to [45,
Subsection 3.4] for more details. Note that the characteristic forms are not only
defined on Z but also defined on ΣZ. The part ΣZ has a nontrivial contribution
in Kawasaki’s local index theorems for orbifolds [21, 22].

Finally, we introduce the orbifold Euler characteristic number of (Z, gTZ) [42].
Let ∇TZ = {∇TŨi}Ui∈U be the Levi-Civita connection on TZ associated with gTZ .
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The Euler form e(TZ,∇TZ) ∈ Ωm(Z, o(TZ)) is given by the family of closed forms

(2.1.10)
{
e(Ũi,∇TŨi) ∈ Ωm(Ũi, o(TŨi))

GUi

}
Ui∈U .

If Z is oriented, then we can view e(TZ,∇TZ) as a differential form on Z.
If Z is compact, set

(2.1.11) χorb(Z) =

∫
Z

e(TZ,∇TZ).

By [42, Section 3], χorb(Z) is a rational number, and it vanishes when Z is odd
dimensional.

2.2. Flat vector bundles and analytic torsions of orbifolds. If (F,∇F ) is an
orbifold vector bundle over Z with a connection ∇F , we call (F,∇F ) a flat vector
bundle if the curvature RF = ∇F,2 vanishes identically on Z. A detailed discussion
for the flat vector bundles on Z is given in [45, Sections 2.3 - 2.5].

Let (Z, gTZ) be a compact Riemannian orbifold of dimension m. Let (F,∇F )
be a flat complex orbifold vector bundle of rank r on Z with Hermitian metric hF .
Note that we do not assume that F is proper.

Let Ω•(Z,F ) be the set of smooth sections of Λ•(T ∗Z)⊗F on Z. Let dZ be the
exterior differential acting on Ω•(Z,R).

Definition 2.2.1. For i = 0, 1, · · · ,m, if α ∈ Ωi(Z,R), s ∈ C∞(Z,F ), the operator
dZ,F acting on Ωi(Z,F ) is defined by

(2.2.1) dZ,F (α⊗ s) = (dZα)⊗ s+ (−1)iα ∧∇F s ∈ Ωi+1(Z,F ).

Since ∇F,2 = 0, then (Ω•(Z,F ), dZ,F ) is a complex, which is called the de Rham
complex for the flat orbifold vector bundle (F,∇F ) on Z. Let H•(Z,F ) denote the
corresponding de Rham cohomology group of Z valued in F , as in the case of closed
manifolds, H•(Z,F ) is always finite dimensional.

Let ⟨·, ·⟩Λ•(T∗Z)⊗F,z be the Hermitian metric on Λ•(T ∗
z Z) ⊗ Fz, z ∈ Z induced

by gTZ
z and hFz . Let dv be the Riemannian volume element on Z induced by gTZ .

The L2-scalar product on Ω•(Z,F ) is given as follows, if s, s′ ∈ Ω•(Z,F ), then

(2.2.2) ⟨s, s′⟩L2 =

∫
Z

⟨s(z), s(z′)⟩Λ•(T∗Z)⊗F,zdv(z).

By (2.1.8), it will be the same if we take the integrals on Zreg.
Let dZ,F,∗ be the formal adjoint of dZ,F with respect to the above L2-metric on

Ω•(Z,F ), i.e., for s, s′ ∈ Ω•(Z,F ),

(2.2.3) ⟨dZ,F,∗s, s′⟩L2 = ⟨s, dZ,F s′⟩L2 .

Then dZ,F,∗ is a first-order differential operator acting Ω•(Z,F ) on which decreases
the degree by 1.

Definition 2.2.2. The de Rham - Hodge operator DZ,F of Ω•(Z,F ) is defined as

(2.2.4) DZ,F = dZ,F + dZ,F,∗.

It is a first-order self-adjoint elliptic differential operator acting on Ω•(Z,F ).

The Hodge Laplacian is

(2.2.5) DF,Z,2 = [dZ,F , dZ,F,∗] = dZ,F dZ,F,∗ + dZ,F,∗dZ,F .

Here, [·, ·] denotes the supercommutator. Then DZ,F,2 is a second-order essentially
self-adjoint non-negative elliptic operator, which preserves the degree.
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The Hodge decomposition for Ω•(Z,F ) still holds in this case (see [30, Proposi-
tion 2.2], [14, Proposition 2.1]),
(2.2.6)

Ω•(Z,F ) = ker(DZ,F,2|Ω•(Z,F ))⊕ Im(dZ,F |Ω•−1(Z,F ))⊕ Im(dZ,F,∗|Ω•+1(Z,F )).

Then we have the canonical identification of vector spaces,

(2.2.7) H•(Z,F ) := kerDZ,F,2 ≃ H•(Z,F ).

Put

(2.2.8) χ(Z,F ) =

m∑
j=0

(−1)j dimHj(Z,F ).

If F is proper, recall that the numbers ρi, i = 0, · · · , l are defined in previous
subsection as the extension of the rank of F . Then by [45, Theorem 4.3], we have

(2.2.9) χ(Z,F ) =

l∑
i=0

ρi
χorb(Zi)

mi
.

The right-hand side of (2.2.9) contains the nontrivial contributions from ΣZ.
Let P denote the orthogonal projection from Ω•(Z,F ) to H•(Z,F ). Let H⊥

denote the orthogonal subspace of H•(Z,F ) in Ω•(Z,F ), and let (DZ,F,2)−1 be the
inverse of DZ,F,2 acting on H⊥. Let NΛ•(T∗Z) be the number operator on Λ•(T ∗Z)
which acts on Λj(T ∗Z) by multiplication of j.

For s ∈ C, ℜ(s) is large enough, set

ϑ(F )(s) = −Trs[N
Λ•(T∗Z)(DZ,F,2)−s]

= − 1

Γ(s)

∫ +∞

0

Trs[N
Λ•(T∗Z) exp(−tDZ,F,2)(1− P )]ts−1dt,

(2.2.10)

where Γ(s) is the Gamma function for s ∈ C. By the short time asymptotic
expansions of the heat trace (see [30, Proposition 2.1]), ϑ(F )(s) admits a unique
meromorphic extension to s ∈ C which is holomorphic at s = 0.

Definition 2.2.3. Let T (gTZ ,∇F , hF ) ∈ R be given by

(2.2.11) T (gTZ ,∇F , hF ) =
d

ds
|s=0ϑ(F )(s).

The quantity T (gTZ ,∇F , hF ) is called Ray-Singer analytic torsion associated with
(F,∇F , hF ).

By [45, Proposition 4.6, Corollary 4.9], for an orientable closed orbifold Z, if m is
even and F is unitarily flat, then T (gTZ ,∇F , hF ) = 0; if m is odd and F is acyclic,
then T (gTZ ,∇F , hF ) is independent of the metrics gTZ and hF .

Now we explain how to evaluate T (gTZ ,∇F , hF ) in practice when F is acyclic.
Using the analog arguments in [10, Theorem 7.10, Section XI], as t→ 0+, the heat
supertrace Trs

[(
NΛ•(T∗Z) − m

2

)
exp(−tDZ,F,2/2)

]
either has a leading term as a

multiple of 1√
t

or is a small quantity as O(
√
t) (see [45, Eq. (4.37)]). To deal with

this possible divergent term 1√
t

in the integral of (2.2.10), we proceed as in the
proof of [5, Theorem 3.29], for t > 0, put

(2.2.12) bt(g
TZ , F ) = (1 + 2t

∂

∂t
)Trs

[(
NΛ•(T∗Z) − m

2

)
exp(−tDZ,F,2/2)

]
.

By [10, Theorem 7.10], [5, Theorem 2.13] and [45, Subsection 4.3] and that F is
acyclic, as t→ 0,

(2.2.13) bt(g
TZ , F ) = O(

√
t) ;
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as t→ +∞,

(2.2.14) bt(g
TZ , F ) = O(1/

√
t).

By [5, Theorem 3.29] and [45, Corollary 4.14], we have

(2.2.15) T (gTZ ,∇F , hF ) = −
∫ +∞

0

bt(g
TZ , F )

dt

t
.

One particular case is that if for t > 0, we always have

(2.2.16) Trs

[(
NΛ•(T∗Z) − m

2

)
exp(−tDZ,F,2/2)

]
= 0,

then T (gTZ ,∇F , hF ) = 0. This holds even for non-acyclic F .

3. Orbital integrals and locally symmetric spaces

In this section, we recall the geometry of the symmetric space X, and we recall
an explicit geometric formula for semisimple orbital integrals obtained by Bismut
[4, Chapter 6] . Then, given a cocompact discrete subgroup Γ ⊂ G, we describe the
orbifold structure on Z = Γ\X, and we give the Selberg’s trace formula for Z.

In this section, G is taken to be a connected linear real reductive Lie group, we
do not require that it has a compact center. Then X is a symmetric space which
may have de Rham components of both noncompact type and Euclidean type.

3.1. Real reductive Lie group. Let G be a connected linear real reductive Lie
group with Lie algebra g, and let θ ∈ Aut(G) be a Cartan involution. Let K be the
fixed point set of θ in G. Then K is a maximal compact subgroup of G, and let k
be its Lie algebra. Let p ⊂ g be the eigenspace of θ associated with the eigenvalue
−1. The Cartan decomposition of g is given by

(3.1.1) g = p⊕ k.

Put m = dim p, n = dim k.
Let B be a G- and θ-invariant nondegenerate symmetric bilinear form on g,

which is positive on p and negative on k. It induces a symmetric bilinear form B∗

on g∗, which extends to a symmetric bilinear form on Λ•(g∗). The K-invariant
bilinear form ⟨·, ·⟩ = −B(·, θ·) is a scalar product on g, which extends to a scalar
product on Λ•(g∗). We will use | · | to denote the norm under this scalar product.

Let Ug be the universal enveloping algebra of g. Let Cg ∈ Ug be the Casimir
element associated with B, i.e., if {ei}i=1,··· ,m+n is a basis of g, and if {e∗i }i=1,··· ,m+n

is the dual basis of g with respect to B, then

(3.1.2) Cg = −
∑

e∗i ei.

We can identify Ug with the algebra of left-invariant differential operators over G,
then Cg is a second-order differential operator, which is Ad(G)-invariant. Similarly,
let Ck ∈ Uk denote the Casimir operator associated with (k, B|k).

Let zg ⊂ g be the center of g. Put

(3.1.3) gss = [g, g].

Then

(3.1.4) g = zg ⊕ gss.

They are orthogonal with respect to B.
Let ZG be the center of G, let Gss be the closed analytic subgroup of G associated

with gss (see [24, Corollary 7.11]). Then G is the commutative product of ZG and
Gss, in particular,

(3.1.5) G = Z0
GGss.
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Let i =
√
−1 denote one square root of −1. Put

(3.1.6) u =
√
−1p⊕ k.

For saving notation, if a ∈ p, we use notation ia or
√
−1a ∈

√
−1p ⊂ u to denote

the corresponding vector.
Then u is a (real) Lie algebra, which is called the compact form of g. Then

(3.1.7) gC = uC.

Let GC be the complexification of G with Lie algebra gC, which is closed and
linear reductive [23, Proposition 5.6]. Then G is the analytic subgroup of GC with
Lie algebra g. Let U ⊂ GC be the analytic subgroup associated with u. If G has
compact center, i.e., zg∩p = {0}, then by [23, Proposition 5.3], U is compact; since
GC is closed, U is a maximal compact subgroup of GC.

Definition 3.1.1. An element γ ∈ G is said to be semisimple if there exists g ∈ G
such that

(3.1.8) γ = g(eak)g−1, a ∈ p, k ∈ K,Ad(k)a = a.

We call γh = geag−1, γe = gkg−1 the hyperbolic, elliptic parts of γ. These two
parts are uniquely determined by γ. If γh = 1, we say γ to be elliptic, and if γe = 1
and γh ̸= 1, we say γ to be hyperbolic.

Let Z(γ) be the centralizer of γ in G. If v ∈ g, let Z(v) ⊂ G be the stabilizer
of v in G via the adjoint action. Let z(γ), z(v) be the Lie algebras of Z(γ), Z(v)
respectively. If γ = γhγe is semisimple as above, by [17, Theorem 2.19.23] and [24,
Lemma 7.36],

(3.1.9) Z(γ) = Z(γh) ∩ Z(γe), Z(γh) = Z(Ad(g)a).

By [24, Proposition 7.25], Z(γ) is reductive (possibly with several connected
components). Set

(3.1.10) θg = C(g)θC(g−1).

Then θg defines a Cartan involution on Z(γ). Let K(γ) be the fixed point set of θg
in Z(γ), then

(3.1.11) K(γ) = Z(γ) ∩ gKg−1.

Let Z(γ)0, K(γ)0 be the connected components of the identity of Z(γ), K(γ)
respectively. By [4, Theorem 3.3.1],

(3.1.12) Z(γ)/K(γ) = Z(γ)0/K(γ)0.

Moreover, K(γ), K(γ)0 are maximal compact subgroups of Z(γ), Z(γ)0 respec-
tively.

Taking the corresponding Lie algebras in (3.1.9), we have

(3.1.13) z(γ) = z(γh) ∩ z(γe), z(γh) = z(Ad(g)a).

Let k(γ) ⊂ z(γ) be the Lie algebra of K(γ). Put

(3.1.14) p(γ) = z(γ) ∩Ad(g)p.

Then the Cartan decomposition of z(γ) with respect to θg is given by

(3.1.15) z(γ) = k(γ)⊕ p(γ).

Let Bz(γ) denote the restriction of B on z(γ) × z(γ), then Bz(γ) is invariant under
the adjoint action of θg on z(γ). Moreover, Bz(γ) is positive on p(γ), and negative
on k(γ). The splitting in (3.1.15) is orthogonal with respect to Bz(γ).
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3.2. Symmetric space. Set

(3.2.1) X = G/K.

Then X is a smooth manifold with the smooth structure induced by G. By defini-
tion, X is diffeomorphism to p.

Let ωg ∈ Ω1(G, g) be the canonical left-invariant 1-form on G. Then by (3.1.1),

(3.2.2) ωg = ωp + ωk.

Let p : G → X denote the obvious projection. Then p is a K-principal bundle
over X. Then ωk is a connection form of this principal bundle. The associated
curvature form

(3.2.3) Ωk = dωk +
1

2
[ωk, ωk] = −1

2
[ωp, ωp].

If (E, ρE , hE) is a finite dimensional unitary or Euclidean representation of K,
then F = G ×K E defines a vector bundle over X equipped with a metric hF

induced by hE and a unitary or an Euclidean connection ∇F induced by ωk. Note
that G acts on (F, hF ,∇F ) → X equivariantly on the left, more precisely, for γ ∈ G,
(g, v) ∈ G×K E, the action of γ on F is represented by

(3.2.4) γ(g, v) = (γg, v) ∈ G×K E.

In particular, we have the identification

(3.2.5) TX = G×K p,

where the right-hand side is defined from the adjoint action of K on p. The bilinear
form B restricting to p gives a Riemannian metric gTX , and ωk induces the asso-
ciated Levi-Civita connection ∇TX . Then G acts on (X, gTX) isometrically. Let
d(·, ·) denote the Riemannian distance on X.

Let C(G,E) denote the set of continuous map from G into E. If k ∈ K, s ∈
C(G,E), put

(3.2.6) (k.s)(g) = ρE(k)s(gk).

Let CK(G,E) be the set of K-invariant maps in C(G,E). Let C(X,F ) denote the
continuous sections of F over X. Then

(3.2.7) CK(G,E) = C(X,F ).

Also C∞
K (G,E) = C∞(X,F ).

The Casimir operator Cg acting on C∞(G,E) preserves C∞
K (G,E), so it induces

an operator Cg,X acting on C∞(X,F ). Let ∆H,X be the Bochner Laplacian acting
on C∞(X,F ) given by ∇F , and let Ck,E ∈ End(E) be the action of the Casimir Ck

on E via ρE . The element Ck,E induces an self-adjoint section of End(F ) over X.
Then

(3.2.8) Cg,X = −∆H,X + Ck,E .

Let Ck,p ∈ End(p), Ck,k ∈ End(k) be the actions of Ck acting on p, k via the
adjoint actions. Moreover, we can also view Ck,p as a parallel section of End(TX).

If A ∈ End(E) commutes with K, then it can be viewed a parallel section of
End(F ) over X. Let dx be the Riemannian volume element of (X, gTX).

Definition 3.2.1. Let LX
A be the Bochner-like Laplacian acting on C∞(X,F ) given

by

(3.2.9) LX
A =

1

2
Cg,X +

1

16
Trp[Ck,p] +

1

48
Trk[Ck,k] +A.

For t > 0, x, x′ ∈ X, let pXt (x, x′) denote its heat kernel with respect to dx′.
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Since LX
A is G-invariant, then pXt (x, x′) lifts to a function pXt (g, g′) on G × G

valued in End(E) such that for g′′ ∈ G, k, k′ ∈ K,

(3.2.10) pXt (g′′g, g′′g′) = pXt (g, g′), pXt (gk, g′k′) = ρE(k−1)pXt (g, g′)ρE(k′).

We set

(3.2.11) pXt (g) = pXt (1, g).

Then pXt is a K ×K-invariant smooth function on G valued in End(E). We will
not distinguish the heat kernel pXt (x, x′) and the function pXt (g) in the sequel.

3.3. Bismut’s formula for semisimple orbital integrals. Let dg be the left-
invariant Haar measure on G induced by (g, ⟨·, ·⟩). Since G is unimodular, then dg
is also right-invariant. Let dk be the Haar measure on K induced by −B|k, then

(3.3.1) dg = dxdk.

Now let γ ∈ G be a semisimple element given as in (3.1.8).
By [17, Definition 2.19.21] and [4, Theorem 3.1.2], γ ∈ G is semisimple if and only

if the displacement function X ∋ x 7→ d(x, γx) on X associated with γ can reach its
minimum mγ ≥ 0 in X. In this case, the minimizing set X(γ) of this displacement
function is a geodesically convex submanifold of X, and by [4, Theorem 3.3.1],

(3.3.2) X(γ) ≃ Z(γ)0/K(γ)0 = Z(γ)/K(γ).

Moreover, we have

(3.3.3) mγ = |a|.
Let dy be the Riemannian volume element of X(γ), and let dz be the bi-invariant

Haar measure on Z(γ) induced by Bz(γ). Let dk(γ) be the Haar measure on K(γ)
such that

(3.3.4) dz = dydk(γ).

Let Vol(K(γ)\K) be the volume of K(γ)\K with respect to dk, dk(γ). Then we
have

(3.3.5) Vol(K(γ)\K) =
Vol(K)

Vol(K(γ))
.

Let dv be the G-left invariant measure on Z(γ)\G such that

(3.3.6) dg = dzdv.

By [4, Definition 4.2.2, Proposition 4.4.2], for t > 0, the orbital integral

(3.3.7) Tr[γ][exp(−tLX
A )] =

1

Vol(K(γ)\K)

∫
Z(γ)\G

TrE [pXt (v−1γv)]dv

is well-defined. As indicated by the notation, it only depends on the conjugacy
class [γ] of γ in G.

Using the theory of hypoelliptic Laplacian and the techniques from local index
theory, Bismut obtained an explicit geometric formula for Tr[γ][exp(−tLX

A )] in [4,
Theorem 6.1.1] as well as its extension to the wave operators of LX

A [4, Section 6.3].
Now we describe in detail this formula. We may and we will assume that

(3.3.8) γ = eak, a ∈ p, k ∈ K, Ad(k)a = a.

Put

(3.3.9) z0 = z(a), p0 = ker ad(a) ∩ p, k0 = ker ad(a) ∩ k.

Let z⊥0 , p⊥0 , k⊥0 be the orthogonal vector spaces to z0, p0, k0 in g, p, k with respect
to B. Then

(3.3.10) z0 = p0 ⊕ k0, z⊥0 = p⊥0 ⊕ k⊥0 .
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By [4, Eq. (3.3.6)],

(3.3.11) z(γ) = z0 ∩ z(k).

Also p(γ), k(γ) are subspaces of p0, k0 respectively. Let z⊥0 (γ), p⊥0 (γ), k⊥0 (γ) be the
orthogonal spaces to z(γ), p(γ), k(γ) in z0, p0, k0. Then

(3.3.12) z⊥0 (γ) = p⊥0 (γ)⊕ k⊥0 (γ).

Also the action ad(a) gives an isomorphism between p⊥0 and k⊥0 .
For Y k

0 ∈ k(γ), ad(Y k
0 ) preserves p(γ), k(γ), p⊥0 (γ), k

⊥
0 (γ), and it is an antisym-

metric endomorphism with respect to the scalar product.
Recall that the function Â is given by

(3.3.13) Â(x) =
x/2

sinh(x/2)
.

LetH be a finite-dimensional Hermitian vector space. If B ∈ End(H) is self-adjoint,

then
B/2

sinh(B/2)
is a self-adjoint positive endomorphism. Put

(3.3.14) Â(B) = det 1/2
[

B/2

sinh(B/2)

]
.

In (3.3.14), the square root is taken to be the positive square root.
If Y k

0 ∈ k(γ), as explained in [4, pp105], the following function A(Y k
0 ) has a

natural square root that is analytic in Y k
0 ∈ k(γ),

(3.3.15) A(Y k
0 ) =

1

det(1−Ad(k))|z⊥0 (γ)

·
det(1− exp(−iad(Y k

0 ))Ad(k))|k⊥0 (γ)

det(1− exp(−iad(Y k
0 ))Ad(k))|p⊥

0 (γ)

.

Its square root is denoted by

(3.3.16)
[

1

det(1−Ad(k))|z⊥0 (γ)

·
det(1− exp(−iad(Y k

0 ))Ad(k))|k⊥0 (γ)

det(1− exp(−iad(Y k
0 ))Ad(k))|p⊥

0 (γ)

]1/2
.

The value of (3.3.16) at Y k
0 = 0 is taken to be such that

(3.3.17)
1

det(1−Ad(k))|p⊥
0 (γ)

.

We recall an important function Jγ defined in [4, Eq. (5.5.5)].

Definition 3.3.1. Let Jγ(Y k
0 ) be the analytic function of Y k

0 ∈ k(γ) given by

Jγ(Y
k
0 ) =

1

|det(1−Ad(γ))|z⊥0 |
1/2

Â(iad(Y k
0 )|p(γ))

Â(iad(Y k
0 )|k(γ))[

1

det(1−Ad(k))|z⊥0 (γ)

det(1− exp(−iad(Y k
0 ))Ad(k))|k⊥0 (γ)

det(1− exp(−iad(Y k
0 ))Ad(k))|p⊥

0 (γ)

]1/2
.

(3.3.18)

By [4, Eq. (6.1.1)], there exist Cγ > 0, cγ > 0 such that if Y k
0 ∈ k(γ),

(3.3.19) |Jγ(Y k
0 )| ≤ Cγe

cγ |Y k
0 |.

Put p = dim p(γ), q = dim k(γ). Then r = dim z(γ) = p + q. By [4, Theorem
6.1.1], for t > 0, we have

Tr[γ][exp(−tLX
A )]

=
e−

|a|2
2t

(2πt)p/2

∫
k(γ)

Jγ(Y
k
0 )Tr

E
[
ρE(k) exp(−iρE(Y k

0 )− tA)
]
e−|Y k

0 |2/2t dY k
0

(2πt)q/2
.

(3.3.20)
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Remark 3.3.2. A generalization of Bismut’s formula (3.3.20) to the twisted case is
obtained in [26, 27]. An extension of this formula for considering arbitrary elements
in the center of enveloping algebra instead of Casimir operator (3.2.8) was obtained
in [8] by Bismut and Shen.

3.4. Compact locally symmetric spaces. Let Γ be a cocompact discrete sub-
group of G. Then Γ acts on X isometrically and properly discontinuously. Then
Z = Γ\X is compact second countable Hausdorff space.

If x ∈ X, put

(3.4.1) Γx = {γ ∈ Γ : γx = x}.

Then Γx is a finite subgroup of Γ. Put

(3.4.2) rx = inf
γ∈Γ−Γx

d(x, γx).

Then we always have rx > 0. Set

(3.4.3) Ux = B(x,
rx
4
) ⊂ X.

If x ∈ X, γ ∈ Γ, we have

(3.4.4) rγx = rx, Uγx = γUx.

It is clear that Γx\Ux can identified with a connected open subset of Z.
Set

(3.4.5) S = ker(Γ → Diffeo(X)) = Γ ∩ ker(K
Ad−−→ Aut(p)).

Then S is a finite subgroup of Γ ∩K, and a normal subgroup of Γ.

Remark 3.4.1. Note that Gss is a connected noncompact simple linear Lie group,
then

(3.4.6) S = ZG ∩ Γ ∩K.

Put

(3.4.7) Γ′ = Γ/S.

Then Γ′ acts on X effectively and we have Z = Γ′\X.
If x ∈ X, we have

(3.4.8) S ⊂ Γx, Γ
′
x = Γx/S.

Then the orbifold charts (Ux,Γ
′
x, πx : Ux → Γ′

x\Ux)x∈X together with the action of
Γ′ on these charts give an (effective) orbifold structure for Z, so that Z = Γ\X is
a compact orbifold with a Riemannian metric gTZ induced by gTX .

By [43, Lemma 1], if γ ∈ Γ, then γ is semisimple. Let [Γ] denote the set of the
conjugacy classes of Γ. If γ ∈ Γ, we say [γ] ∈ [Γ] to be an elliptic class if γ is
elliptic. Let E[Γ] ⊂ [Γ] be the set of elliptic classes, then E[Γ] is always a finite set.
If E[Γ] only contains the trivial conjugacy class [1], i.e. Γ is torsion free, then Z is
compact smooth manifold.

Let [Γ′] be the set of conjugacy classes in Γ′, and let E[Γ′] denote the set of elliptic
classes in [Γ′]. If γ′ ∈ Γ′, let ZΓ′(γ′) denote the centralizer of γ′ in Γ′, and let [γ′]′

denote the conjugacy class of γ′ in Γ′. If γ′ ∈ Γ′ is elliptic, let X(γ′) be its fixed
point set in X on which ZΓ′(γ′) acts isometrically and properly discontinuously
(see [43, Lemma 2]). Note that if γ ∈ Γ is a lift of γ′ ∈ Γ′, then X(γ) = X(γ′), and
γ is elliptic if and only if γ′ is elliptic.
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Proposition 3.4.2. We have

(3.4.9) Zsing = Γ′\Γ′( ∪[γ′]′∈E[Γ′]\{1} X(γ′)
)
⊂ Z.

Moreover, we have

(3.4.10) ΣZ = ∪[γ′]′∈E[Γ′]\{1}ZΓ′(γ′)\X(γ′).

Note that the right-hand side of (3.4.10) is a disjoint union of compact orbifolds.
If γ′ ∈ Γ′, put

(3.4.11) S′(γ′) = ker(ZΓ′(γ′) → Diffeo(X(γ′))).

Then |S′(γ′)| is the multiplicity of the connected component ZΓ′(γ′)\X(γ′) in ΣZ

Proof. Note that z ∈ Z with a lift x ∈ X belongs to Zsing if and only if the stabilizer
Γ′
x is nontrivial. Thus x is a fixed point of some γ′ ∈ Γ′, from which (3.4.9) follows.

By definition in Subsection 2.1, we get the rest part of this proposition. This
completes the proof. □

Note that Γ\G is a compact smooth homogeneous space equipped with a right
action of K. Moreover, the action of K is almost free, i.e. for each ḡ ∈ Γ\G,
the stabilizer Kḡ is finite. Then the quotient space (Γ\G)/K also have a natural
orbifold structure, which, after examining the local charts, is equivalent to Z.

Let dḡ be the volume element on Γ\G induced by dg. By (3.3.1), we get

(3.4.12) Vol(Γ\G) = Vol(K)

|S|
Vol(Z).

In the context of geometry, we have many interesting cases where S = {1}.
For instance, given a Riemannian symmetric space (X, gTX) of noncompact type,
let G = Isom(X)0 be the connected component of identity of the Lie group of
isometries of X. By [17, Proposition 2.1.1], G is a semisimple Lie group with
trivial center (which might not be linear, but we do not need that linearity for the
geometry of Z). We refer to [17, Chapter 2] and [4, Chapter 3] for more details.
This way, any subgroup of G acts on X effectively. In particular, if Γ is a cocompact
discrete subgroup of G, then Z = Γ\X is a compact good orbifold with the orbifold
fundamental group Γ. By (3.4.10), we have

(3.4.13) ΣZ = ∪[γ]∈E[Γ]\{1}Γ ∩ Z(γ)\X(γ).

In general, by [20, Ch.V §4, Theorem 4.1], G = Isom(X = G/K)0 if and only if K
acts on p effectively.

Remark 3.4.3. Note that, as mentioned in Remark 2.1.3, when S ̸= {1}, we can
also consider Z = Γ\X as an ineffective orbifold by taking the action of Γ instead
of Γ′ on the local charts. This way, the role of the above Z ∪ΣZ is replaced by the
inertia groupoid defined in [1, Example 2.5], which is exactly

(3.4.14) ∪[γ]∈E[Γ]Γ ∩ Z(γ)\X(γ).

It is a much natural object to use in the context here, for instance, for the Selberg’s
trace formula in the next subsection. In the problems concerned by us, these two
point-views on Z are equivalent.

If ρ : Γ′ → GL(Ck) is a representation of Γ′, which can be viewed as a rep-
resentation of Γ via the projection Γ → Γ′ = Γ/S, then F = Γ′\(X × Ck) is a
proper flat orbifold vector bundle on Z with the flat connection ∇F,f induced from
the exterior differential dX on Ck-valued functions. By [45, Theorem 2.35], all the
proper orbifold vector bundle on Z of rank k comes from this way.

Now let ρ : Γ → GL(Ck) be a representation of Γ, we do not assume that
it comes from a representation of Γ′. We still have a flat orbifold vector bundle
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(F = Γ\(X × Ck),∇F,f ) on Z, which may not be proper in general. Note that Γ
acts on C∞(X,Ck) so that if φ ∈ C∞(X,Ck), γ ∈ Γ, then

(3.4.15) (γφ)(x) = ρ(γ)φ(γ−1x).

Let C∞(X,Ck)Γ denote the Γ-invariant sections in C∞(X,Ck). Then

(3.4.16) C∞(Z,F ) = C∞(X,Ck)Γ.

Definition 3.4.4. Let (V, ρV ) be the isotypic component of (Ck, ρ|S) corresponding
to the trivial representation of S on C, i.e. the maximal S-invariant subspace of Ck

via ρ. Set

(3.4.17) F pr = Γ\(X × V ).

It is clear that F pr is a proper flat orbifold vector bundle on Z.

We have the following results.

Proposition 3.4.5. We have

(3.4.18) C∞(Z,F ) = C∞(Z,F pr).

In particular, if ρ|S : S → GL(Ck) does not have the isotypic component of the
trivial representation of S on C, then

(3.4.19) C∞(Z,F ) = {0}.

Let (E, ρE) be a finite dimensional complex representation of G. When re-
stricting to Γ, K, we get the corresponding representations of Γ, K respectively,
which are still denoted by ρE . As discussed in Subsection 3.2, associated with K-
representation (E, ρE) we define a homogeneous vector bundle F = G×K E on X.
Moreover, G acts on F equivariantly. By taking a Γ-quotient on the left, it descends
to an orbifold vector bundle on Z, which we still denote by the same notation.

The map (g, v) ∈ G×KE → (pg, ρE(g)v) ∈ X×E gives a canonical trivialization
of F over X. This trivialization provides a flat connection ∇X,F,f for F → X, which
is G-invariant. Then it descends to a flat connection ∇Z,F,f on the orbifold vector
bundle F over Z. Moreover, the above trivialization of F → X implies that the
flat orbifold vector bundle (F,∇Z,F,f ) is exactly the one given by Γ\(X × E) with
the flat connection ∇F,f induced by dX . We will always use the notation ∇F,f for
the above flat connection. By (3.2.7), (3.4.16), we get

(3.4.20) C∞(Z,F ) = C∞
K (G,E)Γ.

3.5. Selberg’s trace formula. Let Z be the compact locally symmetric space
discussed in Subsection 3.4, and let (F, hF ,∇F ) be a Hermitian vector bundle on
X defined by a unitary representation (E, ρE) of K. As said before, (F, hF ,∇F )
descends to a Hermitian orbifold vector bundle on Z. Recall the Bochner-like
Laplacian LX

A is defined by (3.2.9). Since it commutes with G, then it descends to
a Bochner-like Laplacian LZ

A acting on C∞(Z,F ).
Here the convergences of the integrals and infinite sums are already guaranteed

by the results in [4, Chapters 2 & 4] and in [44, Section 4D].
For t > 0, let pZt (z, z′), z, z′ ∈ Z be the heat kernel of LZ

A over Z with respect
to dz′. If z, z′ are identified with their lifts in X, then

(3.5.1) pZt (z, z
′) =

1

|S|
∑
γ∈Γ

γpXt (γ−1z, z′) =
1

|S|
∑
γ∈Γ

pXt (z, γz′)γ.

Note that the action of γ on Fγ−1z or on the metric dual of Fz′ is given as in (3.2.4).
Since Z is compact, then for t > 0, exp(−tLZ

A) is trace class. We have

(3.5.2) Tr[exp(−tLZ
A)] =

∫
Z

TrF [pZt (z, z)]dz.
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Combining (3.2.10), (3.2.11), (3.4.12) and (3.5.1), (3.5.2), and proceeding as in
[4, Eqs. (4.8.8)-(4.8.12)], we get

Tr[exp(−tLZ
A)] =

1

Vol(K)

∫
Γ\G

∑
γ∈Γ

TrE [pXt (ḡ−1γḡ)]dḡ

=
∑

[γ]∈[Γ]

Vol(Γ ∩ Z(γ)\Z(γ))
Vol(K(γ))

Tr[γ][exp(−tLX
A )].

(3.5.3)

Take γ ∈ Γ. Recall that X(γ) = Z(γ)/K(γ) defined in Subsection 3.3. Then
K(γ) acts on Z(γ) on the right, which induces an action on Γ ∩ Z(γ)\Z(γ) on the
right. Set

(3.5.4) S(γ) = ker(Γ ∩ Z(γ) → Diffeo(X(γ))).

Then S(γ) represents the isotropy group of the principal orbit type for the right
action of K(γ) on Γ ∩ Z(γ)\Z(γ). As in (3.4.12), we have

(3.5.5) Vol(Γ ∩ Z(γ)\Z(γ)) = Vol(K(γ))

|S(γ)|
Vol(Γ ∩ Z(γ)\X(γ)).

Theorem 3.5.1. For t > 0, we have the following identity,

(3.5.6) Tr[exp(−tLZ
A)] =

∑
[γ]∈[Γ]

Vol(Γ ∩ Z(γ)\X(γ))

|S(γ)|
Tr[γ][exp(−tLX

A )].

Proof. This is a direct consequence of (3.5.3) and (3.5.5). □

In the case where S = 1, the trace formula (3.5.6) shows clearly the different
contributions from Z and from each components of ΣZ. Then combining (3.4.10),
(3.5.6) with the results in [4, Theorem 7.8.2] [26, Theorem 7.7.1], we can recover
(2.2.9) for Z. If we use the same settings as in [4, Sections 7.1, 7.2] and we use
instead the results in [4, Theorem 7.7.1], then we can recover the Kawasaki’s local
index theorem [22] for Z. By taking account of Remarks 2.1.3 & 3.4.3, the above
considerations also hold even for S ̸= {1}.

4. Analytic torsions for compact locally symmetric spaces

In this section, we explain how to make use of Bismut’s formula (3.3.20) and
Selberg’s trace formula (3.5.6) to study the analytic torsions of Z. We continue
using the same settings as in Section 3. We will see that by a vanishing result on
the analytic torsion, only the case δ(G) = 1 remains interesting. For studying this
case, more tools will be carried out in Sections 5 & 6.

4.1. A vanishing result on the analytic torsions. Recall that G is a connected
linear real reductive Lie group. Recall that zg is the center of g. Set

(4.1.1) zp = zg ∩ p, zk = zg ∩ k.

Then

(4.1.2) zg = zp ⊕ zk, ZG = exp(zp)(ZG ∩K).

Let T be a maximal torus of K with Lie algebra t, put

(4.1.3) b = {f ∈ p : [f, t] = 0}.
It is clear that

(4.1.4) zp ⊂ b.

Put h = b ⊕ t, then h is a Cartan subalgebra of g; let H be analytic subgroup
of G associated with h, then it is also a Cartan subgroup of G (see [23, p.129 and
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Theorem 5.22 (b)]). Moreover, dim t is just the complex rank of K, and dim h is
the complex rank of G.

Definition 4.1.1. Using the above notations, the deficiency of G, or the fundamental
rank of G is defined as

(4.1.5) δ(G) = rkCG− rkCK = dimR b.

The number m− δ(G) is even.

The following result was proved in [44, Proposition 3.3].

Proposition 4.1.2. If γ ∈ G is semisimple, then

(4.1.6) δ(G) ≤ δ(Z(γ)0).

The two sides of (4.1.6) are equal if and only if γ can be conjugated into H.

Recall that u =
√
−1p ⊕ k is the compact form of G, and that U ⊂ GC is the

analytic subgroup with Lie algebra u. Let Uu, UgC be the enveloping algebras of
u, gC respectively. Then UgC can be identified with the left-invariant holomorphic
differential operators on GC. Let Cu ∈ Uu be the Casimir operator of u associated
with B, then

(4.1.7) Cu = Cg ∈ Ug ∩ Uu ⊂ UgC.

In the sequel, we always assume that U is compact, this is the case when G has
compact center.

Proposition 4.1.3 (Unitary trick). Assume that U is compact. Then any irre-
ducible finite dimensional (analytic) complex representation of U extends uniquely
to an irreducible finite dimensional complex representation of G such that their
induced representations of Lie algebras are compatible.

We now fix a unitary representation (E, ρE , hE) of U , and we extend it to a
representation of G, whose restriction to K is still unitary. Put F = G×K E with
the Hermitian metric hF induced by hE . Let ∇F be the Hermitian connection
induced by the connection form ωk.

Furthermore, as explained in the last part of Subsection 3.4, F is equipped with
a canonical flat connection ∇F,f as follows,

(4.1.8) ∇F,f = ∇F + ρE(ωp).

If G has compact center, then (F, hF ,∇F,f ) is a unimodular flat vector bundle.
Let (Ω•

c(X,F ), d
X,F ) be the (compactly supported) de Rham complex twisted

by F . Let dX,F,∗ be the adjoint operator of dX,F with respect to the L2 metric on
Ω•

c(X,F ). The de Rham-Hodge operator DX,F of this de Rham complex is given
by

(4.1.9) DX,F = dX,F + dX,F,∗.

The Clifford algebras c(TX), ĉ(TX) act on Λ•(T ∗X). We still use e1, · · · , em to
denote an orthonormal basis of p or TX, and let e1, · · · , em be the corresponding
dual basis of p∗ or T ∗X.

Let ∇Λ•(T∗X)⊗F,u be the unitary connection on Λ•(T ∗X)⊗ F induced by ∇TX

and ∇F . Then the standard Dirac operator is given by

(4.1.10) DX,F =

m∑
j=1

c(ej)∇Λ•(T∗X)⊗F,u
ej .

By [7, Eq.(8.42)], we have

(4.1.11) DX,F = DX,F +

m∑
j=1

ĉ(ej)ρ
E(ej).



24 BINGXIAO LIU

In the same time, as explained in Subsection 3.2, Cg descends to an elliptic
differential operator Cg,X acting on C∞(X,Λ•(T ∗X)⊗ F ). As in (3.2.9), we put

(4.1.12) LX,F =
1

2
Cg,X +

1

16
Trp[Ck,p] +

1

48
Trk[Ck,k].

For simplicity, we will always put

(4.1.13) βg =
1

16
Trp[Ck,p] +

1

48
Trk[Ck,k] ∈ R.

By [7, Proposition 8.4], we have

(4.1.14)
DX,F,2

2
= LX,F − 1

2
Cg,E − βg =: LX,F

A ,

where A = − 1
2C

g,E − βg.
Let γ ∈ G be a semisimple element. In the sequel, we may assume that

(4.1.15) γ = eak, a ∈ p, k ∈ K,Ad(k)a = a.

We also use the same notation as in Subsection 3.3.
Recall that p = dim p(γ), q = dim k(γ). By (3.3.20) and (4.1.14), we have

Trs
[γ]
[
(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)

]
=

e−
|a|2
2t

(2πt)p/2
exp

(
tβg)

∫
k(γ)

Jγ(Y
k
0 )Trs

Λ•(p∗)
[
(NΛ•(p∗) − m

2
)Ad(k) exp(−iad(Y k

0 ))
]

· TrE [ρE(k) exp(−iρE(Y k
0 ) +

t

2
Cu,E)]e−|Y k

0 |2/2t dY k
0

(2πt)q/2
.

(4.1.16)

Now we take a cocompact discrete subgroup Γ ⊂ G. Then Z = Γ\X is a compact
locally symmetric orbifold. We use the same notation as in Subsections 3.4 & 3.5.
Then we get a flat orbifold vector bundle (F,∇F,f , hF ) on Z. Furthermore, DX,F

descends to the corresponding de Rham - Hodge operator DZ,F acting on Ω·(Z,F ).
Let T (Z,F ) denote the associated analytic torsion as in Definition 2.2.3, i.e.,

(4.1.17) T (Z,F ) = T (gTZ ,∇F,f , hF ).

As explained in Subsection 2.2, for computing T (Z,F ), it is enough to evaluate

(4.1.18) Trs[(N
Λ•(T∗Z) − m

2
) exp(−tDZ,F,2/2)], t > 0.

Then we apply the Selberg’s trace formula in Theorem 3.5.1. We get

Trs[(N
Λ•(T∗Z) − m

2
) exp(−tDZ,F,2/2)]

=
∑

[γ]∈[Γ]

Vol(Γ ∩ Z(γ)\X(γ))

|S(γ)|
Tr[γ][(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)].

(4.1.19)

As in [7, Remark 8.7], by [31, Theorems 5.4 & 5.5, Remark 5.6], we have the
following vanishing theorem on T (Z,F ).

Theorem 4.1.4. If m is even, or if m is odd and δ(G) ≥ 3, then

(4.1.20) T (Z,F ) = 0.

Proof. By [4, Theorem 7.9.1], [31, Theorem 5.4], and use instead (4.1.19), we get
that under the assumptions in this theorem, for t > 0,

(4.1.21) Trs[(N
Λ•(T∗Z) − m

2
) exp(−tDZ,F,2))] = 0.

Then (4.1.20) follows from the definition of T (Z,F ). □
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Therefore, the only nontrivial case is that δ(G) = 1, so that m is odd. If γ ∈ G
is of the form (4.1.15). Let t(γ) ⊂ k(γ) be a Cartan subalgebra. Put

(4.1.22) b(γ) = {v ∈ p(k) : [v, t(γ)] = 0}, h(γ)p = b(γ) ∩ p(γ).

In particular, a ∈ b(γ). Then h(γ) = h(γ)p ⊕ t(γ) is a Cartan subalgebra of z(γ).
Recall that H is a maximally compact Cartan subgroup of G. The following

result is just an analogue of [44, Theorem 4.12] and [4, Theorem 7.9.1].

Proposition 4.1.5. If δ(G) = 1, if γ is semisimple and can not be conjugated into
H by an element in G, then

(4.1.23) Trs
[γ]
[
(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)

]
= 0.

Proof. Let t be a Cartan subalgebra of k containing t(γ). Then b ⊂ b(γ). If a /∈ b,
then dim b(γ) ≥ 2. Therefore, by [44, Eq. (4-44)], for Y k

0 ∈ k(γ), we have

(4.1.24) Trs
Λ•(p∗)

[
(NΛ•(p∗) − m

2
)Ad(k) exp(−iad(Y k

0 ))
]
= 0.

This implies (4.1.23). The proof is completed. □

Set

(4.1.25) g′ = zk ⊕ gss.

Then g′ is an ideal of g. Let G′ be the analytic subgroup of G associated with g′,
which is closed and has a compact center (see [24, Proposition 7.27]). The group
K is still a maximal subgroup of G′. Let U ′ ⊂ U be the compact form of G′ with
Lie algebra u′, then

(4.1.26) u =
√
−1zp ⊕ u′.

Now we assume that δ(G) = 1 and that G has noncompact center, so that b = zp
has dimension 1. Then δ(G′) = 0. Under the hypothesis that U is compact, then
up to a finite cover, we may write

(4.1.27) U ≃ S1 × U ′.

We take a1 ∈ b with |a1| = 1. If (E, ρE) is an irreducible unitary representation
of U , then ρE(a1) acts on E by a real scalar operator. Let αE ∈ R be such that

(4.1.28) ρE(a1) = αEIdE .

Put X ′ = G′/K. Then X ′ is an even-dimensional symmetric space (of noncom-
pact type). We identify zp with a real line R, then

(4.1.29) G = R×G′, X = R×X ′.

In this case, the evaluation for analytic torsions can be made more explicit. If
γ ∈ G′, let X ′(γ) denote the minimizing set of dγ(·) in X ′, so that

(4.1.30) X(γ) = R×X ′(γ).

Let [·]max denote the coefficient of a differential form (valued in o(TX ′)) on X ′

of the corresponding Riemannian volume form. Similarly, for k ∈ T , let [·]max(k)

denote the analog object on X ′(k). The following results are the analogue of [44,
Proposition 4.14].

Proposition 4.1.6. Assume that G has noncompact center with δ(G) = 1 and that
(E, ρE) is irreducible. Then
(4.1.31)

Trs
[1][(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)] = −e

−tα2
E/2

√
2πt

[e(TX ′,∇TX′
)]max dimE.
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If γ = eak is such that a ∈ b, k ∈ T , then

Trs
[γ][(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)]

= − 1√
2πt

e−
|a|2
2t −tα2

E/2[e(TX ′(k),∇TX′(k))]max(k)TrE [ρE(k)].
(4.1.32)

Proof. Let Cu′
denote the Casimir operator of u′ associated with B|u′ . Then we

have

(4.1.33) Cu = −a21 + Cu′
.

Since (E, ρE) is an irreducible representation, by (4.1.28) and (4.1.33), we get

(4.1.34) Cu,E = −α2
E + Cu′,E .

Then by (4.1.34) and [7, Theorem 8.5], a modification of the proof to [44, Propo-
sition 4.14] proves the identities in our proposition. □

If we assembly the results in Proposition 4.1.6, it is enough to study the corre-
sponding analytic torsions. We will get back to this point in Corollary 7.4.4 for
asymptotic analytic torsions.

4.2. Symmetric spaces of noncompact type with fundamental rank 1. In
this subsection, we focus on the case where δ(G) = 1 and G has compact center (i.e.
zp = 0), so that X is a symmetric space of noncompact type [44, Proposition 6.18].
For simplicity, let us also assume that G is linear semisimple in this subsection.

Note that the rank δ(X) of X (see [17, Section 2.7]) is the same as δ(G), then
δ(X) = 1. By the de Rham decomposition, we can write

(4.2.1) X = X1 ×X2,

where X1 is an irreducible symmetric space of noncompact type with δ(X1) = 1,
and X2 is a symmetric space of noncompact type with δ(X2) = 0.

As in [4, Remark 7.9.2], among the noncompact simple connected real linear
groups such that m is odd and dim b = 1, there are only SL3(R), SL4(R), SL2(H),
and SO0(p, q) with pq odd > 1. Also, we have sl4(R) = so(3, 3) and sl2(H) =
so(5, 1). Therefore, X1 is one of the following cases (see [44, Proposition 6.19])

(4.2.2) X1 = SL3(R)/SO(3) or SO0(p, q)/SO(p+ q) with pq > 1 odd .

Since δ(G) = 1, we have the following decomposition of Lie algebras,

(4.2.3) g = g1 ⊕ g2,

where

(4.2.4) g1 = sl3(R) or so(p, q)

with pq > 1 odd, and g2 is semisimple with δ(g2) = 0. The Cartan involution θ
preserves the splitting (4.2.3) (see [24, VII.6, p. 471]).

Let G1 be the identity component of ZG(g2), then G1 is a connected linear
semisimple closed subgroup of G with Lie algebra of g1. Similarly, we can find a
connected linear semisimple closed subgroup G2 of G with Lie algebra of g2 such
that we have canonically G1 × G2 → G a finite central extension. Let θj be the
induced Cartan involution on Gj(j = 1, 2) from θ, set Kj = Gj ∩K, then

(4.2.5) Xj = Gj/Kj , j = 1, 2.

Note that in general, G1 is a just a finite central extension of SL3(R) or SO0(p, q)
(pq > 1 odd). The invariant bilinear form B also splits as B1 ⊕B2 with respect to
the splitting (4.2.3).



FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS 27

Remark 4.2.1. Let G∗, G1,∗ , G2,∗ denote the identity components of the isometry
groups of X, X1, X2 respectively. Then we have

(4.2.6) G∗ = G1,∗ ×G2,∗.

By [44, Proposition 6.19], G1,∗ = SL3(R) or SO0(p, q) with pq > 1 odd, and G2,∗
is a semisimple Lie group with Lie algebra g2 and trivial center. Also δ(G2,∗) = 0.
If we consider G∗ instead of G, then the factor G1 is exactly SL3(R) or SO0(p, q)
with pq > 1 odd.

Let U1, U2 be (connected linear) compact forms of G1, G2. Then U1 × U2 is a
finite central extension of the compact form U of G. Let (E, ρE) be an irreducible
unitary representation of U , hence of U1 × U2, then

(4.2.7) (E, ρE) = (E1, ρ
E1)⊗ (E2, ρ

E2),

where (Ej , ρ
Ej ) is an irreducible unitary representation of Uj , j = 1, 2. Let F , F1,

F2 be the homogeneous flat vector bundles on X, X1, X2 associated with these
representations. Then we have

(4.2.8) F = F1 ⊠ F2 := π∗
1(F1)⊗ π∗

2(F2),

where πi denote the projection X → Xi, i = 1, 2.
Take γ ∈ G, let (γ1, γ2) ∈ G1×G2 be one of its lifts. Then γ is semisimple (resp.

elliptic) if and only if both γ1, γ2 are semisimple (resp. elliptic). Set mi = dimXi,
then m1 is odd, and m2 is even.

Proposition 4.2.2. If γ ∈ G is semisimple, for t > 0, we have

Trs
[γ]
[
(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)

]
= Trs

[γ1]
[
(NΛ•(T∗X1) − m1

2
) exp(−tDX1,F1,2/2)

]
· Trs[γ2]

[
exp(−tDX2,F2,2/2)

]
(4.2.9)

Then if γ2 is nonelliptic,

(4.2.10) Trs
[γ]
[
(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)

]
= 0.

If γ2 is elliptic, then

Trs
[γ]
[
(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)

]
= [e(TX2(γ2),∇TX2(γ2))]max2(γ2)TrE2 [ρE2(γ2)]

· Trs[γ1]
[
(NΛ•(T∗X1) − m1

2
) exp(−tDX1,F1,2/2)

]
,

(4.2.11)

where [·]max2(γ2) is taking the coefficient of the Riemannian volume element on
X2(γ2).

Proof. We write

(4.2.12) NΛ•(T∗X) − m

2
= (NΛ•(T∗X1) − m1

2
) + (NΛ•(T∗X2) − m2

2
).

Note that, since δ(G1) = 1, then by [4, Theorem 7.8.2], we always have

(4.2.13) Trs
[γ1]

[
exp(−tDX1,F1,2/2)

]
= 0.

Combining the definition of orbital integrals (3.3.7) together with (4.2.12) and
(4.2.13), we get (4.2.9).

The identities (4.2.10), (4.2.11) follow from applying the results in [4, Theorem
7.8.2] to Trs

[γ2]
[
exp(−tDX2,F2,2/2)

]
. This completes the proof of our proposition.

□
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For studying T (Z,F ), Proposition 4.2.2 helps us to reduce the computations on
Trs[(N

Λ•(T∗Z) − m
2 ) exp(−tD

Z,F,2/2)] to the model cases listed in (4.2.2). But it is
far from enough to get an explicit evaluation. In Sections 5 & 6, we will carry out
more tools, which allows us work out a proof to Theorem 1.0.2.

5. Cartan subalgebra and root system of G when δ(G) = 1

We use the same notation as in Section 3 & Subsection 4.1. In Subsections
5.1 - 5.3, we always assume that G is connected linear real reductive Lie group
with compact center and with δ(G) = 1. But, as we will see in Remark 5.3.3,
the constructions and results in these subsections are still true (most of them are
trivial) if U is compact and if G has noncompact center with δ(G) = 1.

Subsection 5.4 is independent from other subsections, where we introduce a
generalized Kirillov formula for compact Lie groups.

Recall that T is a maximal torus of K with Lie algebra t ⊂ k, and that b ⊂ p
is defined in (4.1.3). Since δ(G) = 1, then b is 1-dimensional. We now fix a vector
a1 ∈ b, |a1| = 1. Recall that h = b⊕ t is a Cartan subalgebra of g. Let hgC be the
Hermitian product on gC induced by the scalar product −B(·, θ·) on g.

5.1. Reductive Lie algebra with fundamental rank 1. Since G has compact
center, then b ̸⊂ zg. Let Z(b) be the centralizer of b in G, and let Z(b)0 be its
identity component with Lie algebra z(b) = p(b)⊕k(b) ⊂ g. Let m be the orthogonal
subspace of b in z(b) (with respect to B) such that

(5.1.1) z(b) = b⊕m.

Then m is a Lie subalgebra of z(b), which is invariant by θ.
Put

(5.1.2) pm = m ∩ p, km = m ∩ k.

Then

(5.1.3) m = pm ⊕ km, p(b) = b⊕ pm, k(b) = km.

Let z⊥(b), p⊥(b), k⊥(b) be the orthogonal subspaces of z(b), p(b), k(b) in g, p, k
respectively with respect to B. Then

(5.1.4) z⊥(b) = p⊥(b)⊕ k⊥(b).

Moreover,

(5.1.5) p = b⊕ pm ⊕ p⊥(b), k = k(b)⊕ k⊥(b).

Let M ⊂ Z(b)0 be the analytic subgroup associated with m. If we identify b
with R, then

(5.1.6) Z(b)0 = R×M.

ThenM is a Lie subgroup of Z(b)0, i.e., it is closed in Z(b)0. LetKM be the analytic
subgroup of M associated with the Lie subalgebra km. Since M is reductive, KM is
a maximal compact subgroup of M . Then the splittings in (5.1.3), (5.1.4), (5.1.5)
are invariant by the adjoint action of KM .

Then t is Cartan subalgebra of k, of km, and of m. Recall that h = b ⊕ t is a
Cartan subalgebra of g. We fix a1 ∈ b such that B(a1, a1) = 1. The choice of a1
fixes an orientation of b. Let n ⊂ z⊥(b) be the direct sum of the eigenspaces of
ad(a1) with the positive eigenvalues. Set n̄ = θn. Then

(5.1.7) z⊥(b) = n⊕ n̄.
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By [44, Subsection 6A], dim n = dim p− dim pm − 1. Then dim n is even under our
assumption δ(G) = 1. Put

(5.1.8) l =
1

2
dim n.

By [44, Proposition 6.2], there exists β ∈ b∗ such that if a ∈ b, f ∈ n, then

(5.1.9) [a, f ] = β(a)f, [a, θ(f)] = −β(a)θ(f).
The map f ∈ n 7→ f−θ(f) ∈ p⊥(b) is an isomorphism of KM -modules. Similarly,

f ∈ n 7→ f + θ(f) ∈ k⊥(b) is also an isomorphism of KM -modules. Since θ fixes
KM , n ≃ n̄ as KM -modules via θ.

By [44, Proposition 6.3], we have

(5.1.10) [n, n̄] ⊂ z(b), [n, n] = [n̄, n̄] = 0.

Also

(5.1.11) B|n×n = 0, B|n̄×n̄ = 0.

Then the bilinear form B induces an isomorphism of n∗ and n̄ as KM -modules.
Therefore, as KM -modules, n is isomorphic to n∗.

As a consequence of (5.1.10), we get

(5.1.12) [z(b), z(b)] , [z⊥(b), z⊥(b)] ⊂ z(b), [z(b), z⊥(b)] ⊂ z⊥(b).

Then (g, z(b)) is a symmetric pair.
If k ∈ KM , let M(k) be the centralizer of k in M , and let m(k) be its Lie algebra.

Let M(k)0 be the identity component of M(k). The Cartan involution θ acts on
M(k). The associated Cartan decomposition is

(5.1.13) m(k) = pm(k)⊕ km(k),

where pm(k) = pm ∩m(k), km(k) = km ∩m(k).
Recall that Z(k) is the centralizer of k in G and that Z(k)0 is the identity

component of Z(k) with Lie algebra z(k) ⊂ g. Then

(5.1.14) M(k) =M ∩ Z(k), m(k) = m ∩ z(k).

Note that Z(k)0 is still a reductive Lie group equipped with the Cartan involution
induced by the action of θ. By the assumption that δ(G) = 1, we have

(5.1.15) δ(Z(k)0) = 1.

In particular,

(5.1.16) b ⊂ p(k).

Set

(5.1.17) zb(k) = z(b) ∩ z(k), pb(k) = p(b) ∩ p(k), kb(k) = k(b) ∩ k(k).

Then

(5.1.18) zb(k) = b⊕m(k) = pb(k)⊕ kb(k).

We also have the following identities,

(5.1.19) pb(k) = b⊕ pm(k), kb(k) = km(k).

Let p⊥b (k), k
⊥
b (k), z

⊥
b (k) be the orthogonal spaces of pb(k), kb(k), zb(k) in p(k),

k(k), z(k) with respect to B, so that

(5.1.20) p(k) = pb(k)⊕ p⊥b (k), k(k) = kb(k)⊕ k⊥b (k), z(k) = zb(k)⊕ z⊥b (k).

Then

(5.1.21) z⊥b (k) = p⊥b (k)⊕ k⊥b (k) = z⊥(b) ∩ z(k).



30 BINGXIAO LIU

Put

(5.1.22) n(k) = z(k) ∩ n, n̄(k) = z(k) ∩ n̄.

Then

(5.1.23) z⊥b (k) = n(k)⊕ n̄(k).

By (5.1.17), (5.1.23), we get

(5.1.24) z(k) = pb(k)⊕ kb(k)⊕ n(k)⊕ n̄(k).

Since δ(m(k)) = 0, dim n(k) is even. We set

(5.1.25) l(k) =
1

2
dim n(k).

Let KM (k) denote the centralizer of k in KM . The map f ∈ n(k) 7→ f − θ(f) ∈
p⊥b (k) is an isomorphism of KM (k)-modules, similar for k⊥b (k). Since θ fixes KM (k),
n(k) ≃ n̄(k) as KM (k)-modules via θ.

5.2. A compact Hermitian symmetric space Yb. Recall that u =
√
−1p⊕ k is

the compact form of g.
Let u(b) ⊂ u, um ⊂ u be the compact forms of z(b), m. Then

(5.2.1) u(b) =
√
−1b⊕ um, um =

√
−1pm ⊕ km.

Since M has compact center, let UM be the analytic subgroup of U associated
with um. Then UM is the compact form of M . Let U(b) ⊂ U , A0 ⊂ U be the
connected subgroups of U associated with Lie algebras u(b),

√
−1b. Then A0 is in

the center of U(b). By [44, Proposition 6.6], A0 is closed in U and is diffeomorphic
to a circle S1. Moreover, we have

(5.2.2) U(b) = A0UM .

The bilinear form −B induces an Ad(U)-invariant metric on u. Let u⊥(b) ⊂ u
be the orthogonal subspace of u(b). Then

(5.2.3) u⊥(b) =
√
−1p⊥(b)⊕ k⊥(b).

By (5.1.12), we get

(5.2.4) [u(b), u(b)] , [u⊥(b), u⊥(b)] ⊂ u(b), [u(b), u⊥(b)] ⊂ u⊥(b).

Then (u, u(b)) is a symmetric pair.
Put a0 = a1/β(a1) ∈ b. Set

(5.2.5) J =
√
−1ad(a0)|u⊥(b) ∈ End(u⊥(b)).

By (5.1.9), J is an U(b)-invariant complex structure on u⊥(b) which preserves
B|u⊥(b). The spaces nC = n ⊗R C, n̄C = n̄ ⊗R C are exactly the eigenspaces of J
associated with eigenvalues

√
−1, −

√
−1.

The following proposition is just the summary of the results in [44, Section 6B].

Proposition 5.2.1. Set

(5.2.6) Yb = U/U(b).

Then Yb is a compact symmetric space, and J induces an integrable complex struc-
ture on Yb such that

(5.2.7) T (1,0)Yb = U ×U(b) nC, T
(0,1)Yb = U ×U(b) n̄C.

The form −B(·, J ·) induces a Kähler form ωYb on Yb.
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Let ωu be the canonical left-invariant 1-form on U with values in u. Let ωu(b)

and ωu⊥(b) be the u(b) and u⊥(b) components of ωu, so that

(5.2.8) ωu = ωu(b) + ωu⊥(b).

Moreover, ωu(b) defines a connection form on the principal U(b)-bundle U → Yb.
Let Ωu(b) be the curvature form, then

(5.2.9) Ωu(b) = −1

2
[ωu⊥(b), ωu⊥(b)].

Note that the real tangent bundle of Yb is given

(5.2.10) TYb = U ×U(b) u
⊥(b).

Then −B|u⊥(b) induces a Riemannian metric gTYb on Yb. The corresponding Levi-
Civita connection is induced by ωu(b).

Recall that the first splitting in (5.2.1) is orthogonal with respect to −B. Let
Ωum be the um-component of Ωu(b). Since the Kähler form ωYb is invariant under
the left action of U on Yb, we also can view ωYb as an element in Λ2(u⊥b )

∗). By [44,
Eq.(6-48)],

(5.2.11) Ωu(b) = β(a1)ω
Yb ⊗

√
−1a1 +Ωum .

Moreover, by [44, Proposition 6.9], we have

(5.2.12) B(Ωu(b),Ωu(b)) = 0, B(Ωum ,Ωum) = β(a1)
2ωYb,2.

Remark 5.2.2. By [44, Proposition 6.20], ifG has compact center, then as symmetric
spaces, the Kähler manifold Yb is isomorphic either to SU(3)/U(2) or to SO(p +
q)/SO(p+ q − 2)× SO(2) with pq > 1 odd. This way, the computations on Yb can
be made more explicit.

Now we fix k ∈ KM . Let U(k) be the centralizer of k in U , and let U(k)0 be
its identity component. Let u(k) be the Lie algebra of U(k)0. Then u(k) is the
compact form of z(k), and U(k)0 is the compact form of Z(k)0.

We will use the same notation as in Subsection 5.1. Then the compact form of
m(k) is given by

(5.2.13) um(k) =
√
−1pm(k)⊕ km(k).

Let ub(k) be the compact form of zb(k). Then

(5.2.14) ub(k) =
√
−1b⊕ um(k).

Let Ub(k) be the analytic subgroup associated with ub(k). Then

(5.2.15) Ub(k) = U(b) ∩ U(k)0.

Set

(5.2.16) Yb(k) = U(k)0/Ub(k).

As in Proposition 5.2.1, Yb(k) is a connected complex manifold equipped with a
Kähler form ωYb(k).

Let u⊥b (k) be the orthogonal space of ub(k) in u(k) with respect to B. Then

(5.2.17) u⊥b (k) =
√
−1p⊥b (k)⊕ k⊥b (k).

Then the real tangent bundle of Yb(k) is given by

(5.2.18) TYb(k) = U(k)0 ×Ub(k) u
⊥
b (k).

Moreover,

(5.2.19) T (1,0)Yb(k) = U(k)0 ×Ub(k) n(k)C, T
(0,1)Yb(k) = U(k)0 ×Ub(k) n̄(k)C.
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Let Ωub(k) be the curvature form as in (5.2.9) for the pair (U(k)0, Ub(k)), which
can be viewed as an element in Λ2(u⊥b (k)

∗) ⊗ ub(k). Using the splitting (5.2.14),
let Ωum(k) be the um(k)-component of Ωub(k). Then as in (5.2.11) and (5.2.12), we
have

(5.2.20) Ωub(k) = β(a1)ω
Yb(k) ⊗

√
−1a1 +Ωum(k),

and

(5.2.21) B(Ωub(k),Ωub(k)) = 0, B(Ωum(k),Ωum(k)) = β(a1)
2ωYb(b),2.

5.3. Positive root system and character formula. Recall that t is Cartan
subalgebra of k, of km, and of m. Recall that h = b⊕ t is a Cartan subalgebra of g,
and H is the associated maximally compact Cartan subgroup of G.

Put

(5.3.1) tU =
√
−1b⊕ t ⊂ u.

Then tU is a Cartan subalgebra of u. Let TU ⊂ U be the corresponding maximal
torus. Then A0 is a circle in TU . Then t is a Cartan subalgebra of um, and the
corresponding maximal torus is T .

Let R(u, tU ) be the real root system for the pair (U, TU ) [12, Chapter V]. The root
system for the complexified pair (uC, tU,C) = (gC, hC) is given by 2πiR(u, tU ). Sim-
ilarly, let R(u(b), tU ), R(um, t) denote the real root systems for the pairs (u(b), tU ),
(um, t). When we embed t∗ into t∗U by the splitting in (5.3.1), then

(5.3.2) R(u(b), tU ) = R(um, t).

For a root α ∈ R(u, tU ), if α(
√
−1a1) = 0, then α ∈ R(um, t). Fix a positive root

system R+(um, t), we get a positive root system R+(u, tU ) consisting of element α
such that α(

√
−1a1) > 0 and the elements in R+(um, t).

Let W (u, tU ) denote the algebraic Weyl group associated with R(u, tU ). If ω ∈
W (u, tU ), let l(ω) denote the length of ω with respect to R+(u, tU ). Set

(5.3.3) ε(ω) = (−1)l(ω).

Let W (U, TU ) be the analytic Weyl group, then W (u, tU ) =W (U, TU ).
Put

(5.3.4) Wu = {ω ∈W (U, TU ) : ω−1 · α > 0, for all α ∈ R+(um, t)}.

Put

(5.3.5) ρu =
1

2

∑
α0∈R+(u,tU )

α0 ∈ t∗U , ρum
=

1

2

∑
α0∈R+(um,t)

α0 ∈ t∗.

Then ρu|t = ρum
.

Let P++(U) ⊂ t∗U be the set of dominant weights of (U, TU ) with respect to
R+(u, tU ). If λ ∈ P++(U), let (Eλ, ρ

Eλ) be the irreducible unitary representation
of U with the highest weight λ, which by the unitary trick extends to an irreducible
representation of G.

By [46, Lemmas 1.1.2.15 & 2.4.2.1], if ω ∈Wu, then ω(λ+ρu)−ρu is a dominant
weight for R+(u(b), tU ). Let Vλ,ω denote the representation of U(b) with the highest
weight ω(λ+ ρu)− ρu.

Recall that U(b) acts on nC. Let H ·(nC, Eλ) be the Lie algebra cohomology of
nC with coefficients in Eλ (see [25]). By [46, Theorem 2.5.1.3], for i = 0, · · · , 2l, we
have the identification of U(b)-modules,

(5.3.6) Hi(nC, Eλ) ≃ ⊕ω∈Wu

l(ω)=i
Vλ,ω.
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By (5.3.6) and the Poincaré duality, we get the following identifications as U(b)-
modules,

(5.3.7) ⊕2l
i=0(−1)iΛin∗C ⊗ Eλ = ⊕ω∈Wu

ε(ω)Vλ,ω.

Note that if we apply the unitary trick, the above identification also holds as Z(b)0-
modules.

Definition 5.3.1. Let P0 : t∗U → t∗ denote the orthogonal projection with respect to
B∗|t∗U . For ω ∈Wu, λ ∈ P++(U), put

(5.3.8) ηω(λ) = P0

(
ω(λ+ ρu)− ρu

)
∈ t∗.

Note that

(5.3.9) P0ρu = ρum
.

Then

(5.3.10) ηω(λ) = P0

(
ω(λ+ ρu)

)
− ρum

.

Proposition 5.3.2. If λ ∈ P++(U), for ω ∈ Wu, then ηω(λ) is a dominant
weight of (UM , T ) with respect to R+(um, t). Moreover, the restriction of the U(b)-
representation Vλ,ω to the subgroup UM is irreducible, which has the highest weight
ηω(λ).

Proof. Since ω(λ+ρu)−ρu is analytically integrable, then ηω(λ) is also analytically
integrable as a weight associated with (UM , T ). By (5.3.2) and the corresponding
identification of positive root systems, we know that ηω(λ) is dominant with respect
to R+(um, t).

Recall that A0 ≃ S1 is defined in Subsection 5.2. By (5.2.2), we get that A0

acts on Vλ,ω as scalars given by its character, and then UM act irreducibly on
Vλ,ω, which clearly has the highest weight ηω(λ). This completes the proof of our
proposition. □

Remark 5.3.3. In general, U is just the analytic subgroup of GC with Lie algebra
u. If U is compact but G has noncompact center, i.e., zp = b, then n = n̄ = 0, so
that l = 0. Recall that in this case, G′, U ′ are defined in Subsection 4.1. Then

(5.3.11) M = G′, UM = U ′.

The compact symmetric space Yb now reduces to one point.
Moreover, in (5.3.4), the set Wu = {1}, so that Vλ,ω becomes just Eλ itself. The

identities (5.3.6), (5.3.7) are trivially true, so is Proposition 5.3.2.

5.4. Kirillov character formula for compact Lie groups. In this subsection,
we recall the Kirillov character formula for compact Lie groups. We only use the
group UM as an explanatory example. We fix the maximal torus T and the positive
(real) root system R+(um, t).

Let λ ∈ t∗ be a dominant (analytically integrable) weight of UM with respect to
the above root system. Let (Vλ, ρ

Vλ) be the irreducible unitary representation of
UM with the highest weight λ.

Put

(5.4.1) O = Ad∗(UM )(λ+ ρum
) ⊂ u∗m.

Then O is an even-dimensional closed manifold.
Since λ + ρum

is regular, then we have the following identifications of UM -
manifolds,

(5.4.2) O ≃ UM/T.
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For u ∈ um, an associated vector field ũ on O is defined as follows, if f ∈ O, then

(5.4.3) ũf = −ad∗(u)f ∈ TfO.
Such vector fields span the whole tangent space at each point. Let ωL denote the
real 2-form on O such that if u, v ∈ um, f ∈ O,

(5.4.4) ωL(ũ, ṽ)f = −⟨f, [u, v]⟩.
Then ωL is a UM -invariant symplectic form on O. Put r+ = 1

2 dim um/t. In fact,
if we can define an almost complex structure on TO such that the holomorphic
tangent bundle is given by the positive root system R+(um, t). Then (O, ωL) become
a closed Kähler manifold, and r+ is its complex dimension.

The Liouville measure on O is defined as follows,

(5.4.5) dµL =
(ωL)

r+

(r+)!
.

It is invariant by the left action of UM . Let VolL(O) denote the symplectic volume
of O with respect to the Liouville measure. Then we have (see [3, Proposition 7.26])

(5.4.6) VolL(O) = Πα0∈R+(um,t)
⟨α0, λ+ ρum

⟩
⟨α0, ρum

⟩
= dimVλ.

The second identity is the Weyl dimension formula (see [23, Theorem 4.48]).
By the Kirillov formula (see [3, Theorem 8.4]), if y ∈ um, we have

(5.4.7) Â−1(ad(y)|um
)TrVλ [ρVλ(ey)] =

∫
f∈O

e2πi⟨f,y⟩dµL.

To shorten the notation here, if k ∈ T , put Y = UM (k)0 with Lie algebra
y = um(k). Then T ⊂ Y , and it also a maximal torus of Y .

In the sequel, we will give a generalized version of (5.4.7) for describing the
function TrVλ [ρVλ(key)] with y ∈ y.

Let q be the orthogonal space of y in um with respect to B, so that

(5.4.8) um = y⊕ q.

Since the adjoint action of T preserves the splitting in (5.4.8). Then R(um, t) splits
into two disjoint parts

(5.4.9) R(um, t) = R(y, t) ∪R(q, t),
where R(q, t) is just the set of real roots for the adjoint action of t on qC.

The positive root system R+(um, t) induces a positive root system R+(y, t). Set

(5.4.10) R+(q, t) = R+(um, t) ∩R(q, t).
Then we have the disjoint union as follows,

(5.4.11) R+(um, t) = R+(y, t) ∪R+(q, t).

Put

(5.4.12) ρy =
1

2

∑
α0∈R+(y,t)

α0, ρq =
1

2

∑
α0∈R+(q,t)

α0.

Then

(5.4.13) ρum
= ρy + ρq ∈ t∗.

Let C ⊂ t∗ denote the Weyl chamber corresponding to R+(um, t), and let C0 ⊂ t∗

denote the Weyl chamber corresponding to R+(y, t). Then C ⊂ C0.
Let W (UM , T ), W (Y, T ) be the Weyl groups associated with the pairs (UM , T ),

(Y, T ) respectively. Then W (Y, T ) is canonically a subgroup of W (UM , T ). Put

(5.4.14) W 1(k) = {ω ∈W (UM , T ) | ω(C) ⊂ C0}.
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Note that the set W 1(k) is similar to the set Wu defined in (5.3.4).

Lemma 5.4.1. The inclusion W 1(k) ↪→ W (UM , T ) induces a bijection between
W 1(k) and the quotient W (Y, T )\W (UM , T ).

Proof. This lemma follows from that W (Y, T ) acts simply transitively on the Weyl
chambers associated with (y, t). □

Let Ok denote the fixed point set of the holomorphic action of k on O. We
embeds y∗ in u∗m by the splitting (5.4.8). Then

(5.4.15) Ok = O ∩ y∗.

Lemma 5.4.2 (see [16, I.2, Lemma (7)], [11, Lemmas 6.1.1, 7.2.2]). As subsets of
y∗, we have the following identification,

(5.4.16) Ok = ∪σ∈W 1(k)Ad∗(Y )(σ(λ+ ρum
)) ⊂ y∗,

where the union is disjoint.

For each σ ∈W 1(k), put

(5.4.17) Ok
σ(λ+ρum ) = Ad∗(Y )(σ(λ+ ρum

)) ⊂ y∗.

Let dµk
σ denote the Liouville measure on Ok

σ(λ+ρum ) as defined in (5.4.5).
If δ ∈ t∗ is (real) analytically integrable, let ξδ denote the character of T with

differential 2πiδ. Note that for σ ∈ W 1(k), σρum
+ ρum

is analytically integrable
even ρum

may not be analytically integrable.

Definition 5.4.3. For σ ∈W 1(k), set

(5.4.18) φk(σ, λ) = ε(σ)
ξσ(λ+ρum )+ρum

(k)

Πα0∈R+(q,t)(ξα0(k)− 1)
.

Note that if y ∈ y, the following analytic function

(5.4.19)
det(1− ead(y)Ad(k))|q

det(1−Ad(k))|q
has a square root which is analytic in y ∈ y and equals to 1 at y = 0. We denote
this square root by

(5.4.20)
[det(1− ead(y)Ad(k))|q

det(1−Ad(k))|q
] 1

2 .

The following theorem is a special case of a generalized Kirillov formula obtained
by Duflo, Heckman and Vergne [16, II. 3, Theorem (7)]. We will also include a
simpler proof for the sake of completeness.

Theorem 5.4.4 (Generalized Kirillov formula). For y ∈ y, we have the following
identity of analytic functions,

Â−1(ad(y)|y)
[det(1− ead(y)Ad(k))|q

det(1−Ad(k))q

] 1
2TrVλ [ρVλ(key)]

=
∑

σ∈W 1(k)

φk(σ, λ)

∫
f∈Ok

σ(λ+ρum )

e2πi⟨f,y⟩dµk
σ.

(5.4.21)

If k = 1, (5.4.21) is reduced to (5.4.7).

Proof. Let t′ denote the set of regular element in t associated with the root R(um, t),
which is an open dense subset of t. Since both sides of (5.4.21) are analytic and
invariant by the adjoint action of Y , then we only need to prove (5.4.21) for y ∈ t′.

We firstly compute the left-hand side of (5.4.21).
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For y ∈ t′, we have

(5.4.22) Â−1(ad(y)|y) = Πα0∈R+(y,t)
eπi⟨α

0,y⟩ − e−πi⟨α0,y⟩

⟨2πiα0, y⟩
.

Let y0 ∈ t be such that k = exp(y0). Then[det(1− ead(y)Ad(k))|q
det(1−Ad(k))|q

] 1
2

= Πα0∈R+(q,t)
eπi⟨α

0,y+y0⟩ − e−πi⟨α0,y+y0⟩

eπi⟨α0,y0⟩ − e−πi⟨α0,y0⟩
.

(5.4.23)

By the Weyl character formula for (UM , T ), we get

TrVλ [ρVλ(key)]

= TrVλ [ρVλ(ey+y0)]

=

∑
ω∈W (um,C,tC)

ε(ω)e2πi⟨ω(λ+ρum ),y+y0⟩

Πα0∈R+(um,t)

(
eπi⟨α0,y+y0⟩ − e−πi⟨α0,y+y0⟩

) .(5.4.24)

Note that we have ξα0
(k) = 1 for α0 ∈ R+(y, t), then

Πα0∈R+(y,t)
eπi⟨α

0,y+y0⟩ − e−πi⟨α0,y+y0⟩

eπi⟨α0,y⟩ − e−πi⟨α0,y⟩ = e−2πi⟨ρy,y0⟩.(5.4.25)

Combining (5.4.22) - (5.4.25), we get the left-hand side of (5.4.21) is equal the
following function,

(5.4.26)
e2πi⟨ρy,y0⟩

Πα0∈R+(y,t)⟨2πiα0, y⟩

∑
ω∈W (um,C,tC)

ε(ω)e2πi⟨ω(λ+ρum ),y+y0⟩

Πα0∈R+(q,t)

(
eπi⟨α0,y⟩ − e−πi⟨α0,y⟩

) .

Now we show that the right-hand side of (5.4.21) is also equal to (5.4.26).
Note that for ω ∈W (Y, T ), ωρum

−ρum
is analytically integrable. We claim that

if ω ∈W (Y, T ), then

(5.4.27) ξωρum−ρum
(k) = e2πi⟨ωρum−ρum ,y0⟩ = 1.

Actually, we have ξ2ρum
(k) = ξ2ωρum

(k) = 1. Then, after taking the square roots,
we get that ξωρum−ρum

(k) = ξωρum−ρum
(ey0) = ±1. The continuity of the character

implies exactly (5.4.27).
As a consequence of (5.4.27), we get that for σ ∈W 1(k), if ω ∈W (Y, T ), then

(5.4.28) e2πi⟨ωσ(λ+ρum ),y0⟩ = e2πi⟨σ(λ+ρum ),y0⟩.

For σ ∈ W 1(k), since σ(λ + ρum
) ∈ C0 and y is regular, by [3, Corollary 7.25],

we have ∫
f∈Ok

σ(λ+ρum )

e2πi⟨f,y⟩dµk
σ

=
1

Πα0∈R+(y,t)⟨2πiα0, y⟩
∑

ω∈W (Y,T )

ε(ω)e2πi⟨ωσ(λ+ρum ),y⟩.
(5.4.29)

We rewrite φk(σ, λ) as follows,

(5.4.30) ε(σ)
e2πi⟨ρy,y0⟩

Πα0∈R+(q,t)

(
eπi⟨α0,y⟩ − e−πi⟨α0,y⟩

)e2πi⟨σ(λ+ρum ),y0⟩.

Combining together Lemma 5.4.1 and (5.4.28) - (5.4.30), a direct computation
shows that the right-hand side of (5.4.21) is given exactly by (5.4.26). This com-
pletes the proof of our theorem. □
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Remark 5.4.5. Let C0 denote the identity component of the center of Y , and let
Yss be the closed analytic subgroup of Y associated with yss = [y, y]. By Weyl’s
theorem [23, Theorem 4.26], the universal covering group of Yss is compact, which
we denote by Ỹss. Put

(5.4.31) Ỹ = C0 × Ỹss.

Then Ỹ is clearly a finite central extension of Y . Let T̃ be the maximal torus of Ỹ
associated with the Cartan subalgebra t, which is also a finite extension of T . By
[23, Corollary 4.25], the weight ρum

, ρy are analytically integrable with respect to
T̃ , since they are algebraically integrable ([23, Propositions 4.15 & 4.33]).

Note that for σ ∈ W 1(k), σ(λ + ρum
) is regular and positive with respect to

R+(y, t), thus σ(λ+ ρum
)− ρy is nonnegative with respect to R+(y, t) by the prop-

erty of ρy ([23, Proposition 4.33]). Since now σ(λ + ρum
) − ρy is also analytically

integrable with respect to T̃ , then it is a dominant weight for (Ỹ , T̃ ) with respect to
R+(y, t). In this case, let V k

λ,σ be the irreducible unitary representation of Ỹ with
highest weight σ(λ+ ρum

)− ρy. Then by (5.4.7), (5.4.21), we get that for y ∈ y,[det(1− ead(y)Ad(k))|q
det(1−Ad(k))q

] 1
2TrVλ [ρVλ(key)]

=
∑

σ∈W 1(k)

φk(σ, λ)Tr
V k
λ,σ [ρV

k
λ,σ (ey)].

(5.4.32)

6. A geometric localization formula for orbital integrals

Recall that GC is the complexification of G with Lie algebra gC, and that G, U
are the analytic subgroups of GC with Lie algebra g, u respectively. In this section,
we always assume that U is compact, we do not require that G has compact center.
We need not to assume δ(G) = 1 either.

Under the settings in Subsection 4.1, for t > 0 and semisimple γ ∈ G, we set

(6.0.1) EX,γ(F, t) = Trs
[γ]
[
(NΛ•(T∗X) − m

2
) exp(−tDX,F,2/2)

]
.

The indice X, F in this notation indicate precisely the symmetric space and the
flat vector bundle which are concerned for defining the orbital integrals.

If γ ∈ G is semisimple, then there exists a unique elliptic element γe and a unique
hyperbolic element γh in G, such that γ = γeγh = γhγe. Here, we will show that
EX,γ(F, t) becomes a sum of the orbital integrals associated with γh, but defined for
the centralizer of γe instead of G. This suggests that the elliptic part of γ should
lead to a localization for the geometric orbital integrals.

We still fix a maximal torus T of K with Lie algebra t. For simplicity, if γ ∈ G
is semisimple, we may and we will assume that

(6.0.2) γ = eak, k ∈ T, a ∈ p,Ad(k−1)a = a.

In this case,

(6.0.3) γe = k ∈ T, γh = ea.

Recall that Z(γe)0 is the identity component of the centralizer of γe in G. Then

(6.0.4) γh ∈ Z(γe)
0.

The Cartan involution θ preserves Z(γe)0 such that Z(γe)0 is a connected linear
reductive Lie group. Then we have the following diffeomorphism

(6.0.5) Z(γe)
0 = K(γe)

0 exp(p(γe)).

It is clear that δ(Z(γe)0) = δ(G).
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Recall that TU is a maximal torus of U with Lie algebra tU =
√
−1b⊕ t ⊂ u. Let

R+(u, tU ) be a positive root system for R(u, tU ), which is not necessarily the same
as in Subsection 5.3 when δ(G) = 1.

Since U is the compact form of G, then U(γe)
0 is the compact form for Z(γe)0.

Moreover, TU is also a maximal torus of U(γe)
0. Let R(u(γe), tU ) be the correspond-

ing real root system with the positive root system R+(u(γe), tU ) = R(u(γe), tU ) ∩
R+(u, tU ). Let ρu, ρu(γe) be the corresponding half sums of positive roots.

Let Ũ(γe) be a connected finite covering group of U(γe)
0 such that ρu, ρu(γe) are

analytically integrable with respect to the maximal torus T̃U of Ũ(γe) associated
with tU . It always exists by a similar construction as in Remark 5.4.5.

Let K̃(γe) be the analytic subgroup of Ũ(γe) associated with Lie algebra k(γe).
By [24, Proposition 7.12], Ũ(γe) has a unique complexification Ũ(γe)C which is
a connected linear reductive Lie group. Let Z̃(γe) be the analytic subgroup of
Ũ(γe)C associated with z(γe) ⊂ u(γe)C = z(γe)C. Then we have the following
Cartan decomposition

(6.0.6) Z̃(γe) = K̃(γe) exp(p(γe)).

We still denote by θ the corresponding Cartan involution on Z̃(γe).
The Lie group Z̃(γe) is a finite covering group of Z(γe)0. Moreover, we have the

identification of symmetric spaces

(6.0.7) X(γe) ≃ Z̃(γe)/K̃(γe).

Note that even under an additional assumption that G has compact center, Z̃(γe)
may still have noncompact center.

Let λ be a dominant weight for (U, TU ) with respect to R+(u, tU ). Let (Eλ, ρ
Eλ)

be the associated irreducible unitary representation of U . As before, let (Fλ, h
Fλ)

be the corresponding homogeneous vector bundle on X with the G-invariant flat
connection ∇Fλ,f . Let DX,Fλ,2 denote the associated de Rham-Hodge Laplacian.

Let W 1
U (γe) ⊂W (U, TU ) be the set defined as in (5.4.14) but with respect to the

group U and to γe = k ∈ T ⊂ TU . As in Definition 5.4.3, for σ ∈W 1
U (γe), set

(6.0.8) φU
γe
(σ, λ) = ε(σ)

ξσ(λ+ρu)+ρu
(γe)

Πα0∈R+(u⊥(γe),tU )(ξα0(γe)− 1)
.

As explained in Remark 5.4.5, if σ ∈W 1
U (γe), then σ(λ+ρu)−ρu(γe) is a dominant

weight of Ũ(γe) with respect to R+(u(γe), tU ). Let Eσ,λ be the irreducible unitary
representation of Ũ(γe) with highest weight σ(λ+ ρu)− ρu(γe).

We extend Eσ,λ to an irreducible representation of Z̃(γe) by the unitary trick.
Then Fσ,λ = Z̃(γe)×K̃(γe)

Eσ,λ is a homogeneous vector bundle on X(γe) with an
invariant flat connection ∇Fσ,λ,f as explained in Subsection 4. Let DX(γe),Fσ,λ,2

denote the associated de Rham-Hodge Laplacian acting on Ω·(X(γe), Fσ,λ).
We also view γh = ea as a hyperbolic element in Z̃(γe). For σ ∈ W 1

U (γe), as in
(6.0.1), we set

(6.0.9) EX(γe),γh
(Fσ,λ, t) = Trs

[γh]
[
(NΛ•(T∗X(γe)) − p′

2
) exp(−tDX(γe),Fσ,λ,2/2)

]
.

Note that we use B|z(γe) on z(γe) to define this orbital integral for Z̃(γe).
Set

(6.0.10) c(γ) =

∣∣∣∣det(1−Ad(γe))|z⊥(γe)

det(1−Ad(γ))|z⊥(γe)

∣∣∣∣1/2 > 0.

In particular, c(γe) = 1.



FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS 39

The following theorem is essentially a consequence of the generalized Kirillov
formula in Theorem 5.4.4.

Theorem 6.0.1. Let γ ∈ G be given as in (6.0.2). For t > 0, we have the following
identity,

(6.0.11) EX,γ(Fλ, t) = c(γ)
∑

σ∈W 1
U (γe)

φU
γe
(σ, λ)EX(γe),γh

(Fσ,λ, t).

We call (6.0.11) a localization formula for the geometric orbital integral.

Proof. Set p′ = dim p(γe) = dimX(γe). At first, if m is even, then p′ is even. Then
the both sides of (6.0.11) are 0 by [4, Theorem 7.9.1].

If m is odd, then p′ is odd, and δ(G) = δ(Z(γe)
0) is odd. If δ(G) ≥ 3, then the

both sides of (6.0.11) are 0 by [4, Theorem 7.9.1].
Now we consider the case where δ(G) = δ(Z(γe)

0) = 1. If γ can not be con-
jugated into H by an element in G, then γh can not be conjugated into H by an
element in Z(γe)0. Then the both sides of (6.0.11) are 0 by Proposition 4.1.5.

Now we assume that δ(G) = 1 and a ∈ b. Note that z(γ) is the centralizer of γh
in z(γe). We will prove (6.0.11) using (4.1.16)

For y ∈ k(γ), let J∼
γh
(y) be the function defined in (3.3.1) for γh = ea ∈ Z̃(γe),

J∼
γh
(y) =

1

|det(1−Ad(γh))|z⊥0 ∩z(γe)|1/2
Â(iad(y)|p(γ))
Â(iad(y)|k(γ))

.(6.0.12)

The Casimir operator Cu(γe),Eσ,λ acts on Eσ,λ by the scalar given

(6.0.13) −4π2(|λ+ ρu|2 − |ρu(γe)|
2).

Similar to (4.1.13), set

(6.0.14) βz(γe) =
1

16
Trp(γe)[Ck(γe),p(γe)] +

1

48
Trk(γe)[Ck(γe),k(γe)].

Then by [4, Propositions 2.6.1 & 7.5.1],

(6.0.15) 2π2|ρu(γe)|
2 = −βz(γe).

By (4.1.16), (6.0.13), (6.0.15), for σ ∈W 1
U (γe), we get

EX(γe),γh
(Fσ,λ, t) =

e−
|a|2
2t

(2πt)p/2
exp

(
− 2π2t|λ+ ρu|2

)
·
∫
k(γ)

J∼
γh
(y)Trs

Λ•(p(γe)
∗)
[
(NΛ•(p(γe)

∗) − p′

2
) exp(−iad(y))

]
· TrEσ,λ [exp(−iρEσ,λ(y))]e−|y|2/2t dy

(2πt)q/2
.

(6.0.16)

Note that dim p⊥(γe) is even. We claim that if y ∈ k(γ), then

Trs
Λ•(p∗)

[
(NΛ•(p∗) − m

2
) exp(−iad(y))Ad(k−1)

]
= Trs

Λ•(p(γe)
∗)
[
(NΛ•(p(γe)

∗) − p′

2
)e−iad(y)

]
det(1− e−iad(y)Ad(k−1))|p⊥(γe).

(6.0.17)

Indeed, we can verify (6.0.17) for y ∈ t. Since both sides of (6.0.17) are invariant
by adjoint action of K(γe)

0, then (6.0.17) holds in full generality.
Also K(γ)0 preserves the splitting

(6.0.18) p⊥(γe) = p⊥0 (γ)⊕ (p⊥(γe) ∩ p⊥0 ).
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The action ad(a) gives an isomorphism between p⊥(γe) ∩ p⊥0 and k⊥(γe) ∩ k⊥0 as
K(γ)-vector spaces.

Note that

(6.0.19) z⊥(γe) ∩ z⊥0 = (p⊥(γe) ∩ p⊥0 )⊕ (k⊥(γe) ∩ k⊥0 ).

Then

det(1− e−iad(y)Ad(γe))|p⊥(γe)

= det(1− e−iad(y)Ad(γe))|p⊥
0 (γe)[det(1− e−iad(y)Ad(γe))|z⊥(γe)∩z⊥0

]
1
2 .

(6.0.20)

Here the square root is taken to be positive at y = 0.
By Definition 3.3.1 and (6.0.12), for y ∈ k(γ),

Jγ(y) =J
∼
γh
(y)

1

|det(1−Ad(γ))|z⊥0 ∩z⊥(γe)|1/2

·
[

1

det(1−Ad(γe))|z⊥0 (γ)

det(1− exp(−iad(y))Ad(γe))|k⊥0 (γ)

det(1− exp(−iad(y))Ad(γe))|p⊥
0 (γ)

]1/2
.

(6.0.21)

Combining (6.0.17), (6.0.20) and (6.0.21), we get

Jγ(y)Trs
Λ•(p∗)

[
(NΛ•(p∗) − m

2
) exp(−iad(y))Ad(γe)

]
=c(γ)J∼

γh
(y)Trs

Λ•(p(γe)
∗)
[
(NΛ•(p(γe)

∗) − p′

2
)e−iad(y)

]
·
[
det(1− exp(−iad(y))Ad(γe))|z⊥(γe)

det(1−Ad(γe))|z⊥(γe)

]1/2
.

(6.0.22)

Note that for y ∈ k(γ),[
det(1− exp(−iad(y))Ad(γe))|z⊥(γe)

det(1−Ad(γe))|z⊥(γe)

]1/2
=

[
det(1− exp(−iad(y))Ad(γe))|u⊥(γe)

det(1−Ad(γe))|u⊥(γe)

]1/2
.

(6.0.23)

By (4.1.16), (6.0.13), (6.0.15), (6.0.22) and (6.0.23), we get

EX,λ(Fλ, t) = c(γ)
e−

|a|2
2t

(2πt)p/2
exp

(
− 2π2t|λ+ ρu|2

)
·
∫
k(γ)

J∼
γh
(y)Trs

Λ•(p(γe)
∗)
[
(NΛ•(p(γe)

∗) − p′

2
)e−iad(y)

]
[
det(1− e−iad(y)Ad(γe))|u⊥(γe)

det(1−Ad(γe))|u⊥(γe)

]1/2
TrEλ [ρEλ(γe)e

−iρEλ (y)]e−|y|2/2t dy

(2πt)q/2
.

(6.0.24)

Then (6.0.11) follows from the (5.4.32), (6.0.16) and (6.0.24). This completes the
proof of our theorem. □

Remark 6.0.2. A similar consideration can be made for Trs
[γ]
[
exp(−tDX,Fλ,2)

]
,

where (6.0.11) will become an analogue of the index theorem for orbifolds as in
(2.2.9). The related computation can be found in [8, Subsection 10.4].
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7. Full asymptotics of elliptic orbital integrals

In this section, we always assume that δ(G) = 1 and that U is compact. We also
use the notation and settings as in Subsections 5.1, 5.2 and 5.3.

In this section, given a irreducible unitary representation E of U with certain
nondegenerate highest weight Λ, and for elliptic γ, we will compute explicitly
EX,γ(F = G ×K E, t) and its Mellin transform in terms of the root systems. Note
that when γ = 1, EX,γ(Fd, t) is already computed by Bergeron-Venkatesh [2] and
by Müller-Pfaff [37] using the Plancherel formula for identity orbital integral. We
here give a different approach via Bismut’s formula as in (4.1.16).

Then in Subsection 7.3, we apply these results to a sequence of flat vector bundles
{Fd}d∈N on X defined by a sequence of nondegenerate dominant weights Λ =
dλ + λ0. This way, we show that the Mellin transforms of the elliptic orbital
integrals are exponential polynomials in d.

7.1. Estimates of elliptic orbital integrals for small time t. Recall that T is
a maximal torus of K, TU is a maximal torus of U , and that W (U, TU ) denote the
(analytic) Weyl group of (U, TU ). The positive root system R+(u, tU ) is given in
Subsection 5.3. Recall that P++(U) is the set of dominant weights of (U, TU ) with
respect to R+(u, tU ).

Let (E, ρE) be the irreducible unitary representation of U associated with the
highest weight Λ ∈ P++(U). We will prove our main result of this subsection and
next subsection for this (E, ρE).

Our homogeneous flat vector bundle concerned here is given by F = G ×K E.
Let DX,F,2 denote the associated de Rham-Hodge Laplacian.

For t > 0, if γ ∈ G is semisimple, as in (6.0.1), set

(7.1.1) EX,γ(F, t) = Trs
[γ]
[
(NΛ•(T∗X) − m

2
) exp(− t

2
DX,F,2)

]
.

It is clear that EX,γ(Fd, t) only depends on the conjugacy class [γ] in G. If γ = 1,
we also write

(7.1.2) IX(F, t) = EX,1(F, t).

In the sequel, we only consider the case of elliptic γ.
By (4.1.16), (6.0.13), (6.0.15), if γ = k ∈ K, we have

EX,γ(F, t) =
1

(2πt)p/2
exp

(
− 2π2t|Λ + ρu|2

)
∫
k(γ)

Jγ(Y
k
0 )Trs

Λ•(p∗)
[
(NΛ•(p∗) − m

2
)Ad(k) exp(−iad(Y k

0 ))
]

· TrE [ρE(k) exp(−iρE(Y k
0 ))]e

−|Y k
0 |2/2t dY k

0

(2πt)q/2
.

(7.1.3)

By (3.3.18), we have the formula for Jγ(Y k
0 ), Y k

0 ∈ k(γ),

Jγ(Y
k
0 ) =

Â(iad(Y k
0 )|p(γ))

Â(iad(Y k
0 )|k(γ))

·
[

1

det(1−Ad(k))|z⊥(γ)

det(1− exp(−iad(Y k
0 ))Ad(k))|k⊥(γ)

det(1− exp(−iad(Y k
0 ))Ad(k))|p⊥(γ)

]1/2
.

(7.1.4)

Proposition 7.1.1. For an elliptic element γ ∈ G, there exists a constant Cγ > 0
(depending on Λ) such that for t ∈ ]0, 1]

|
√
tEX,γ(F, t)| ≤ Cγ ,

|(1 + 2t
∂

∂t
)EX,γ(F, t)| ≤ Cγ

√
t.

(7.1.5)
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As t→ 0, EX,γ(E, t) has the asymptotic expansion in the form of

(7.1.6)
1√
t

+∞∑
j=0

aγj t
j ,

with aγj ∈ C.

Proof. If γ is elliptic, up to a conjugation, we assume that γ = k ∈ T . Thus the
subgroup H defined in Subsection 4.1 is also a Cartan subgroup of Z(γ)0, then
b(γ) = b. Let b⊥(γ) be the orthogonal complementary space of b(γ) in p(γ), whose
dimension is p−1. Note that the similar estimates have been proved in [28, Theorem
4.4.1], here we only sketch a proof to (7.1.5).

By (7.1.3), we have

EX,γ(F, t) =
1

(2πt)p/2
exp

(
− 2π2t|Λ + ρu|2

)
·
∫
k(k)

Jk(
√
tY k

0 )Trs
Λ•(p∗)

[
(NΛ•(p∗) − m

2
)Ad(k) exp(−iad(

√
tY k

0 ))
]

TrE [ρE(k) exp(−iρE(
√
tY k

0 ))]e
−|Y k

0 |2/2 dY k
0

(2π)q/2
,

(7.1.7)

where the integral is rescaled by
√
t.

In this proof, we denote by C or c a positive constant independent of the variables
t and Y k

0 . We use the symbol Oind to denote the big-O convention which does not
depend on t and Y k

0 .
The same computations as in [28, Eqs. (4.4.8) - (4.4.10)] shows that for Y k

0 ∈ t,

Jk(
√
tY k

0 ) =
1

det(1−Ad(k))|p⊥(k)

+Oind(
√
t|Y k

0 |eC
√
t|Y k

0 |),

1

t(p−1)/2
Trs

Λ•(p∗)[
(
NΛ•(p∗) − m

2

)
ρΛ

•(p∗)(k) exp(−iρΛ
•(p∗)(

√
tY k

0 ))]

= − det(iad(Y k
0 ))|b⊥(k) det(1−Ad(k))|p⊥(k) +Oind(

√
t|Y k

0 |eC
√
t|Y k

0 |).

(7.1.8)

Using the adjoint invariance, the further estimates on the above quantities by a
function in |Y k

0 | hold for all Y k
0 ∈ k(k).

It is clear that

(7.1.9) |TrE [ρE(k) exp(−iρE(
√
tY k

0 ))]| ≤ C exp(C
√
t|Y k

0 |).

Combining (7.1.8) and (7.1.9), we see that there exists a number N ∈ N big
enough, if t ∈]0, 1]

(7.1.10) |
√
tEX,γ(F, t)| ≤ C ′

k

∫
k(k)

(1 + |Y k
0 |)N exp(C|Y k

0 | − |Y k
0 |2/2)dY k

0 .

The second estimate in (7.1.5) can be proved using the same arguments as in
[28, Eqs. (4.4.24) - (4.4.29)].

The asymptotic expansion in (7.1.6) is just a consequence of (7.1.5) and (7.1.7).
This completes the proof of our proposition. □

7.2. Elliptic orbital integrals for Hodge Laplacians. In this subsection, we
explain how to use Bismut’s formula (4.1.16) to compute explicitly the expansion
of EX,γ(F, t) in t > 0 when γ ∈ G is elliptic. Then we study the corresponding
Mellin transform. After conjugation, we may and we will assume that γ = k ∈ T .
Then T is also a maximal torus for K(γ)0, and b(γ) = b.
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Recall that ωYb(γ), Ωub(γ), Ωum(γ) are defined in Subsection 5.2. Note that
dim u⊥b (γ) = 4l(γ). If ν ∈ Λ•(u⊥b (γ)

∗), let [ν]max(γ) ∈ R be such that

(7.2.1) ν − [ν]max(γ)ω
Yb(γ),2l(γ)

(2l(γ))!

is of degree strictly smaller than 4l(γ).
Recall that −B(·, θ·) is an Euclidean product on g. Let n⊥(γ), n̄⊥(γ) be the

orthogonal spaces of n(γ), n̄(γ) in n, n̄ respectively. As T -modules, n⊥(γ) ≃ n̄⊥(γ).
Since t ⊂ k(γ) ⊂ k, then R(k(γ), t) is a sub-root system of R(k, t). Let R+(k(γ), t)

be the positive root system for (k(γ), t) induced by R+(k, t). We use the notation
in Subsections 5.1, 5.2. Then t is a Cartan subalgebra for km(γ), um(γ), m(γ). Let
R(km(γ), t), R(um(γ), t) be the corresponding root systems.

Similar to (5.4.10), we have the following disjoint union

(7.2.2) R(um(γ), t) = R(
√
−1pm(γ), t) ∪R(km(γ), t).

Since R(um(γ), t) ⊂ R(um, t), then by intersecting with R+(um, t), we get a positive
root system R+(um(γ), t). Moreover,

(7.2.3) R+(um(γ), t) = R+(
√
−1pm(γ), t) ∪R+(km(γ), t).

Let Vol(K/T ), Vol(UM/T ) be the Riemannian volumes of K/T , UM/T with
respect to the restriction of −B to k, um respectively. We have explicit formulae
for them in terms of the roots, for example,

(7.2.4) Vol(UM , T ) = Πα0∈R+(um,t)
1

2π⟨α0, ρum
⟩
.

For γ = k ∈ T , set

(7.2.5) cG(γ) =
(−1)

p−1
2 +1Vol(K(γ)0/T )|W (UM (γ)0, T )|
Vol(UM (γ)0/T )|W (K(γ)0, T )|

1

det(1−Ad(γ))|n⊥(γ)

.

If γ = 1, we denote

(7.2.6) cG = cG(1) =
(−1)

m−1
2 +1Vol(K/T )|W (UM , T )|
Vol(UM/T )|W (K,T )|

.

We will use the same notation as in Subsections 5.3 & 5.4. In particular, Wu is
defined by (5.3.4) as a subset of W (U, TU ), and W 1(γ) is defined by (5.4.14) as a
subset of W (UM , T ). As explain in Remark 5.4.5, for ω ∈Wu, σ ∈W 1(γ), let Eγ

ω,σ

denote the irreducible unitary representation of Y = UM (γ)0 or its finite central
extension with highest weight σ(ηω(Λ) + ρum

)− ρy.

Definition 7.2.1. For j = 0, 1, · · · , l(γ), ω ∈Wu, σ ∈W 1(γ), set

Qγ
j,ω,σ(Λ) =

(−1)jβ(a1)
2j

j!(2l(γ)− 2j)!(8π2)j
dimEγ

ω,σ

·
[
ωYb(γ),2j⟨ω(Λ + ρu),Ω

um(γ)⟩2l(γ)−2j
]max(γ)

.

(7.2.7)

In particular, if l(γ) ≥ 1, we have

Qγ
0,ω,σ(Λ) =

1

(2l)!
dimEγ

ω,σ

[
⟨ω(Λ + ρu),Ω

um(γ)⟩2l(γ)
]max(γ)

,

Qγ
l(γ),ω,σ(Λ) =

(−1)l(γ)β(a1)
2l(γ)(2l(γ)− 1)!!

(4π2)l(γ)
dimEγ

ω,σ.

(7.2.8)

Recall that a1 ∈ b is such that B(a1, a1) = 1. For ω ∈Wu, set

(7.2.9) bΛ,ω = ⟨ω · (Λ + ρu),
√
−1a1⟩ ∈ R.
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Then we have

(7.2.10) |ηω(Λ) + ρum
|2 − |Λ + ρu|2 = −b2Λ,ω.

Note that φγ(σ, ηω(Λ)) is defined in Definition 5.4.3.

Theorem 7.2.2. For t > 0, we have the following identity

(7.2.11) EX,γ(F, t) =
cG(γ)√
2πt

l(γ)∑
j=0

t−j
∑

ω∈Wu
σ∈W1(γ)

ε(ω)φγ(σ, ηω(Λ))e
−2π2tb2Λ,ωQγ

j,ω,σ(Λ).

Remark 7.2.3. The formula (7.2.11) is compatible with the estimate (7.1.5). For
example, we take γ = 1, then W 1(γ) reduce to {1}, the representation Eγ

ω,σ is
just VΛ,ω introduced in (5.3.6), and l(γ) = l, φγ(σ, ηω(Λ)) = 1. Then we take the
asymptotic expansion of the right-hand side of (7.4.2) as t → 0, the coefficient of
t−l−1/2 is given by

(7.2.12)
cG√
2π

∑
ω∈Wu

ε(ω)Qγ=1
l,ω,1(Λ).

By (5.3.7), if l ≥ 1, we get

(7.2.13)
∑

ω∈Wu

ε(ω) dimVΛ,ω = Trs
Λ•(n∗

C)[1] dimE = 0.

Then by (7.2.8) and (7.2.13), the quantity in (7.2.12) is 0 (provided l ≥ 1).

Before proving Theorem 7.2.2, we need some preparation work.

Definition 7.2.4. For y ∈ t, put

πum(γ)/t(y) =
∏

α0∈R+(um(γ),t)

⟨2π
√
−1α0, y⟩.

π√−1pm(γ)/t(y) =
∏

α0∈R+(
√
−1pm(γ),t)

⟨2π
√
−1α0, y⟩.

πkm(γ)/t(y) =
∏

α0∈R+(km(γ),t)

⟨2π
√
−1α0, y⟩.

(7.2.14)

For y ∈ t, put

σum(γ)/t(y) =
∏

α0∈R+(um(γ),t)

(
exp(⟨π

√
−1α0, y⟩)− exp(−⟨π

√
−1α0, y⟩)

)
.

σ√−1pm(γ)/t(y) =
∏

α0∈R+(
√
−1pm(γ),t)

(
exp(⟨π

√
−1α0, y⟩)− exp(−⟨π

√
−1α0, y⟩)

)
.

σkm(γ)/t(y) =
∏

α0∈R+(km(γ)t,t)

(
exp(⟨π

√
−1α0, y⟩)− exp(−⟨π

√
−1α0, y⟩)

)
.

(7.2.15)

We can always extend analytically the above functions to y ∈ tC. If γ = 1, the
above functions become πum/t(y), π√−1pm/t(y), πkm/t(y), σum/t(y), σ√−1pm/t(y),
σkm/t(y).

If the adjoint action of T preserves certain orthogonal splittings of um, um(γ),
etc, so that we have the corresponding splitting of the root systems, then we can
also define the associated π-function or σ-function as above.

It is clear that if y ∈ tC,
πum(γ)/t(y) = π√−1pm(γ)/t(y)πkm(γ)/t(y),

σum(γ)/t(y) = σ√−1pm(γ)/t(y)σkm/t(y)
(7.2.16)
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Set
k′m(γ) = k⊥(γ) ∩ km, p

′
m(γ) = p⊥(γ) ∩ pm;

k′′m(γ) = k⊥(γ) ∩ k⊥(b), p′′m(γ) = p⊥(γ) ∩ p⊥(b).
(7.2.17)

Let m⊥(γ) be the orthogonal space of m(γ) in m with respect to B. Then

(7.2.18) m⊥(γ) = p′m(γ)⊕ k′m(γ).

We also have

(7.2.19) km = km(γ)⊕ k′m(γ), pm = pm(γ)⊕ p′m(γ),

and

(7.2.20) k⊥(γ) = k′m(γ)⊕ k′′m(γ), p
⊥(γ) = p′m(γ)⊕ p′′m(γ).

Set

(7.2.21) u⊥m(γ) =
√
−1p′m(γ)⊕ k′m(γ).

Then it is the orthogonal space of um(γ) in um with respect to B.

Lemma 7.2.5. The following spaces are isomorphic to each other as modules of T
by the adjoint actions,

(7.2.22) n⊥(γ) ≃ n̄⊥(γ) ≃ k′′m(γ) ≃ p′′m(γ).

Proof. Note that

(7.2.23) dim n = dim k− dim km, dim n(γ) = dim k(γ)− dim km(γ).

Together with the splittings (7.2.19), (7.2.20), we get

(7.2.24) dim k′′m(γ) = dim n⊥(γ).

Similarly, dim p′′m(γ) = dim n⊥(γ).
If f ∈ n⊥(γ), then f + θ(f) ∈ k, we can verify directly that f + θ(f) ∈ k′′m(γ).

Then the map f ∈ n⊥(γ) 7→ f+θ(f) ∈ k′′m(γ) defines an isomorphisms of T -modules.
Similar for n⊥(γ) ≃ p′′m(γ). □

Since γ = k ∈ T , let y0 ∈ t be such that exp(y0) = γ. Note that y0 is not unique.

Lemma 7.2.6. If y ∈ t is regular with respect to R(km(γ), t), then we have

Jγ(y)Trs
Λ•(p∗)[(NΛ•(p∗) − m

2
)Ad(k) exp(−iad(y))]

=
(−1)dim pm(γ)/2+1

det(1−Ad(k))|n⊥(γ)

Trs
Λ•(n∗

C)[e−iad(y)Ad(k)]

·
π√−1pm(γ)/t(iy)

πkm(γ)/t(iy)

σum(γ)/t(iy)σu⊥
m(γ)/t(−iy + y0)

σu⊥
m(γ)/t(y0)

.

(7.2.25)

Proof. Using (5.4.23), (7.2.20) and Lemma 7.2.5, we get that for y ∈ t,[
1

det(1−Ad(k))|z⊥(γ)

det(1− e−iad(y)Ad(k))|k⊥(γ)

det(1− e−iad(y)Ad(k))|p⊥(γ)

]1/2
=

(−1)
dim p′

m(γ)

2

det(1−Ad(k))|n⊥(γ)

1

σu⊥
m(γ)/t(y0)

σk′m(γ)/t(−iy + y0)

σ√−1p′
m(γ)/t(−iy + y0)

.

(7.2.26)

Recall that in Subsection 5.1, asKM -modules, we have the following isomorphism

(7.2.27) p ≃ b⊕ pm ⊕ n.

Note that

(7.2.28) Ad(k) = ead(y0).
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If y ∈ t, when acting on p, we have

(7.2.29) Ad(k) exp(−iad(y)) = exp(ad(−iy + y0)).

Note that dim b = 1. Then for y ∈ t, we get

Trs
Λ•(p∗)

[
(NΛ•(p∗) − m

2
)Ad(k) exp(−iad(y))

]
= −Trs

Λ•(p∗
m)[Ad(k)e−iad(y)]Trs

Λ•(n∗
C)[Ad(k)e−iad(y)]

= −det(1−Ad(k−1)eiad(y))|pm
Trs

Λ•(n∗
C)[Ad(k)e−iad(y)],

(7.2.30)

where we have the identity
(7.2.31)
det(1−Ad(k−1)eiad(y))|pm

= (−1)(dim pm)/2σ√−1p′
m(γ)/t(−iy+y0)2σ√−1pm(γ)/t(iy)

2.

Note that analogue to (7.2.27), we have p(γ) ≃ b ⊕ pm(γ) ⊕ n(γ), using [4,
Eq.(7.5.24)], if y ∈ t, we have

Â(iad(y)|√−1p(γ)) =
π√−1pm(γ)/t(iy)

σ√−1pm(γ)/t(iy)
Â(iad(y)|n(γ)),

Â(iad(y)|k(γ)) =
πk(γ)/t(iy)

σk(γ)/t(iy)
=
πkm(γ)/t(iy)

σkm(γ)/t(iy)
Â(iad(y)|n(γ)).

(7.2.32)

Combining (7.1.4), (7.2.26) and (7.2.30) - (7.2.32), we get (7.2.25). □

Now we prove Theorem 7.2.2.

Proof to Theorem 7.2.2. Put

Fγ(Λ, t) =
1

(2πt)p/2

∫
k(γ)

Jγ(Y
k
0 )Trs

Λ•(p∗)
[
(NΛ•(p∗) − m

2
)Ad(k)e−iad(Y k

0 )
]

·TrE [ρE(k)e−iρE(Y k
0 )]e−|Y k

0 |2/2t dY k
0

(2πt)q/2
.

(7.2.33)

By (7.1.3), we have

(7.2.34) EX,γ(F, t) = exp
(
− 2π2t|Λ + ρu|2

)
Fγ(Λ, t).

Recall that r = p+ q = dimR z(γ). By Weyl integration formula, then

Fγ(Λ, t) =
Vol(K(γ)0/T )

(2πt)r/2|W (K(γ)0, T )|

·
∫
t

|πk(γ)/t(y)|2Jγ(y)TrsΛ
•(p∗)

[
(NΛ•(p∗) − m

2
)Ad(k)e−iad(y))

]
TrE [ρE(k) exp(−iρE(y))]e−|y|2/2tdy.

(7.2.35)

Recall that l(γ) = 1
2 dim n(γ). We can verify directly that if y ∈ t,

(7.2.36) πk(γ)/t(iy)
2 = (−1)l(γ)πkm(γ)/t(iy)

2 det(iad(y))|n(γ)C .

Moreover, if y ∈ t is such that πum(γ)/t(y) ̸= 0,

(7.2.37)
|πk(γ)/t(y)|2

|πum(γ)/t(y)|2
=

πk(γ)/t(iy)
2

πum(γ)/t(iy)2
.
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Then by Lemma 7.2.6 and (7.2.5), (7.2.32), (7.2.36), we get

|πk(γ)/t(y)|2

|πum(γ)/t(y)|2
Jγ(y)Trs

Λ•(p∗)[(NΛ•(p∗) − m

2
)Ad(k) exp(−iad(y))]

=
(−1)l(γ)+dim pm(γ)/2+1

det(1−Ad(k))|n⊥(γ)

Trs
Λ•(n∗

C)[e−iad(y)Ad(k)]

· det(iad(y))|n(γ)CÂ
−1(iad(y)|um(γ))

[det(1− e−iad(y)Ad(k))|u⊥
m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2 .

(7.2.38)

Note that we have the even number

(7.2.39) p− 1 = dim pm(γ) + 2l(γ).

Now we can rewrite (7.2.35) as follows,

Fγ(Λ, t) =
(−1)

p−1
2 +1Vol(K(γ)0/T )

(2πt)r/2|W (K(γ)0, T )|
1

det(1−Ad(k))|n⊥(γ)

·
∫
t

|πum(γ)/t(y)|2 det(iad(y))|n(γ)C · Â
−1(iad(y)|um(γ))

·
[det(1− e−iad(y)Ad(k))|u⊥

m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2

· TrsΛ
•(n∗

C)⊗E [e−iρΛ•(n∗
C)⊗E(y)ρΛ

•(n∗
C)⊗E(k)]e−|y|2/2tdy.

(7.2.40)

Note that the function in y ∈ t

det(iad(y))|n(γ)C · Â
−1(iad(y)|um(γ))

[det(1− e−iad(y)Ad(k))|u⊥
m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2

·TrsΛ
•(n∗

C)⊗E [e−iρΛ•(n∗
C)⊗E(y)ρΛ

•(n∗
C)⊗E(k)]

(7.2.41)

can be extended directly to a UM (γ)0-invariant function in y ∈ um(γ). Since t is
a Cartan subalgebra of um(γ), we can apply the Weyl integration formula for the
pair (um(γ), t), we get

Fγ(Λ, t) =
cG(γ)

(2πt)r/2

∫
y∈um(γ)

det(iad(y))|n(γ)C · Â
−1(iad(y)|um(γ))

·
[det(1− e−iad(y)Ad(k))|u⊥

m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2

· TrsΛ
•(n∗

C)⊗E [e−iρΛ•(n∗
C)⊗E(y)ρΛ

•(n∗
C)⊗E(k)]e−|y|2/2tdy.

(7.2.42)

The constant cG(γ) is defined by (7.2.5).
Note that

(7.2.43) r = dim um(γ) + 4l(γ) + 1.

If y ∈ um(γ), then

(7.2.44) B(y,
Ωum(γ)

2π
) ∈ Λ2(u⊥b (γ)

∗).

If y ∈ um(γ), by [44, Eq. (7-27)], we have

(7.2.45)
det(iad(y))|n(γ)C

(2πt)2l(γ)
= [exp

(1
t
B(y,

Ωum(γ)

2π
)
)
]max(γ).
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Combining (7.2.42) - (7.2.45), we get

Fγ(Λ, t) =
cG(γ)√
2πt

[ ∫
y∈um(γ)

Â−1(iad(y)|um(γ))
[det(1− e−iad(y)Ad(k))|u⊥

m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2

· TrsΛ
•(n∗

C)⊗E [ρΛ
•(n∗

C)⊗E(e−iyk)]e
1
tB(y,Ω

um(γ)

2π )−|y|2/2t dy

(2πt)dim um(γ)/2

]max(γ)

.

(7.2.46)

By (5.2.21) if y ∈ um(γ), then

(7.2.47) B(y,
Ωum(γ)

2π
)− |y|2

2
=

1

2
B(y +

Ωum(γ)

2π
, y +

Ωum(γ)

2π
)− β(a1)

2

8π2
ωYb(γ),2.

Let ∆um(γ) be the standard negative Laplace operator on the Euclidean space
(um(γ),−B|um(γ)). Then by considering the heat kernel of −∆um(γ), we can rewrite
(7.2.46) as follows,

Fγ(Λ, t) =
cG(γ)√
2πt

[
exp(−β(a1)

2ωYb(γ),2

8π2t
)

exp(
t

2
∆um(γ))

{
Â−1(iad(y)|um(γ))

[det(1− e−iad(y)Ad(k))|u⊥
m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2

Trs
Λ•(n∗

C)⊗E
[
ρΛ

•(n∗
C)⊗E(e−iyk)

]}
|
y=−Ωum(γ)

2π

]max(γ)

.

(7.2.48)

Recall that VΛ,ω is an irreducible unitary representation of UM with highest
weight ηω(Λ). By (5.3.7), for y ∈ um(γ), then

(7.2.49) Trs
Λ•(n∗

C)⊗E [ρΛ
•(n∗

C)⊗E(e−iyk)] =
∑

ω∈Wu

ε(ω)TrVΛ,ω
[
ρVΛ,ω (e−iyk)

]
.

Then we apply the generalized Kirillov formula (5.4.21) to each term in the right-
hand side of (7.2.49), we conclude that, for ω ∈Wu, the function in y ∈ um(γ)

(7.2.50) Â−1(iad(y)|um(γ))
[det(1− e−iad(y)Ad(k))|u⊥

m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2TrVΛ,ω [ρVΛ,ω (e−iyk)]

is an eigenfunction of ∆um(γ) associated with the eigenvalue 4π2|ηω(Λ) + ρum
|2.

Then the heat operator exp
(
t
2∆

um(γ)
)

acts on the function (7.2.50) as a scalar
e2π

2t|ηω(Λ)+ρum |2 . By (5.3.8), (5.3.9), for ω ∈Wu, we get

(7.2.51) ηω(Λ) + ρum
= P0(ω(Λ + ρu)).

Combing the above computation with the term e−2π2t|Λ+ρu|2 in (7.2.34), by (7.2.10),
we get the factor e−2π2tb2Λ,ω in (7.2.11).

Now we deal with the main part in (7.2.48) after removing the heat operator
exp

(
t
2∆

um(γ)
)
. We will use the same notation as in Subsection 5.4. The orbit

Oγ
σ(ηω(Λ)+ρum ) is defined in (5.4.17) equipped with a Liouville measure dµγ

σ. We
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claim the following identity,

[
exp(−β(a1)

2ωYb(γ),2

8π2t
)

{
Â−1(iad(y)|um(γ))

[det(1− e−iad(y)Ad(k))|u⊥
m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2

Trs
VΛ,ω [ρVΛ,ω (e−iyk)]

}
|
y=−Ωum(γ)

2π

]max(γ)

=
∑

σ∈W 1(γ)

φγ(σ, ηω(Λ)) · dimEγ
ω,σ

·
[
exp

(
−β(a1)

2ωYb(γ),2

8π2t
− ⟨σ(ηω(Λ) + ρum

),Ωum(γ)⟩
)]max(γ)

.

(7.2.52)

Indeed, by (5.4.21), we have the following identity as elements in Λ•(u⊥b (γ)
∗),{

Â−1(iad(y)|um(γ))
[det(1− e−iad(y)Ad(k))|u⊥

m(γ)

det(1−Ad(k))u⊥
m(γ)

] 1
2

Trs
VΛ,ω [ρVΛ,ω (e−iyk)]

}
|
y=−Ωum(γ)

2π

=
∑

σ∈W 1(γ)

φγ(σ, ηω(Λ))

∫
f∈Oγ

σ(ηω(Λ)+ρum )

e−⟨f,Ωum(γ)⟩dµγ
σ.

(7.2.53)

Recall that the curvature form Ωub(γ) is invariant by the action of UM (γ)0 on
Yb(γ). Since a1 and ωYb(γ) are invariant by UM (γ)0-action, so is Ωum(γ). Therefore,
for f ∈ um(γ)

∗, u ∈ UM (γ)0, then[
exp(−β(a1)

2ωYb(γ),2

8π2t
) exp(−⟨Ad∗(u)f,Ωum(γ)⟩)

]max(γ)

= detAd(u)|u⊥
b (γ)

[
exp(−β(a1)

2ωYb(γ),2

8π2t
) exp(−⟨f,Ωum(γ)⟩)

]max(γ)
.

(7.2.54)

Since UM (γ)0 acts on u⊥b (γ) isometrically with respect to −B|u⊥
b (γ), then

(7.2.55) detAd(u)|u⊥
b (γ) = 1.

Then (7.2.52) follows from (5.4.6) and (7.2.53) - (7.2.55).
The right-hand side of (7.2.52) is a polynomial in t−1. Recall that dim u⊥b (γ) =

4l(γ). Then for each σ ∈W 1(γ), we can rewrite the term
[
· · ·

]max(γ) in the right-
hand side of (7.2.52) as follows,

(7.2.56)
l(γ)∑
j=0

1

tj
(−1)jβ(a1)

2j

j!(2l(γ)− 2j)!(8π2)j
[
ωYb(γ),2j⟨ω(Λ + ρu),Ω

um(γ)⟩2l(γ)−2j
]max(γ)

.

Finally, we put together (7.2.7), (7.2.34), (7.2.48), (7.2.49), (7.2.52), and (7.2.56),
we get (7.2.11). This completes the proof of our theorem. □

The Mellin transform of EX,γ(F, t) (if applicable) is defined by the following
formula as a function in s ∈ C with ℜ(s) ≫ 0,

(7.2.57) MEX,γ(F, s) = − 1

Γ(s)

∫ +∞

0

EX,γ(F, t)t
s−1dt.

If MEX,γ(F, s) admits a meromorphic extension on C which is holomorphic at
s = 0, we will set

(7.2.58) PEX,γ(F ) =
∂

∂s
|s=0MEX,γ(F, s).
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Theorem 7.2.7. Suppose that the dominant weight Λ is such that for every ω ∈
Wu, bΛ,ω ̸= 0. Then for s ∈ C with ℜ(s) > l(γ) + 1 , MEX,γ(F, s) is well-defined
and holomorphic, which admits a meromorphic extension to s ∈ C.

Moreover, we have the following identity,

MEX,γ(F, s) =− cG(γ)√
2π

l(γ)∑
j=0

Γ(s− j − 1
2 )

Γ(s)

·
[ ∑

ω∈Wu
σ∈W1(γ)

ε(ω)φγ(σ, ηω(Λ))Q
γ
j,ω,σ(Λ)(2π

2b2Λ,ω)
j+ 1

2−s
]
.

(7.2.59)

Then MEX,γ(F, s) is holomorphic at s = 0. We have

PEX,γ(F ) =− cG(γ)√
2

l(γ)∑
j=0

(−4)j+1(j + 1)!

(2j + 2)!

·
[ ∑

ω∈Wu
σ∈W1(γ)

ε(ω)φγ(σ, ηω(Λ))Q
γ
j,ω,σ(Λ)(2π

2b2Λ,ω)
j+ 1

2

]
.

(7.2.60)

Proof. By Theorem 7.2.2, the assumption on Λ implies that EX,γ(F, t) decays ex-
ponential as t → +∞. By (7.1.6) and (7.2.11), we get (7.2.59). This proves the
first part of this theorem.

The equation (7.2.60) is a direct consequence of (7.2.59) by taking its derivative
at 0. This completes the proof of our theorem. □

The formula in the right-hand side of (7.2.60) still looks complicated, we can
rewrite it in a neat way as follows. Let’s introduce the following functions.

Definition 7.2.8. Let a1 ∈ b∗ be which takes value −1 at a1. Note that γ ∈ T . For
ω ∈Wu, σ ∈W 1(γ), if Λ ∈ P++(U), for z ∈ C, set

P γ
ω,σ,Λ(z) = dimEγ

ω,σ ·
[
exp

(
⟨Ωub(γ), σ(ηω(Λ) + ρum

) + z
√
−1a1⟩

)]max(γ)

.

(7.2.61)

Since θ fix Ωub(γ), by the fact that det θ|u⊥
b (γ) = 1, then P γ

ω,σ,Λ(z) is an even
polynomial in z. Moreover, by the dimension formula (5.4.6), the coefficients of
zj , j ∈ N in P γ

ω,σ,Λ(z) are polynomials in Λ. Such polynomials are related to the
Plancherel measures in the representation theory.

Lemma 7.2.9. We have the following identity

l(γ)∑
j=0

(−4)j+1(j + 1)!√
2(2j + 2)!

Qγ
j,ω,σ(Λ)(2π

2(bΛ,ω)
2)j+

1
2

= −2π

∫ |bΛ,ω|

0

P γ
ω,σ,Λ(t)dt.

(7.2.62)

Proof. We have

⟨ηω(Λ) + ρum
+ z

√
−1a1,Ωub(γ)⟩

= zβ(a1)ω
Yb(γ) + ⟨ω(Λ + ρu),Ω

um(γ)⟩.
(7.2.63)
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Since P γ
ω,σ,Λ(z) is an even function in z, then

P γ
ω,σ,Λ(z) =dimEγ

ω,σ · 1

(2l(γ))!

[(
zβ(a1)ω

Yb(γ) + ⟨ω(Λ + ρu),Ω
um(γ)⟩

)2l(γ)
]max(γ)

=dimEγ
ω,σ ·

l(γ)∑
j=0

β(a1)
2jz2j

(2l(γ)− 2j)!(2j)!

·
[
ωYb(γ),2j⟨ω(Λ + ρu),Ω

um(γ)⟩2l(γ)−2j

]max(γ)

.

(7.2.64)

Note that for j = 0, 1, · · · , l(γ),

(7.2.65)
∫ |bΛ,ω|

0

t2jdt =
1

2j + 1
|bΛ,ω|2j+1.

Then (7.2.62) is a consequence of (7.2.7), (7.2.64) and (7.2.65). □

As a consequence, we get the following formula for PEX,γ(F ).

Theorem 7.2.10. Suppose that the dominant weight Λ is such that for every ω ∈
Wu, bΛ,ω ̸= 0. Then

(7.2.66) PEX,γ(F ) = 2πcG(γ) ·
∑

ω∈Wu
σ∈W1(γ)

ε(ω)φγ(σ, ηω(Λ))

∫ |bΛ,ω|

0

P γ
ω,σ,Λ(t)dt.

7.3. A family of representations of G. We recall a definition of nondegeneracy
of λ in [7, Definition 1.13 & Proposition 8.12].

Definition 7.3.1. A dominant weight Λ ∈ P++(U) is said to be nondegenerate with
respect to the Cartan involution θ if

(7.3.1) W (U, TU ) · Λ ∩ t∗ = ∅.
It is equivalent to

(7.3.2) Ad∗(U)Λ ∩ k∗ = ∅.
Note that if such dominant weight exists, we must have δ(G) > 0.

Let (E, ρE) be the irreducible unitary representation of U with highest weight
Λ ∈ P++(U). By the unitary trick, it extends to an irreducible representation of
G, which we still denote by (E, ρE). Then Λ being nondegenerate is equivalent to
say that (E, ρE) is not isomorphic to (E, ρE ◦ θ) as G-representation (as in [37]).

Definition 7.3.2. If λ ∈ t∗U , for ω ∈W (U, TU ), put

aλ,ω = ⟨ω · λ,
√
−1a1⟩ ∈ R.(7.3.3)

Recall the real number bλ,ω is already defined by (7.2.9), then bλ,ω = aλ,ω + aρu,ω.
In particular, we simply put aλ = aλ,1, bλ = bλ,1.

Lemma 7.3.3. If λ ∈ P++(U) is nondegenerate, then for ω ∈W (U, TU ), aλ,ω ̸= 0.

Now we fix two dominant weights λ, λ0 ∈ P++(U). Let {(Ed, ρ
Ed)}|d∈N be the

sequence of representations of G given by the irreducible unitary representations of
U with the highest weights dλ+ λ0, d ∈ N.

Put Fd = G ×K Ed. Let DX,Fd,2 denote the associated de Rham-Hodge Lapla-
cian. For t > 0, let exp(−tDX,Fd,2/2) denote the heat operator associated with
DX,Fd,2/2. By taking Λ = dλ+ λ0, we apply our results in previous subsection to
the sequence EX,γ(Fd, t), d ∈ N.
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7.4. Asymptotics for identity orbital integrals. In this subsection, we spe-
cialize our results in Subsection 7.2 for γ = 1 and Λ = dλ+λ0. Now the set W 1(γ)
reduces to {1}, and l(γ) = l, φγ(σ, ηω(Λ)) = 1. We will drop the superscript γ and
subscript σ in our notation.

Moreover, for ω ∈ Wu, the representation Eγ=1
ω,σ=1 is just VΛ,ω introduced in

(5.3.6), which is the irreducible unitary representation of UM with highest weight
ηω(Λ) given by (5.3.8).

Definition 7.4.1. By taking Λ = dλ+λ0 in (7.2.7), we define the following functions
in d, for j = 0, 1, · · · , l, ω ∈Wu, set

Qλ,λ0

j,ω (d) = Qj,ω(dλ+ λ0)

=
(−1)jβ(a1)

2j

j!(2l − 2j)!(8π2)j
dimVdλ+λ0,ω

·
[
ωYb,2j⟨ω(dλ+ λ0 + ρu),Ω

um⟩2l−2j
]max

.

(7.4.1)

By the Weyl dimension formula, dimVdλ+λ0,ω is a polynomial in d. Then Qλ,λ0

j,ω (d)

is a polynomial in d of degree ≤ dim(g/h)
2 − 2j.

By Theorem 7.2.2 and (7.4.1), we get directly the following results.

Theorem 7.4.2. For t > 0, we have the following identity

(7.4.2) IX(Fd, t) =
cG√
2πt

l∑
j=0

t−j
∑

ω∈Wu

ε(ω)e−2π2t(daλ,ω+bλ0,ω)2Qλ,λ0

j,ω (d).

Theorem 7.4.3. Suppose that λ is nondegenerate with respect to θ. For d ∈ N large
enough and for s ∈ C with ℜ(s) ≫ 0 , MIX(Fd, s) is well-defined and holomorphic,
which admits a unique meromorphic extension to s ∈ C and is holomorphic at s = 0.

Moreover, we have the following identities,

MIX(Fd, s) =− cG√
2π

l∑
j=0

Γ(s− j − 1
2 )

Γ(s)

·
[ ∑
ω∈Wu

ε(ω)Qλ,λ0

j,ω (d)(2π2(daλ,ω + bλ0,ω)
2)j+

1
2−s

]
,

(7.4.3)

and

PIX(Fd) =− cG√
2

l∑
j=0

(−4)j+1(j + 1)!

(2j + 2)!

·
[ ∑
ω∈Wu

ε(ω)Qλ,λ0

j,ω (d)(2π2(daλ,ω + bλ0,ω)
2)j+

1
2

]
.

(7.4.4)

In particular, the quantity PIX(Fd) is a polynomial in d for d large enough, whose
coefficients depend only on the given root system and λ, λ0, and has degree ≤
dim(g/h)

2 + 1.

Proof. Since λ is nondegenerate, by Lemma 7.3.3, aλ,ω ̸= 0, ω ∈ Wu. Then there
exists d0 ∈ N such that for d ≥ d0, (daλ,ω + bλ0,ω)

2 > 0. Then by Theorem 7.2.7,
we get first part of this theorem and (7.4.3), (7.4.4).

Note that [(daλ,ω + bλ0,ω)
2]1/2 = |daλ,ω + bλ0,ω|. For d ≫ d0, |daλ,ω + bλ0,ω| =

sign(aλ,ω)(daλ,ω + bλ0,ω). Then we see that PIX(Fd) is a polynomial in d for d
large enough. This completes the proof of our theorem. □
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As explained in Remark 5.3.3, when G has noncompact center with δ(G) = 1
(but U is still assumed to be compact), most of the above computations can be
reduce into very simple ones. Recall that aλ, bλ0 ∈ R are defined in Definition
7.3.2.

Corollary 7.4.4. Assume that U is compact and that G has noncompact center
with δ(G) = 1, and assume that λ is nondegenerate. Then for t > 0, s ∈ C,

IX(Fd, t) =
cG√
2πt

e−2π2t(daλ+bλ0
)2 dimEd,

MIX(Fd, s) = − cG√
2π

Γ(s− 1
2 )

Γ(s)

(
2π2(daλ + bλ0

)2
)1/2−s

dimEd.

(7.4.5)

Furthermore,

(7.4.6) PIX(Fd) = 2πcG|daλ + bλ0
|dimEd.

Proof. By the hypothesis, we get that l = 0, Wu = {1} and Qλ,λ0

0,1 (d) = dimEd.
Then (7.4.5), (7.4.6) are just special cases of (7.4.2), (7.4.3) and (7.4.4).

However, we can prove them more directly using a result of Proposition 4.1.6.
It is enough to prove the first identity in (7.4.5). Note that by (5.3.11), we have

(7.4.7) X ′ =M/K,

with δ(X ′) = 0.
By [37, Proposition 5.2] or [44, Proposition 4.1], we have

[e(TX ′,∇TX′
)]max

= (−1)
m−1

2
|W (UM , T )|/|W (K,T )|

Vol(UM/K)
.

(7.4.8)

Then by (7.2.6), we have

(7.4.9) [e(TX ′,∇TX′
)]max = −cG.

By (4.1.28) and (7.3.3), we have

(7.4.10) αEd
= −2π(daλ + bλ0

).

Combing (4.1.31) and (7.4.8) - (7.4.10), we get the first identity in (7.4.5), and
hence the other identities. This gives a second proof to this corollary. □

7.5. Connection to Müller-Pfaff’s results. In this subsection, we assume that
G has compact center with δ(G) = 1. We explain here how to connect our compu-
tations in previous subsection to Müller-Pfaff’s results in [37].

For γ = 1, ω ∈Wu, the function P γ
ω,σ,Λ defined in (7.2.61) now reduces to

(7.5.1) Pω,Λ(z) = dimVΛ,ω

[
exp

(
⟨ηω(Λ) + ρum

+ z
√
−1a1,Ωu(b)⟩

)]max

.

We can verify directly that

(7.5.2) Pω,Λ(z) =
Vol(UM/T )

Vol(U/TU )
Πα0∈R+(u,tU )

⟨α0, ηω(Λ) + ρum
+ z

√
−1a1⟩

⟨α0, ρu⟩
.

The scalar product in (7.5.2) is taken with respect to −B|u. Up to a universal
constant, Pω,Λ(z) is just the polynomial related to the Plancherel measure of rep-
resentation VΛ,ω as given in [37, Eq. (6.10)]. Note that there is no factor (2π)2l

appeared in (7.5.2) because of our normalization for [·]max.
By Theorem 7.2.10, we have the following result for sufficiently large d.
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Corollary 7.5.1. Suppose that λ is nondegenerate with respect to θ. Then

(7.5.3) PIX(Fd) = 2πcG
∑

ω∈Wu

ε(ω)

∫ |daλ,ω+bλ0,ω|

0

Pω,dλ+λ0
(t)dt.

By [37, Lemma 6.1], we can get the following identity,

(7.5.4) |W (K,T )| = 2|W (KM , T )|.

Combining (7.2.6), (7.5.2), (7.5.4), we see that the formula in Corollary 7.5.1, is
exactly the same formula of Müller-Pfaff [37, Proposition 6.6] for PIX(Fd).

Recall that the U -representation Ed has highest weight dλ+λ0 ∈ P++(U). Then
by Weyl dimension formula, dimEd is a polynomial in d. If λ is regular, then the
degree (in d) of dimEd is dim g/h

2 .
For determining the leading term of PIX(Fd), as mentioned in the introduc-

tion part, we can specialize the result of Bismut-Ma-Zhang [7, Theorem 0.1] as in
[7, Section 8] for the symmetric space X. Here to emphasize PIX(Fd) being a
polynomial in d, we state a result of Müller-Pfaff [37, Proposition 1.3] as follows.

Proposition 7.5.2. Suppose that λ is nondegenerate and that λ0 = 0. Then there
exists a constant CX,λ ̸= 0 such that

(7.5.5) PIX(Fd) = CX,λddimEd +R(d),

where R(d) is a polynomial whose degree is no greater than the degree of dimEd.

Remark 7.5.3. Note that in [37, Proposition 1.3], Müller and Pfaff proved Proposi-
tion 7.5.2 by reducing the problems to the cases G = SL3(R) and SO0(p, q)(pq > 1
odd). In particular, for certain examples of λ, they also worked out explicitly the
constant CX,λ [37, Corollaries 1.4 & 1.5].

Similarly, if we take a nonzero λ0, we can repeat their computations for G =
SL3(R) and SO0(p, q) (pq > 1 odd) in order to get more explicit information on the
leading terms of PIX(Fd).

An important step in Müller-Pfaff’s proof to Proposition 7.5.2 is reducing the
computation of PIX(Fd) to the cases where g = sl3(R) or so(p, q) with pq > 1 odd.
Such reduction is already explained in Subsection 4.2. More precisely, we have

(7.5.6) X = X1 ×X2,

where X1 is one case listed in (4.2.1), and X2 is a symmetric space rank 0.
We use the notation in Subsection 4.2 and assume G to be semisimple. Let λi,

λ0,i be dominant weights of Ui, i = 1, 2 such that

(7.5.7) λ = λ1 + λ2, λ0 = λ0,1 + λ0,2.

Now we consider the sequence dλ+ λ0, d ∈ N. Then

(7.5.8) Ed = Edλ1+λ0,1
⊗ Edλ2+λ0,2

.

Since G2 is equal rank, the nondegeneracy of λ with respect to θ is equivalent
to the nondegeneracy of λ1 with respect to θ1. Then by Proposition 4.2.2, after
taking the Mellin transform, we have

(7.5.9) MIX(Fd, s) = [e(TX2,∇TX2)]max2 dimEdλ2+λ0,2
MIX1

(Fdλ1+λ0,1
, s).

Then

(7.5.10) PIX(Fd) = [e(TX2,∇TX2)]max2 dimEdλ2+λ0,2
PIX1

(Fdλ1+λ0,1
).

Then we only need to evaluate PIX1
(Fdλ1+λ0,1

) explicitly, which has been dealt
with in [37, Section 6].
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7.6. Asymptotic elliptic orbital integrals.

Definition 7.6.1. A function f(d) in d is called an exponential polynomial in d if it
is a finite sum of the term cj,se

2π
√
−1sddj with j ∈ N, s ∈ R, cj,s ∈ C. The largest

j ≥ 0 such that cj,s ̸= 0 in f(d) is called the degree of f(d).
We say that the oscillating term e2π

√
−1sd is nice if s ∈ Q. We say that an

exponential polynomial f(d) in d is nice if all its oscillating terms are nice.

Remark 7.6.2. If f(d) is a nice exponential polynomial in d, then there exists a
N0 ∈ N>0 such that the function f(dN0) is a polynomial in d.

Note that by (5.4.18), φγ(σ, ηω(dλ + λ0)) is an oscillating term in d, which is
nice when γ ∈ T is of finite order. The following theorem is a direct consequence
of Theorem 7.2.10.

Theorem 7.6.3. Suppose that λ is nondegenerate, and that γ = k ∈ T . Then,
for sufficiently large d, PEX,γ(Fd) is an exponential polynomial in d. Moreover, we
have
(7.6.1)

PEX,γ(Fd) = 2πcG(γ)·
∑

ω∈Wu
σ∈W1(γ)

ε(ω)φγ(σ, ηω(dλ+λ0))

∫ |daλ,ω+bλ0,ω|

0

P γ
ω,σ,dλ+λ0

(t)dt.

If we consider G = Spin(1, 2n + 1), n ≥ 1 as in [18], then up to a constant, the
exponential polynomial

∑
σ∈W 1(γ) φγ(σ, ηω(dλ + λ0))P

γ
ω,σ,dλ+λ0

(t) is just the one
defined by Fedosova in [18, Proposition 5.1]. This way, our results are compatible
with her results in [18, Theorem 1,1] for hyperbolic orbifolds.

Remark 7.6.4. Let Char(A) denote the character ring of the complex representa-
tions of a compact Lie group A. One key ingredient in (7.2.66) is an explicit decom-
position of characters of U into characters of UM (γ)0. In the diagram (7.6.2), we
give two different ways of this decomposition. The formula in (7.2.66) is obtained
by the computations along the lower path in (7.6.2). We also have the upper path,
which is essentially the geometric localization formula obtained in Theorem 6.0.1.

(7.6.2) Char(U(γ)0)

⊗Λ•n(γ)∗C

))
Char(U)

⊗Λ•n∗
C

))

Kirillov for γ ∈ U
55

Char(UM (γ)0)

Char(UM )

Kirillov for γ ∈ UM

55

We will use the same notation as in Section 6. The following theorem is a
consequence of the geometric localization formula obtained in Theorem 6.0.1.

For k ∈ T , let W 1
U (k) ⊂ W (U, TU ) be defined as in (5.4.14) with respect to

R+(u, tU ). For σ ∈ W 1
U (k), the term φU

k (σ, dλ + λ0) defined as in (6.0.8) is an
oscillating term, which is nice if k is of finite order.

Theorem 7.6.5. Suppose that γ = k ∈ T is elliptic and that λ is nondegenerate
with respect to θ. Then for σ ∈ W 1

U (k), σλ ∈ P++(Ũ(k)) is nondegenerate with
respect to the Cartan involution θ on z(k). For d ∈ N, let Ek

σ,d be the irreducible uni-
tary representation of Ũ(k) with highest weight dσλ+σ(λ0+ρu)−ρu(k). This way,
we get a sequence of flat vector bundles {F k

σ,d}d∈N on X(k). Then for sufficiently
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large d, we have

(7.6.3) PEX,γ(Fd) =
∑

σ∈W 1
U (k)

φU
k (σ, dλ+ λ0)PIX(k)(F

k
σ,d).

Proof. The nondegeneracy of σλ (σ ∈ W 1
U (k)) follows easily from the nondegener-

acy of λ and the definition of W 1
U (k). For proving this theorem, we only need to

prove (7.6.3). Actually, by Theorem 6.0.1, for t > 0, we get

(7.6.4) EX,γ(Fd, t) =
∑

σ∈W 1
U (k)

φU
k (σ, dλ+ λ0)IX(k)(F

k
σ,d, t),

Then (7.6.3) follows from the linearity of Mellin transform. This completes the
proof of our theorem. □

8. A proof of Theorem 1.0.2

In this section, we complete the proof of Theorem 1.0.2, then Theorem 1.0.1
(and Theorem 1.0.1’) follows as a consequence. We assume that G is a connected
linear real reductive Lie group with δ(G) = 1 and compact center, so that U is a
compact Lie group.

8.1. A lower bound for the Hodge Laplacian on X. We use the notation as
in Subsection 4. Recall that e1, · · · , em is an orthogonal basis of TX or p. Put

(8.1.1) Cg,H = −
m∑
j=1

e2j ∈ Ug.

Let Cg,H,E be its action on E via ρE . Then

(8.1.2) Cg,E = Cg,H,E + Ck,E .

Let ∆H,X be the Bochner-Laplace operator on bundle Λ•(T ∗X)⊗ F associated
with the unitary connection ∇Λ•(T∗X)⊗F,u. Put

Θ(F ) =
SX

4
− 1

8
⟨RTX(ei, ej)ek, eℓ⟩c(ei)c(ej)ĉ(ek)ĉ(eℓ)

−Cg,H,E +
1

2

(
c(ei)c(ej)− ĉ(ei)ĉ(ej)

)
RF (ei, ej),

(8.1.3)

where RF is the curvature of the unitary connection ∇F on F .
Then Θ(F ) is a self-adjoint section of End(Λ•(T ∗X)⊗F ), which is parallel with

respect to ∇Λ•(T∗X)⊗F,u. Equivalently, Θ(F ) is an element in End(Λ•(p∗) ⊗ E)
which commutes with K-action. By [7, Eq. (8.39)], we have

DX,F,2 = −∆H,X +Θ(F ).(8.1.4)

Then for s ∈ Ω·
c(X,F ), we have

(8.1.5) ⟨DX,F,2s, s⟩L2
≥ ⟨Θ(F )s, s⟩L2

.

Let ∆H,X,i denote the Bochner-Laplace operator acting on Ωi(X,F ), and let
pH,i
t (x, x′) be the kernel of exp(t∆H,X,i/2) on X with respect to dx′. We will

denote by pH,i
t (g) ∈ End(Λi(p∗)⊗ E) its lift to G explained in Subsection 3.2. Let

∆X
0 be the scalar Laplacian on X with the heat kernel pX,0

t .
Let ||pH,i

t (g)|| be the operator norm of pH,i
t (g) in End(Λi(p∗) ⊗ E). By [38,

Proposition 3.1], if g ∈ G, then

(8.1.6) ||pH,i
t (g)|| ≤ pX,0

t (g).

Let pHt be the kernel of exp(t∆H,X/2), then

(8.1.7) pHt = ⊕p
i=1p

H,i
t .
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Let qX,F
t be the heat kernel associated with DX,F,2/2, by (8.1.4), for g ∈ X,

(8.1.8) qX,F
t (g) = exp(−tΘ(F )/2)pHt (g).

Recall that P++(U) is the set of dominant weights of U with respect to R+(u, tU )
defined in Subsection 5.3. As in Subsection 7.3, we fix λ, λ0 ∈ P++(U) such that λ is
nondegenerate with respect to θ. Recall that for d ∈ N, (Ed, ρ

Ed) is the irreducible
unitary representation of U with highest weight dλ + λ0, which extends uniquely
to a representation of G. By [6, Théorème 3.2] [7, Theorem 4.4 and Remark 4.5]
and [37, Proposition 7.5], there exist c > 0, C > 0 such that, for d ∈ N,

(8.1.9) Θ(Fd) ≥ cd2 − C,

where the estimate d2 comes from the positive operator Cg,H,Ed . By (8.1.4), (8.1.5),
(8.1.9), we get

(8.1.10) DX,Fd,2 ≥ cd2 − C.

Lemma 8.1.1. There exists d0 ∈ N and c0 > 0 such that if d ≥ d0, g ∈ G

(8.1.11) ||qX,Fd
t (g)|| ≤ e−c0d

2tpX,0
t (g).

Proof. By (8.1.9), there exist d0 ∈ N, c′ > 0 such that if d ≥ d0,

(8.1.12) Θ(Fd) ≥ c′d2.

Then if t > 0,

(8.1.13) || exp(−tΘ(Fd)/2)|| ≤ e−c′d2t/2.

By (8.1.6), (8.1.7), (8.1.8), (8.1.13), we get (8.1.11). □

The locally symmetric orbifold Z is defined as Γ\X, where Γ is a cocompact
discrete subgroup of G. For γ ∈ Γ, the number mγ ≥ 0 is given by (3.3.3), which
only depends on the conjugacy class of γ (in G or Γ). Recall that E[Γ] is the finite
set of elliptic conjugacy classes in Γ.

For t > 0, x ∈ X, γ ∈ Γ, set

(8.1.14) vt(Fd, γ, x) = Trs
Λ•(T∗X)⊗Fd

[(
NΛ•(T∗X) − m

2

)
qX,Fd
t (x, γ(x))γ

]
.

Then by Lemma 8.1.1, we have the following result.

Lemma 8.1.2. There exist C0 > 0, c0 > 0 such that if d is large enough, for t > 0,
x ∈ X, γ ∈ Γ,

(8.1.15) |vt(Fd, γ, x)| ≤ C0(dimEd)e
−c0d

2tpX,0
t (x, γ(x)).

Set

(8.1.16) mΓ = inf
[γ]∈[Γ]−E[Γ]

mγ .

By [26, Proposition 1.8.5], mΓ > 0.

Proposition 8.1.3. There exist constants C > 0, c > 0 such that if x ∈ X,
t ∈ ]0, 1], then

(8.1.17)
∑

γ∈Γ,γ nonelliptic

pX,0
t (x, γ(x)) ≤ C exp(−c/t).

Proof. By [15, Theorem 3.3], there exists C0 > 0 such that when 0 < t ≤ 1,

(8.1.18) pX,0
t (x, x′) ≤ C0t

−m/2 exp(−d
2(x, x′)

4t
).

By [26, Lemma 1.8.6], there exist c > 0, C > 0 such that for R > 0, x ∈ X,

(8.1.19) #{γ ∈ Γ | γ nonelliptic, dγ(x) ≤ R} ≤ C exp(cR).
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By (8.1.16), (8.1.18), (8.1.19), and using the same arguments as in the proof of [38,
Proposition 3.2], we get (8.1.17). □

8.2. A proof of Theorem 1.0.2. In this subsection, we complete our proof to
Theorem 1.0.2. Note that every elliptic element γ ∈ Γ is of finite order, then the
Part (2) in Theorem 1.0.2 is an easy consequence of Theorem 7.6.5. We only need
to prove the Part (1). We restate it as follows.

Proposition 8.2.1. Let Γ ⊂ G be a cocompact discrete subgroup and set Z = Γ\X.
There exists c > 0 such that for d large enough,

T (Z,Fd) =
Vol(Z)

|S|
PIX(Fd)

+
∑

[γ]∈E+[Γ]

Vol(Γ ∩ Z(γ)\X(γ))

|S(γ)|
PEX,γ(Fd) +O(e−cd),

(8.2.1)

where E+[Γ] = E+[Γ]\{[1]} is the finite set of nontrivial elliptic classes in [Γ].

Proof. By (8.1.10), we have

(8.2.2) DZ,Fd,2 ≥ cd2 − C.

Then if d is large enough, we have

(8.2.3) H ·(Z,Fd) = 0.

Then T (Z,Fd) can be computed using (2.2.15).
As in (2.2.12), for t > 0, set

(8.2.4) b(Fd, t) = (1 + 2t
∂

∂t
)Trs

[(
NΛ•(T∗Z) − m

2

)
exp(−tDZ,Fd,2/2)

]
.

As in [7, Subsection 7.2], by (8.2.2), there exist constants c̃ > 0, C̃ > 0 such that
for d large enough and for t > 1/d,

(8.2.5) |b(Fd, t)| ≤ C̃ exp(−c̃d− c̃t).

By (2.2.15), we have

(8.2.6) T (Z,Fd) = −
∫ +∞

0

b(Fd, t)
dt

t
.

We rewrite it as follows,

(8.2.7) T (Z,Fd) = −
∫ +∞

1/d

b(Fd, t)
dt

t
−

∫ d

0

b(Fd, t/d
2)
dt

t
.

By (8.2.5), there exists c > 0 such that for d large enough,

(8.2.8)
∫ +∞

1/d

b(Fd, t)
dt

t
= O(e−cd).

By (3.5.1), (8.1.14), (8.2.4), we get

b(Fd, t) = (1 + 2t
∂

∂t
)

∫
Z

1

|S|
∑
γ∈Γ

vt(Fd, γ, z)dz.(8.2.9)

We split the sum in (8.2.9) into two parts,

(8.2.10)
∑

γ∈Γ,γ elliptic

+
∑

γ∈Γ,γ nonelliptic

so that we write

(8.2.11) b(Fd, t) = bell(Fd, t) + bnonell(Fd, t).
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Similar to the Selberg’s trace formula in Subsection 3.5, we get

(8.2.12) bell(Fd, t) =
∑

[γ]∈E[Γ]

Vol(Γ ∩ Z(γ)\X(γ))

|S(γ)|
(1 + 2t

∂

∂t
)EX,γ(Fd, t).

By (7.4.2) and (7.6.4), the terms in EX,γ(Fd, t) are of the form

(8.2.13) t−j+1/2 exp(−2π2t(da′ + b′)2)Q(d),

where Q(d) is a nice exponential polynomial in d, and a′, b′ ∈ R with a′ ̸= 0 due
to the nondegeneracy of λ. By (8.2.13), there exists c > 0 such that for d large
enough,

(8.2.14)
∫ d

0

bell(Fd, t/d
2)
dt

t
=

∫ +∞

0

bell(Fd, t)
dt

t
+O(e−cd).

Using Proposition 7.1.1 and by (8.2.13), we get

(8.2.15) PEX,γ(Fd) = −
∫ +∞

0

(1 + 2t
∂

∂t
)EX,γ(Fd, t)

dt

t
.

Now we consider the contribution from the nonelliptic elements. If x ∈ X, put

(8.2.16) ht(Fd, x) =
1

|S|
∑

γ∈Γ,γ nonelliptic

vt(Fd, γ, x).

Then

(8.2.17) bnonell(Fd, t) = (1 + 2t
∂

∂t
)

∫
Z

ht(Fd, z)dz.

Now we prove the following uniform estimates for x ∈ X,

(8.2.18)
∫ d

0

(1 + 2t
∂

∂t
)ht/d2(Fd, x)

dt

t
= O(e−cd).

Indeed, using Lemma 8.1.2 and Proposition 8.1.3, there exists C > 0, c′ > 0,
c′′ > 0 such that if d is large enough, 0 < t ≤ d, then

(8.2.19) |ht/d2(Fd, x)| ≤ C dim(Ed)e
−c′t exp(−c′′d2/t).

Recall that dimEd is a polynomial in d. Then by (8.2.19), we have∣∣ ∫ 1

0

ht/d2(Fd, x)
dt

t

∣∣ ≤ Ce−c′′d2/2 dim(Ed)

∫ 1

0

e−c′′d2/2t dt

t
= O(e−cd),

∣∣ ∫ d

1

ht/d2(Fd, x)
dt

t

∣∣ ≤ Ce−c′′d dim(Ed)

∫ d

1

e−c′t dt

t
= O(e−cd).

(8.2.20)

By (8.2.19) - (8.2.20), we get (8.2.18).
At last, we assembly together (8.2.7), (8.2.8), (8.2.11), (8.2.14) - (8.2.18), we get

exactly (8.2.1). This completes the proof of our proposition. □

Note that since T (Z,Fd) is always real number, then (8.2.1) still holds if we take
the real part of PEX,γ(Fd) instead.

References

[1] A. Adem, J. Leida, and Y. Ruan. Orbifolds and stringy topology, volume 171 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2007.

[2] N. Bergeron and A. Venkatesh. The asymptotic growth of torsion homology for arithmetic
groups. J. Inst. Math. Jussieu, 12(2):391–447, 2013.

[3] N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Grundlehren Text
Editions. Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original.

[4] J.-M. Bismut. Hypoelliptic Laplacian and orbital integrals, volume 177 of Annals of Mathe-
matics Studies. Princeton University Press, Princeton, NJ, 2011.



60 BINGXIAO LIU

[5] J.-M. Bismut and J. Lott. Flat vector bundles, direct images and higher real analytic torsion.
J. Amer. Math. Soc., 8(2):291–363, 1995.

[6] J.-M. Bismut, X. Ma, and W. Zhang. Opérateurs de Toeplitz et torsion analytique asympto-
tique. C. R. Math. Acad. Sci. Paris, 349(17-18):977–981, 2011.

[7] J.-M. Bismut, X. Ma, and W. Zhang. Asymptotic torsion and Toeplitz operators. J. Inst.
Math. Jussieu, 16(2):223–349, 2017.

[8] J.-M. Bismut and S. Shen. Geometric orbital integrals and the center of the enveloping alge-
bra, 2019.

[9] J.-M. Bismut and W. Zhang. Métriques de Reidemeister et métriques de Ray-Singer sur le
déterminant de la cohomologie d’un fibré plat: une extension d’un résultat de Cheeger et
Müller. C. R. Acad. Sci. Paris Sér. I Math., 313(11):775–782, 1991.

[10] J.-M. Bismut and W. Zhang. An extension of a theorem by Cheeger and Müller. Astérisque,
(205):235, 1992.

[11] A. Bouaziz. Sur les caractères des groupes de Lie réductifs non connexes. Journal of Func-
tional Analysis, 70(1):1 – 79, 1987.

[12] T. Bröcker and T. tom Dieck. Representations of compact Lie groups, volume 98 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1985.

[13] J. Cheeger. Analytic torsion and the heat equation. Ann. of Math. (2), 109(2):259–322, 1979.
[14] X. Dai and J. Yu. Comparison between two analytic torsions on orbifolds. Math. Z., 285(3-

4):1269–1282, 2017.
[15] H. Donnelly. Asymptotic expansions for the compact quotients of properly discontinuous

group actions. Illinois J. Math., 23(3):485–496, 1979.
[16] M. Duflo, G. Heckman, and M. Vergne. Projection d’orbites, formule de Kirillov et formule

de Blattner. Mém. Soc. Math. France (N.S.), (15):65–128, 1984. Harmonic analysis on Lie
groups and symmetric spaces (Kleebach, 1983).

[17] P. B. Eberlein. Geometry of nonpositively curved manifolds. Chicago Lectures in Mathemat-
ics. University of Chicago Press, Chicago, IL, 1996.

[18] K. Fedosova. On the asymptotics of the analytic torsion for compact hyperbolic orbifolds.
ArXiv e-prints, accepted for publication in MRL, Nov. 2015.

[19] S. Finski. On the full asymptotics of analytic torsion. Journal of Functional Analysis,
275(12):3457–3503, 2018.

[20] S. Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 80. Academic
press, 1979.

[21] T. Kawasaki. The signature theorem for V -manifolds. Topology, 17(1):75–83, 1978.
[22] T. Kawasaki. The Riemann-Roch theorem for complex V -manifolds. Osaka J. Math.,

16(1):151–159, 1979.
[23] A. W. Knapp. Representation theory of semisimple groups: An overview based on examples.

Princeton university press, Princeton, New Jersey, 1986.
[24] A. W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics.

Birkhäuser Boston, Inc., Boston, MA, second edition, 2002.
[25] B. Kostant. Lie algebra cohomology and the generalized Borel-Weil theorem. Annals of Math-

ematics, 74(2):329–387, 1961.
[26] B. Liu. Hypoelliptic Laplacian and twisted trace formula. PhD thesis, Université Paris-Saclay,

June 2018. HAL Id: tel-01841334, version 1.
[27] B. Liu. Hypoelliptic laplacian and twisted trace formula. Comptes Rendus Mathematique,

357(1):74 – 83, 2019.
[28] B. Liu. Asymptotic equivariant real analytic torsions for compact locally symmetric spaces.

Journal of Functional Analysis, 281(7):109117, 2021.
[29] J. Lott. Heat kernels on covering spaces and topological invariants. J. Differential Geom.,

35(2):471–510, 1992.
[30] X. Ma. Orbifolds and analytic torsions. Trans. Amer. Math. Soc., 357(6):2205–2233, 2005.
[31] X. Ma. Geometric hypoelliptic Laplacian and orbital integrals (after Bismut, Lebeau and

Shen). Séminaire Bourbaki (69ème année, 2016-2017, n◦ 1130), 2017.
[32] V. Mathai. L2-analytic torsion. Journal of Functional Analysis, 107(2):369 – 386, 1992.
[33] J. Matz and W. Müller. Analytic torsion for arithmetic locally symmetric manifolds and

approximation of L2-torsion. J. Funct. Anal., 284(1):Paper No. 109727, 67, 2023.



FULL ASYMPTOTICS OF REAL ANALYTIC TORSIONS 61

[34] H. Moscovici and R. J. Stanton. R-torsion and zeta functions for locally symmetric manifolds.
Invent. Math., 105(1):185–216, 1991.

[35] W. Müller. Analytic torsion and R-torsion of Riemannian manifolds. Adv. in Math.,
28(3):233–305, 1978.

[36] W. Müller. The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds.
In Metric and differential geometry, volume 297 of Progr. Math., pages 317–352.
Birkhäuser/Springer, Basel, 2012.

[37] W. Müller and J. Pfaff. Analytic torsion and L2-torsion of compact locally symmetric mani-
folds. J. Differential Geom., 95(1):71–119, 2013.

[38] W. Müller and J. Pfaff. On the asymptotics of the Ray-Singer analytic torsion for compact
hyperbolic manifolds. Int. Math. Res. Not. IMRN, (13):2945–2983, 2013.

[39] D. B. Ray and I. M. Singer. R-torsion and the Laplacian on Riemannian manifolds. Advances
in Math., 7:145–210, 1971.

[40] D. B. Ray and I. M. Singer. Analytic torsion. In Partial differential equations (Proc. Sympos.
Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pages 167–181. Amer.
Math. Soc., Providence, R.I., 1973.

[41] I. Satake. On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A., 42:359–
363, 1956.

[42] I. Satake. The Gauss-Bonnet theorem for V-manifolds. Journal of the Mathematical Society
of Japan, 9(4):464–492, oct 1957.

[43] A. Selberg. On discontinuous groups in higher-dimensional symmetric spaces. In Contribu-
tions to function theory (internat. Colloq. Function Theory, Bombay, 1960), pages 147–164.
Tata Institute of Fundamental Research, Bombay, 1960.

[44] S. Shen. Analytic torsion, dynamical zeta functions, and the Fried conjecture. Anal. PDE,
11(1):1–74, 2018.

[45] S. Shen and J. Yu. Flat vector bundles and analytic torsion on orbifolds. Comm. Anal. Geom.,
30(3):575–656, 2022.

[46] G. Warner. Harmonic analysis on semi-simple Lie groups. I. Springer-Verlag, New York-
Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188.


	1. Introduction
	2. Ray-Singer analytic torsion
	2.1. Orbifolds and orbifold vector bundles
	2.2. Flat vector bundles and analytic torsions of orbifolds

	3. Orbital integrals and locally symmetric spaces
	3.1. Real reductive Lie group
	3.2. Symmetric space
	3.3. Bismut's formula for semisimple orbital integrals
	3.4. Compact locally symmetric spaces
	3.5. Selberg's trace formula

	4. Analytic torsions for compact locally symmetric spaces
	4.1. A vanishing result on the analytic torsions
	4.2. Symmetric spaces of noncompact type with fundamental rank 1

	5. Cartan subalgebra and root system of G when (G)=1
	5.1. Reductive Lie algebra with fundamental rank 1
	5.2. A compact Hermitian symmetric space Yb
	5.3. Positive root system and character formula
	5.4. Kirillov character formula for compact Lie groups

	6. A geometric localization formula for orbital integrals
	7. Full asymptotics of elliptic orbital integrals
	7.1. Estimates of elliptic orbital integrals for small time t
	7.2. Elliptic orbital integrals for Hodge Laplacians
	7.3. A family of representations of G
	7.4. Asymptotics for identity orbital integrals
	7.5. Connection to Müller-Pfaff's results
	7.6. Asymptotic elliptic orbital integrals

	8. A proof of Theorem 1.0.2
	8.1. A lower bound for the Hodge Laplacian on X
	8.2. A proof of Theorem 1.0.2

	References

