
ar
X

iv
:2

00
2.

06
87

9v
2 

 [
qu

an
t-

ph
] 

 7
 M

ay
 2

02
4

Tight Quantum Lower Bound for Approximate Counting with

Quantum States

Aleksandrs Belovs∗ Ansis Rosmanis†

Abstract

We prove tight lower bounds for the following variant of the counting problem considered
by Aaronson et al. [1]. The task is to distinguish whether an input set x ⊆ [n] has size either
k or k′ = (1 + ε)k. We assume the algorithm has access to

• the membership oracle, which, for each i ∈ [n], can answer whether i ∈ x, or not; and

• the uniform superposition |ψx〉 =
∑

i∈x
|i〉/
√
|x| over the elements of x. Moreover, we

consider three different ways how the algorithm can access this state:

– the algorithm can have copies of the state |ψx〉;
– the algorithm can execute the reflecting oracle which reflects about the state |ψx〉;
– the algorithm can execute the state-generating oracle (or its inverse) which per-

forms the transformation |0〉 7→ |ψx〉.
Without the second type of resources (the ones related to |ψx〉), the problem is well-
understood, see Brassard et al. [15]. The study of the problem with the second type of
resources was recently initiated by Aaronson et al. [1].

We completely resolve the problem for all values of 1/k ≤ ε ≤ 1, giving tight trade-offs
between all types of resources available to the algorithm. We also demonstrate that our lower
bounds are tight. Thus, we close the main open problems from [1].

The lower bounds are proven using variants of the adversary bound from [9] and employing

representation theory of the symmetric group applied to the Sn-modules C(
[n]
k ) and C(

[n]
k )⊗C.

Contents

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Approximate Counting Problem . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 7

2.1 State Conversion and Function Evaluation . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Multiple Input Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Definitions of the Input Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

∗Faculty of Computing, University of Latvia
†Graduate School of Mathematics, Nagoya University, Japan

1

http://arxiv.org/abs/2002.06879v2


3 General Adversary Method 10

3.1 Formulation for Multiple Input Oracles . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Alternative Input and Output Conditions . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Application to Approximate Counting . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Lower Bound 13

4.1 Main Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Specific Form and Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Preliminaries on Representation Theory 20

5.1 Representation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Symmetric group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 The Module C(
[n]
k ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Proof of Lemma 4.5 25

7 Proofs of Lemmata 4.2–4.4 28

8 The Module C
([n]

k ) ⊗ C
n 30

8.1 Proof of Lemma 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Proof of Lemma 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 36

A Upper bounds 38

A.1 Algorithmic Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B Proofs omitted from Section 3 42

C Proof of Theorem 3.1 44

D Limitations of the positive-weighted adversary 44

2



1 Introduction

1.1 Motivation

The theory of quantum query algorithms deals extensively with the standard input oracle, which
is the canonical quantum counterpart of the usual deterministic input oracle. Other kinds of
input oracles have received much less attention, especially from the lower bound point of view.
We find this unfortunate, since these questions are not only interesting theoretically, but also
come up in practice.

There are two main techniques for proving quantum query lower bounds: the polynomial
method and the adversary method. The polynomial method was developed by Beals, Buhrman,
Cleve, Mosca, and de Wolf [7], and it has been applied to a large number of problems afterwards.
The adversary bound was first formulated by Ambainis [2] and slightly generalised by Høyer,
Neerbek, and Shi [20] to what we call a positive-weighted version of the bound, which has been
used extensively ever after. Afterwards, a significant strengthening was obtained by Høyer,
Lee, and Špalek [19]: the so-called negative-weighted version of the bound1. The latter version
was shown to be tight by Reichardt [26, 27]. It was further generalised in works by Ambainis,
Magnin, Rötteler, and Roland [4]; and Lee, Mittal, Reichardt, Špalek, and Szegedy [24] to
include further problems besides function evaluation.

However, all these versions of the adversary bound assume the standard input oracle. Moti-
vated by the task of distinguishing the main ideas at the heart of the quantum adversary method
from the details specific to the standard input oracle, Belovs [9] developed version of the bound
that allows arbitrary unitaries as input oracles. The preceding versions of the bound could then
be obtained as special cases thereof. One thing missing from [9] though are applications of the
developed techniques to actual problems. This brings us to our main motivation behind this
paper: can the general version of the adversary bound be applied to real-world problems? We
show that this is indeed possible on the case of the counting problem.

1.2 The Approximate Counting Problem

The main problem under consideration in this paper is approximate counting. Given some
subset2 x ⊆ [n] estimate its size with multiplicative precision ε. The decision version of the
problem — distinguishing the cases when x has size exactly k or exactly (1 + ε)k — is more
appropriate for lower bounds. Clearly, a lower bound for the latter also gives a lower bound for
the former.

The canonical way of encoding x is via its characteristic bit-sting (xi)i∈[n] with xi = 1 iff
i ∈ x. The corresponding input oracle is called the membership oracle because a query tells
whether a specific element is a member of the input set.

Quantum query complexity of approximate counting with access to the membership oracle
was settled down early on in the history of quantum computation. Brassard, Høyer, and Tapp

showed thatO
(
1
ε

√
n/|x|

)
queries to the membership oracle suffice for approximate counting [15].

The matching lower bound of Ω
(
1
ε

√
n/|x|

)
was obtained by Nayak and Wu [25] using the

polynomial method. A simple proof can be obtained using the positive-weighted adversary. The

1Note that “negative-weighted” here means that negative entries in the adversary matrix are allowed, but not
imposed. This formulation is also commonly known as the general version, but we keep the term “general” for
the version of [9] that allows general unitary input oracles.

2It is customary to denote input strings to quantum algorithms using lower case Latin letters like x or y, with
xi denoting individual symbols of the input string. We continue with this tradition, and, while we mostly think
of the input x as a subset of [n] rather then the corresponding bit-string, we still denote it by a lower case Latin
letter.
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original paper by Ambainis [2] already contains the proof for the special case of k = n/2. The
general case has essentially the same proof, which can be found in Appendix D.

But the membership oracle is not the only way how to encode the input set x. Aaronson,
Kothari, Kretschmer, and Thaler [1] raised the question of estimating complexity of approximate
counting when the quantum algorithm has access not only to the membership oracle, but also
to the uniform superposition of the elements of the set:

ψx =
1√
|x|
∑

i∈x
|i〉. (1.1)

This requires clarification: what does it mean to have access to ψx? Ref. [1] assumes the following
two models: the algorithm can have copies of the state ψx or it can reflect about ψx. Possession
of copies is a rather standard assumption. The reflecting oracle is more unusual, but it is helpful
in algorithms, as it can be used for amplitude amplification and estimation, see Appendix A for
more detail.

The main result of [1] is as follows. In order to distinguish whether the size of the input set
x is k or 2k, the quantum algorithm either has to invoke the membership oracle Ω(

√
n/k) times

or access the state ψx at least Ω
(
min{k1/3,

√
n/k}

)
times in the aforementioned way. It was

shown to be optimal in the sense that O(
√
n/k) membership queries alone suffice to solve this

problem, as well as O
(
min{k1/3,

√
n/k}

)
accesses to the state ψx alone suffice. Thus, nothing

can be gained by combining the two resources.
The following open problems were formulated in [1]. The first one was to distinguish the

cases |x| = k and |x| = (1 + ε)k for ε≪ 1. The second one was to determine the complexity of
the problem when the algorithm only has access to copies of the state ψx, without having access
to the reflecting oracle.

1.3 Our Results

In this paper, we completely resolve these problems for all values of ε between 0 and 1, and go
beyond that. In addition to accessing ψx via copies and the reflecting oracle, we also allow the
state-generating oracle, which performs the transformation |0〉 7→ |ψx〉 for some predetermined
state |0〉 (as it is customary, we also allow to run this transformation in reverse). The state-
generating oracle encompasses both of the aforementioned models of accessing ψx from Ref. [1].3

Indeed, one invocation of the state-generating oracle suffices to get a copy of ψx, while two
invocations (one direct and one reverse) suffice to reflect about ψx. On the other hand, it is
hard to simulate the state-generating oracle using just copies and reflections.

The results of our paper are summarised in Table 1. We show that the algorithm has one
of the eight options to solve the problem. In each of the options, the algorithm either uses one
type of resources (copies of the state, or one of the oracles), or a pair of resources. In the case of
a single resource, we state the corresponding lower bound; and in the case of a pair of resources,
we state a trade-off between them. It is not possible to gain anything by combining more than
two types of resources: If the algorithm uses three or all four types of resources to solve the
problem, then among them there exists a pair or a single resource that satisfies one of the eight
conditions of Table 1. The Rows 6 and 7 of the table do seem to use a triple of resources, but
because the number of copies and the number of invocations of the state-generating oracle are

3In the second version of their paper [1], Aaronson et al. also considered a state-generating oracle. However,
due to technical reasons, the oracle prepared two copies of the state at once: |0〉 7→ |ψx〉|ψx〉. Such an oracle
can be simulated with two executions of the standard state-generating oracle |0〉 7→ |ψx〉, while simulation in the
opposite direction is not clear.
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joined by a sum: ℓ + qG, each of these rows can be further broken down into two trade-offs
between pairs of resources. From the algorithmic point of view, the state-generating oracle is
only used to prepare copies of the state in this case.

Copies of the state ℓ = Ω

(
min

{
k,

√
k

ε
,
n

kε2

})

Membership oracle qM = Ω

(
1

ε

√
n

k

)

State-generating oracle qG = Ω

(
min

{
1

ε

√
n

k
,

k1/3

ε2/3

})

• with copies of the state qG
√
ℓ = Ω

(√
k

ε

)

Reflecting oracle qR = Ω

(
min

{
1

ε

√
n

k
,

√
k

ε
+

√
n

k

})

• with copies of the state
or state-generating oracle

qR
√
ℓ+ qG = Ω

(√
k

ε

)

• with copies of the state
or state-generating oracle

qR = Ω

(√
k

ε

)
and ℓ+ qG ≥ 1

• with membership oracle: qR = Ω

(√
k

ε

)
and qM = Ω

(√
n

k

)

Table 1: Eight different options how the algorithm can use resources to solve the approximate
counting problem. Here, ℓ stands for the number of the copies of the state; while qM, qG, and
qR stand for the number of executions of the membership, state-generating, and the reflecting
oracles, respectively. The rows without a bullet correspond to the case when the algorithm uses
one type of resources. The ones with a bullet correspond to pairs of resources. There are two
different options for the case of the reflecting oracle combined with the copies of the state or the
state-generating oracle.

Theorem 1.1. Consider a quantum algorithm that distinguishes whether the input set x ⊆ [n]
has size k or k′ = (1 + ε)k. For simplicity, we assume that n ≥ 5k and 1/k ≤ ε ≤ 1. Suppose
the algorithm uses ℓ copies of the state ψx from (1.1) and executes the membership, the state-
generating, and the reflecting oracles or their inverses qM, qG, and qR times, respectively. Then,
in order to solve the problem, the resource consumption of the algorithm has to satisfy at least
one of the eight conditions in Table 1.

This is tight as demonstrated by the algorithms in Appendix A. Let us note though that
there is a log k discrepancy for the first term of Row 1 of the table, in the sense that we only
show an ℓ = O(k log k) algorithm in Proposition A.7. However, similar techniques were used in
a follow-up paper [5] to show an Ω(k log k) lower bound for the task of learning the subset x.
All other lower bounds of Theorem 1.1 are tight up to constant factors.

1.4 Techniques

A substantial difference between our paper and [1] is in the techniques used. Aaronson et al.
use the method of Laurent polynomials, whereas we use the adversary method combined with
representation theory of the symmetric group.
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The method of Laurent polynomials is a generalisation of the aforementioned polynomial
method. In Laurent polynomials, negative powers of the variables are allowed. The positive
degree bounds the number of executions of the membership oracle (like in the original version),
executions of the reflecting oracle, and the number of copies, whereas the negative degree bounds
the latter two.

As mentioned previously, we use the general version of the adversary bound from [9]. More-
over, we use the version of the bound that allows for several input oracles that can be queried
independently. The adversary method with several input oracles was already used by Kimmel,
Lin, and Lin in [22], but we use a different approach.

Let us return to the proof of Theorem 1.1. Using the above machinery, we formulate the lower
bound as an optimisation problem. Since the problem is symmetric, we can use representation
theory of the symmetric group. This gives a simplified optimization problem, which yields the
required lower bound in a relatively simple way. This simplification step can be applied to other
symmetric problems that use access to the state (1.1). Also, we give a different approach to
representation theory of the symmetric group compared to previous papers like [28]. It is based
on the use of group algebra to identify isotypical subspaces within a module.

Our technique has a number of advantages compared to the Laurent polynomials. The
Laurent-polynomial method depends crucially on the state being a uniform superposition over
some set, the size of the set being an important parameter. While Laurent polynomials can
handle a restricted number of possible input resources, adversary method, in principle, can be
applied to any state-generating, reflecting, or any other type of input oracle. Laurent polynomi-
als also cannot distinguish between copies of the state and invocations of the reflecting oracle,
whereas we are able to count all input resources independently.

1.5 Organisation

The paper can be divided into two big parts. The first one, consisting of Sections 2–4, covers
quantum-computational aspect of the paper. The second one, spanning over Sections 5–8, deals
with the representation-theoretical machinery. Both parts are essentially independent from
each other. In particular, the first part can be read without any representation-theoretical
background. Similarly, the second part does not require any knowledge of quantum algorithms.

The gateway between the two parts are the main technical Lemmata 4.2–4.5 in Section 4.1.
They characterise complexity with relation to various input resources as outlined above: copies
of the state; state-generating, reflecting, and the membership oracles. These lemmata are proven
in the second part of the paper.

In Section 2, we introduce the main notions from quantum computation. We define the state
conversion and the function evaluation problems, formally define the input oracles mentioned
above, and also explain how we allow access to various input oracles simultaneously.

Section 3 defines the general adversary bound, which is the main technical tool behind
our lower bound. In essence, this section parallels Section 2 and shows how the corresponding
algorithmic objects look from the lower bound perspective. The proofs of relevant results from [9]
and the related papers are given for completeness in the appendix.

Section 4 is the proof of Theorem 1.1. First, we use the results of Section 3 to formulate the
optimisation problem yielding the lower bound for the approximate counting problem. Next,
the main technical Lemmata 4.2–4.5 are stated, from which the proof of the lower bound is
obtained.

Section 5 starts the second part of the paper. It contains the main results from representation
theory of the symmetric group required for the proofs of Lemmata 4.2–4.5. It also gives a

representation-theoretical analysis of the Sn-module C
([n]

k ).
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In Section 6, we prove the main lemma related to the membership oracle. In Section 7,
we prove the main lemmata related to the remaining types of resources. They are related to
the state ψx from (1.1) and are consequently based on representation-theoretical analysis of the

Sn-module C(
[n]
k ) ⊗ C

n, which we perform in Section 8.
The aim of Appendix A is to show that Theorem 1.1 is tight by providing the matching

upper bounds. Most of the algorithms are rather simple, but not without an occasional twist.
In Appendices B and C, we give proofs omitted from Section 3. In Appendix D, we argue that
a natural generalisation of positive-weighted adversary cannot be applied to this version of the
counting problem.

1.6 Discussion and Future Work

With Lemmata 4.2–4.5 at our disposal, the proof of our lower bound is relatively concise and
direct. We believe that similar estimates can be helpful for other problems involving oracles that
prepare uniform superpositions over some unstructured set. Our approach to representation
theory of the symmetric group follow a clear pattern, and can be used to analyse other related
modules.

Let us mention one open problem here. In the k-fold search problem, the input x is a
set of size k, and the task is to output x. We are interested in trade-offs between different
resources, as defined in this paper, and the success probability. This problem is solved for the
membership oracle by Klauck, Špalek, and de Wolf [23] using the polynomial method, and by
Ambainis [3] using a variant of the adversary method. A recent paper [5] is a preliminary step
in that direction.

One complication is that our techniques are not well-suited for problems with small success
probability. We are using a variant of the so-called additive adversary, which is not capable
of proving better-than-linear dependence on the success probability [31]. Therefore, one might
require generalisation of the techniques in [9] to allow small success probability and reformulation
of the techniques of the current paper to fit that generalisation. Let us note that the ideas from
the aforementioned proof by Ambainis [3] were later generalised by Špalek into a multiplicative
version of the adversary bound [31], suited for small success probabilities. It is not clear at the
moment how to merge the ideas of Špalek with our techniques.

Finally, the version of the adversary bound for several input oracles used in this paper
inspired formulation of quantum Las Vegas query complexity in [13, 11].

2 Preliminaries

We mostly use standard linear-algebraic notation. The vector spaces are finite-dimensional
complex inner product spaces. We use ket-notation for vectors representing quantum states,
but generally avoid it. We use A∗ to denote conjugate operators (transposed and complex-
conjugated matrices). We use A[[x, y]] to denote the (x, y)-th entry of the matrix A. Symbol ⊕
stands for direct sum of spaces, matrices, or vectors. The context should suffice to tell them
apart.

For matrices A and B of the same dimension, we use A ◦ B to denote their Hadamard
(entry-wise) product. We use A⊗ℓ and A◦ℓ to denote the ℓ-th tensor and Hadamard powers,
A⊗A⊗ · · · ⊗A and A ◦ A ◦ · · · ◦ A, respectively, each repeated ℓ times.

For P a predicate, we use 1P to denote 1 if P is true, and 0 if P is false. We use [n] to
denote the set {1, 2, . . . , n}.

In the remaining part of this section, we describe our model of quantum algorithms, few
aspects of which are not standard. In Section 2.1, we define a quantum query algorithm and
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explain how it is supposed to solve a task. In Section 2.2, we discuss how we allow the algorithm
to access several input oracles. Finally, in Section 2.3, we formally define the input oracles
available to the algorithm.

2.1 State Conversion and Function Evaluation

We first define a quantum query algorithm. For now, we consider the case when the algorithm
has access to one input oracle. Later, in Section 2.2, we will explain how to deal with several
input oracles.

A quantum query algorithm A works in some space H, which we call the workspace of the
algorithm. The algorithm is given an oracle O, which is a unitary in some space M. The
interaction between the algorithm and the oracle is in the form of queries defined as follows.
We assume the space M is embedded in H in the following way: H = H0 ⊕ (H1 ⊗M), and the
query is

Õ = I ′ ⊕ (I ⊗O), (2.1)

where I ′ and I are the identities in H0 and H1, respectively.

Definition 2.1. A quantum query algorithm A with input oracle O is a sequence of linear
transformations of the following form:

A(O) = UQ Õ
±1 UQ−1 Õ

±1 · · ·U1 Õ
±1 U0, (2.2)

where Ut are some input-independent unitaries in H, and each Õ±1 is either a query Õ or its
inverse Õ∗.

Now we define the state conversion problem [24] with general input oracles [9].

Definition 2.2. A state conversion problem is specified by pairs of states ξx 7→ τx and unitaries
Ox, where x ranges over some set D. We assume here that ξx ∈ K0, τx ∈ K1, and Ox : M → M
for some spaces K0,K1 and M. We say that an algorithm A as in Definition 2.1 solves this
problem if, assuming that K0 and K1 are embedded in H, we have A(Ox)ξx = τx for all x ∈ D.
The choice of embedding is irrelevant.

In the settings of Definition 2.2, we will usually write O = (Ox) to denote the collection of
oracles over all x ∈ D.

The most common case of state conversion is evaluation of a function f defined on some set
D. In this case (assuming exact computation for now), one can let ξx = |0〉 and τx = |f(x)〉.
In our version of approximate counting, the goal is to evaluate a function as well: f(x) = 0 if
|x| = k, and f(x) = 1 if |x| = k′. However, the algorithm is also provided with an additional
resource: a state ξx that depends on x ∈ D, consisting of multiple copies of the state ψx. And, as
usual, we allow the algorithm to err with small probability. This gives the following definition.

Definition 2.3 (Boolean Function Evaluation with Initial States). Let f : D → {0, 1} be a
function, and M and K0 be vector spaces. For each x ∈ D, let ξx ∈ K0 be a quantum state and
Ox be a unitary acting in M. We say that a quantum algorithm evaluates the function f with
initial states ξx and permitted error δ if it solves the state conversion problem ξx 7→ τx for some
collection of vectors τx ∈ H = C

2 ⊗ H′ such that measuring τx in the first register gives f(x)
with probability at least 1− δ for all x ∈ D.

Remark 2.4 (Error Reduction). In Definition 2.3, we opted out of having a fixed value of δ,
say 1/3, because, in general, it is not possible to perform standard error reduction by repetition
for this task. The reason is that the algorithm is given only a single copy of the initial state ξx.
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However, for our specific problem of approximate counting, this issue is irrelevant, because the
state ξx is defined as ψ⊗ℓ

x for some ℓ. Therefore, having multiple copies of ξx results in changing
ℓ by a constant factor, which we mostly allow. In the occasional cases when we do not, like Row
7 of Table 1 below, we solve it separately.

2.2 Multiple Input Oracles

Assume that in the settings of state conversion, Definition 2.2, the algorithm has not just one

input oracle O = (Ox), but several O
(1) =

(
O

(1)
x

)
, . . . , O(r) =

(
O

(r)
x

)
, all indexed by x ∈ D. Each

oracle O(i) acts in some space M(i).
It is possible to come up with various ways of providing access to these oracles simultaneously.

For instance, it is possible to query them in some pre-defined way. It is also possible to perform
intermediate measurements, which would classically determine which of the input oracles should
be applied on each step. This is the model we assume in Appendix A for the algorithms that
match the lower bounds of Theorem 1.1.

Since we are interested in proving lower bounds, we allow as flexible a model as possible,
which later was formalised as quantum Las Vegas query complexity in [13]. This model incorpo-
rates the scenarios as above via standard technique of postponed measurements. Additionally,
it is easy to reconcile with Definition 2.2, as we formally combine all the input oracles into one.
The only thing that changes is the way how we count the number of queries.

We model our algorithm as a usual single-oracle quantum query algorithm as in Definition 2.2
with access to the combined input oracle Ox on M = M(1) ⊕ · · · ⊕M(r) given by

Ox = O(1)
x ⊕O(2)

x · · · ⊕O(r)
x .

We will not restrict the number of queries to this combined oracle per se. Instead of that, we
will account for the query complexity of each of the individual input oracles post factum.

Let ψt,x be the state of the algorithm on input x just before the t-th application of the
combined input oracle. As in Definition 2.2, assume that on the t-th query, the oracle is executed
as

I ′ ⊕ (I ⊗Ox) = I ′ ⊕
(
I ⊗O(1)

x

)
⊕
(
I ⊗O(2)

x

)
· · · ⊕

(
I ⊗O(r)

x

)
.

Decompose the state ψt,x in the same way:

ψt,x = ψ
(0)
t,x ⊕ ψ

(1)
t,x ⊕ ψ

(2)
t,x ⊕ · · · ⊕ ψ

(r)
t,x

so that ψ
(i)
t,x is processed by I⊗O(i)

x , and ψ
(0)
t,x remains intact. In the case when the inverse oracle

I ′ ⊕ (I ⊗O−1
x ) is applied, we define ψ

(i)
t,x similarly.

Now we define the query complexity of the oracle O(i) on input x as

L(i)
x =

∑

t

∥∥∥ψ(i)
t,x

∥∥∥
2
. (2.3)

Thus, query complexity can vary for different inputs x. The total query complexity of the i-th

input oracle is defined as the maximum of L
(i)
x over all x ∈ D.

2.3 Definitions of the Input Oracles

In this section, we define the input oracles available to the algorithm. We use the same notation
O = (Ox) to denote any input oracle, as it will be clear from the context which one is meant in
each case. For state-generating and membership oracles, we first give a more general definition,
and then a more restricted version, which is without loss of generality.
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• First, we define the state-generating input oracle. In this case, for each x ∈ D, the
algorithm is given a black-box access to a unitary Ox performing the transformation |0〉 7→
|ψx〉 in M = C

n, where |0〉 is some fixed state in M. The algorithm should work for any
unitary Ox performing this transformation4.

Alternatively, one may assume that M is n+ 1-dimensional: M = C
{0}∪[n], and the state

|0〉 is orthogonal to all ψx. The transformation Ox is the reflection about the orthogonal
complement of (|0〉 − |ψx〉)/

√
2:

Ox = I −
(
|0〉 − |ψx〉

)(
|0〉 − |ψx〉

)∗
. (2.4)

This is a special case of the above transformation, and it can be implemented using two
invocations of any input oracle mapping |0〉 7→ |ψx〉: one inverse and one direct.

• Second, we define the reflecting input oracle. In this case, the black-box unitary Ox is the
reflection about the state ψx: Ox = 2ψxψ

∗
x − I in M = C

n.

• Third, we use the standard (membership) input oracle. In this case, we treat D as a subset
of the set {0, 1}n of bit-strings of length n and M = C

n⊗C
2. For x ∈ D, the corresponding

input oracle performs the transformation Ox : |i〉|0〉 7→ |i〉|xi〉. The algorithm should work
for any unitary Ox performing this transformation. This can be seen as a direct sum of
state-generating oracles performing transformations |0〉 7→ |xi〉 over all i ∈ [n].

Alternatively, one may assume that Ox performs the transformation

Ox : |i〉|b〉 7→ |i〉|b⊕ xi〉, (2.5)

where i ∈ [n], b ∈ {0, 1} and ⊕ is the XOR operation. This is the usually assumed
special case of the above transformation [16]. And, again, it can be implemented using
two invocations of any input oracle mapping Ox : |i〉|0〉 7→ |i〉|xi〉.

It is easy to see that, for any given state, the state-generating input oracle is at least as
strong as both the reflecting oracle and a copy of the state. Indeed, it is possible to implement
the reflecting oracle using the state-generating oracle twice; and, using it once, it is possible to
get a copy of the state. Other than that, the above resources are incomparable.

3 General Adversary Method

The aim of this section is to describe the techniques used in the proof of the lower bound.
We extend on the general adversary method from [9], and we adopt a lower-bound-related
perspective.

3.1 Formulation for Multiple Input Oracles

We need few pieces of notation. First, for an input oracle O = (Ox)x∈D, we define a family of
matrices representing the input oracle, where x, y range over D:

∆x,y = Ox −Oy. (3.1)

For pairs ξx 7→ τx of states, where x ranges over D, we define a D ×D-matrix E given by

E[[x, y]] = 〈ξx, ξy〉 − 〈τx, τy〉, (3.2)

4 To formally encapsulate this into the formalism of Definition 2.2, we can assume the labels are of the form
(x,O), where x ∈ D is the original label, and O is some legitimate input oracle for x.
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which represents state conversion ξx 7→ τx. We often treat E as a family of 1 × 1-matrices
indexed by x, y ∈ D.

Assume (Ax,y)x,y∈D is a family of matrices all of the same size. Let Γ be an X × Y matrix
with X,Y ⊆ D. We define Γ ◦ A as the X × Y block matrix, where the block corresponding
to x ∈ X and y ∈ Y is given by Γ[[x, y]]Ax,y. This is a generalisation of the usual Hadamard
product.

Now we define a variant of the adversary bound for multiple input oracles, which follows the
same ideas as in the proof of negative-weighted adversary [19, 9].

Theorem 3.1 (State Conversion, Multiple Input Oracles). Consider the state-conversion prob-
lem ξx 7→ τx with input oracles O(1), O(2), . . . , O(r). Let ∆(1),∆(2), . . . ,∆(r) be defined like
in (3.1) for these oracles, and E be as in (3.2). Then, for any D × D-matrix Γ and every
algorithm performing the state conversion exactly, we have

r∑

i=1

∥∥Γ ◦∆(i)
∥∥max
x∈D

L(i)
x ≥ ‖Γ ◦ E‖,

where L
(i)
x are as in (2.3).

We prove this theorem in Appendix C. The following easy corollary is useful.

Corollary 3.2. Consider the state-conversion problem ξx 7→ τx with r = O(1) input oracles
O(1), O(2), . . . , O(r). Let E be as in (3.2), and ∆(1),∆(2), . . . ,∆(r) be as in (3.1).

Then, for any D×D-matrix Γ, and every algorithm performing the state conversion exactly,
there exists i such that the query complexity of O(i) is

max
x∈D

L(i)
x = Ω

( ‖Γ ◦ E‖
‖Γ ◦∆(i)‖

)
. (3.3)

For one input oracle, and if E corresponds to function evaluation, this becomes the usual
adversary bound by Høyer et al. [19]. Intuitively, our formulation says that if we want to prove
a lower bound against a collection of oracles, it suffices to find an adversary matrix Γ which is
a solution to all single-oracle versions of the bounds simultaneously.

3.2 Alternative Input and Output Conditions

Corollary 3.2 is rather cumbersome to apply in its original form due to various τx vectors allowed
in Definition 2.3 because of permitted error δ, and the necessity to deal with complicated matrices
∆x,y. Luckily, it is possible to simplify the bound using equivalent ways to represent input and
output conditions.

We start with the output condition for approximate function evaluation with initial states.
We assume notation of Definition 2.3. In particular, δ is the error parameter of the algorithm,
and we also let X = f−1(1) and Y = f−1(0). In this context, we will switch from D×D-matrices
to X × Y -matrices. Let Ξ be the X × Y -matrix defined by Ξ[[x, y]] = 〈ξx, ξy〉. The following
result [24] effectively reduces the approximate case to the exact case. See Appendix B for a
proof.

Lemma 3.3. In the above notation, assume that Γ is an X × Y -matrix that satisfies

‖Γ‖ = 1 and ‖Γ ◦ Ξ‖ ≥ 3
√
δ. (3.4)

Then, for every state conversion problem ξx 7→ τx that corresponds to evaluation of the function
f with initial states ξx and permitted error δ, we get

‖Γ ◦E‖ ≥
√
δ, (3.5)

where E is defined in (3.2).
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Now let us move to the input conditions. The key idea is the following definition.

Definition 3.4 (γ2-equivalence). Let ∆ = (∆x,y) and ∆′ = (∆′
x,y) be two families of matrices

both indexed by x, y ∈ D. If, for every D ×D-matrix Γ, we have

‖Γ ◦∆‖
‖Γ ◦∆′‖ = Θ(1),

then we say that ∆ and ∆′ are γ2-equivalent. If ∆′ is γ2-equivalent to the family ∆ defined
in (3.1), then we say that ∆′ represents the input oracle O = (Ox).

We will often have that ∆′ = A(1) ⊕ · · · ⊕A(ℓ) meaning that ∆′
x,y = A

(1)
x,y ⊕ · · · ⊕A

(ℓ)
x,y for all

x, y ∈ D. In this case, we will say that the input oracle is represented by a tuple A(1), . . . , A(ℓ).
The following identity can be used in this case:

∥∥Γ ◦ (A(1) ⊕ · · · ⊕A(ℓ))
∥∥ = max

i∈[ℓ]

∥∥Γ ◦A(i)
∥∥.

The idea is that we replace ∆(i) in the denominator of (3.3) with any γ2-equivalent ∆′(i),
which changes the bound by at most a constant factor. Thus, we can find a representation that
is easier to work with. This is what we will do in the remaining part of this section for the input
oracles defined in Section 2.3. The results are from previous papers, and their proofs are given
in Appendix B for completeness.

For the reflecting oracle, defined by Ox = 2ψxψ
∗
x−I, we will use the standard definition (3.1)

removing the constant factor 2. Thus, the following family represents the reflecting oracle:

∆ψψ∗

x,y := ψxψ
∗
x − ψyψ

∗
y . (3.6)

We use mnemonic ψψ∗, which reminds of the definition.
The state-generating oracle is represented [10] by the family ∆ψ ⊕∆ψ∗

, where

∆ψ
x,y := ψx − ψy and ∆ψ∗

x,y := ψ∗
x − ψ∗

y . (3.7)

Finally, the following family represents [9] the membership oracle:

∆membership
x,y :=

⊕
i∈[n]

1xi 6=yi . (3.8)

Here
⊕

stands for the direct sum of 1 × 1 matrices, hence, ∆membership
x,y is a diagonal n × n

matrix. The usual way to write ∆membership is as ∆1 ⊕ · · · ⊕∆n, where

∆i[[x, y]] := 1xi 6=yi . (3.9)

Again, we treat these D ×D-matrices as families of 1× 1-matrices.

3.3 Application to Approximate Counting

Let us apply the above results for the special case of approximate counting of Theorem 1.1. In
this case, the set D of labels is X ∪ Y , where X consists of all the n-bit strings of Hamming
weight k and Y consists of all the n-bit strings of Hamming weight k′ = (1 + ε)k.

Define an X × Y matrix Ψ by

Ψ[[x, y]] := 〈ψx, ψy〉, (3.10)

where ψx are defined in (1.1). The Gram matrix of the initial states, Ξ of Lemma 3.3, is given
by

Ξ = Ψ◦ℓ, (3.11)

where ℓ is the number of copies of the state ψx available to the algorithm.
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Proposition 3.5. Assume we can find an X × Y matrix Γ such that

• ‖Γ‖ = 1;

• ‖Γ ◦Ψ◦ℓ‖ = Ω(1) with Ψ as in (3.10);

• for each i ∈ [n], we have ‖Γ ◦∆i‖ ≤ 1/T1 with ∆i as in (3.9);

• both ‖Γ ◦∆ψ‖ and ‖Γ ◦∆ψ∗‖ are at most 1/T2 with ∆ψ and ∆ψ∗

as in (3.7);

• and ‖Γ ◦∆ψψ∗‖ ≤ 1/T3 with ∆ψψ∗

as in (3.6).

Then, there exists a constant C > 0 such that every quantum algorithm, given Cℓ copies of the
state ψx, and solving the approximate counting problem with bounded error must

• either execute the membership oracle Ω(T1) times;

• or execute the state-generating oracle Ω(T2) times;

• or execute the reflecting oracle Ω(T3) times.

In order to prove Theorem 1.1 it suffices to find a feasible solution Γ for this optimisation
problem with good objective value.

Proof of Proposition 3.5. Let a constant C ′ be such that ‖Γ ◦ Ψ◦ℓ‖ ≥ C ′. Assume the error
parameter of the algorithm is δ = (C ′/3)2 = Ω(1). We may achieve this by repeating the
algorithm 1/C times for some constant C. By Remark 2.4, we can do this, assuming we have
1
C · Cℓ = ℓ copies of the state ψx.

The proposition follows from Corollary 3.2 using the representations of the input oracles
from Section 3.2, since by Lemma 3.3 and (3.11), ‖Γ ◦ E‖ = Ω(1).

4 Lower Bound

In this section, we prove the lower bound for approximate counting, Theorem 1.1. First, in
Section 4.1, we formulate the general form of the adversary matrix Γ, which follows from repre-
sentation theory, and state the main technical results: Lemmata 4.2–4.5. Their proofs constitute
the second part of this paper. In Section 4.2, we fix parameters in this general form, and get
specific estimates. Finally, in Section 4.3, we use these results to prove Theorem 1.1.

4.1 Main Lemmata

In this section, we give the general form of the adversary matrix Γ and give estimates on
the norm of the matrix when various ∆-operators are applied to it. Using a variant of the
automorphism principle as in [19], we can assume that the matrix Γ is symmetric with respect
to the permutations of the input variables. Then representation theory of the symmetric group
tells us that the adversary matrix has the form

Γ =

k∑

j=0

γjΦj, (4.1)

where Φj are the isometric isomorphisms between the copies of the irreps of the symmetric

group in Sn-modules C
([n]

k′
) and C(

[n]
k ). (See Section 5 for more detail.) The matrices Φj will

only have real entries though, and all γi will be non-negative real numbers. For the purposes of
this section, it suffices to know that the ranges of different Φj are pairwise orthogonal, and so are
their coimages. The isometry implies ‖Φj‖ = 1 for all j. Hence, in particular, ‖Γ‖ = maxj |γj |.
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Now let us describe how operations from Section 3.2 act on matrices of the form (4.1). Here
we only state the results, the proofs being postponed to the next sections. We will need the
following 4× 4 diagonal matrices and 4-dimensional vectors, where j ranges from 0 to k.

Γj =




γj−1

γj
γj

γj+1


 and φkj =




φkj,1

φkj,2

φkj,3

φkj,4




=




√
j(k−j+1)(n−k−j+1)
(n−2j+2)(n−2j+1)k√

k
n

n−2k√
nk

√
j(n−j+1)

(n−2j+2)(n−2j)√
(n−j+1)(k−j)(n−k−j)

(n−2j+1)(n−2j)k




. (4.2)

In Γ0, it is assumed that γ−1 = 0. By our assumption on n ≥ 5k, all the entries of φkj are
non-negative real numbers.

Claim 4.1. The vector φkj has norm 1.

Proof. This can be verified by a direct computation. However, there is a reason behind this,
since the entries of φkj give the coordinates of a unit vector with respect to an orthonormal basis,
see Section 8.2.

The following lemmata will be proven in Section 7. We assume here that Γ is an X × Y =([n]
k

)
×
([n]
k′

)
matrix defined as in (4.1), and φj = φkj and φ′j = φk

′

j as above.

Lemma 4.2. For Γ as in (4.1) and Ψ as in (3.10), we have

Γ ◦Ψ =
k∑

j=0

φ∗jΓjφ
′
j · Φj.

Lemma 4.3. For Γ as in (4.1) and ∆ψ and ∆ψ∗

as in (3.7), we have

∥∥∥Γ ◦∆ψ
∥∥∥ = max

j

∥∥γjφj − Γjφ
′
j

∥∥ and
∥∥∥Γ ◦∆ψ∗

∥∥∥ = max
j

∥∥Γjφj − γjφ
′
j

∥∥.

Lemma 4.4. For Γ as in (4.1) and ∆ψψ∗

as in (3.6), we have

∥∥∥Γ ◦∆ψψ∗

∥∥∥ = max
j

∥∥Γjφjφ∗j − φ′jφ
′
j
∗
Γj
∥∥.

The following lemma is proven in Section 6.

Lemma 4.5. For Γ as in (4.1), ∆i as in (3.9), and for all values of i ∈ [n], we have

‖Γ ◦∆i‖ = max
j

max

{ ∣∣∣∣

√
(k − j)(n − k′ − j)

n− 2j
γj −

√
(k′ − j)(n − k − j)

n− 2j
γj+1

∣∣∣∣,
∣∣∣∣

√
(k′ − j)(n − k − j)

n− 2j
γj −

√
(k − j)(n − k′ − j)

n− 2j
γj+1

∣∣∣∣
}
.

We end this section with the following estimates on the entries of φ′j − φj.
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Lemma 4.6. Assume that n ≥ 5k and k ≥ 5j. For φj = φkj as defined in (4.2) and φ′j = φk
′

j

with k′ = (1 + ε)k ≤ 2k, we have the following estimates on the entries of φj , φ
′
j and their

differences:

i 1 2 3 4

φj,i, φ
′
j,i O

(√
j

n

)
O

(√
k

n

)
O

(√
j

k

)
O(1)

|φj,i − φ′j,i| O

(
ε
j3/2

k
√
n
+ ε

√
jk

n3/2

)
O

(
ε

√
k

n

)
O

(
ε

√
j

k

)
O

(
ε
j

k
+ ε

k

n

)

In particular, where ‖ · ‖1 stands for the ℓ1-norm:

∥∥φj − φ′j
∥∥ ≤

∥∥φj − φ′j
∥∥
1
= O

(
ε

√
k

n
+ ε

√
j

k

)
. (4.3)

Proof. The estimates on the values are straightforward. The estimates on the differences are
also easy to derive using the inequality |h(1 + ε)− h(1)| ≤

∫ 1+ε
1 |h′(t)|dt.

For |φ′j,1 − φj,1|, we have the upper bound of

O

(√
j

n

)∣∣∣∣∣

√(
1− j + 1

k(1 + ε)

)(
n− j + 1− k(1 + ε)

)
−
√(

1− j + 1

k

)
(n− j + 1− k)

∣∣∣∣∣,

which is O
(
ε
√
j/n
)
(j/k + k/n). For |φ′j,2 − φj,2|, we have

∣∣∣∣∣

√
k(1 + ε)

n
−
√
k

n

∣∣∣∣∣ = O

(
ε

√
k

n

)
.

For |φ′j,3 − φj,3|, we have

O

(√
j

n

)∣∣∣∣∣
n− 2k(1 + ε)√

k(1 + ε)
− n− 2k√

k

∣∣∣∣∣ = O

(
ε

√
jk

n
+ ε

√
j

k

)
= O

(
ε

√
j

k

)
.

For |φ′j,4 − φj,4|, we have

O

(
1√
n

)∣∣∣∣∣

√(
1− j

k(1 + ε)

)(
n− k(1 + ε)− j

)
−
√(

1− j

k

)
(n− k − j)

∣∣∣∣∣ = O

(
ε
j

k
+ ε

k

n

)
.

Equation (4.3) follows from the last row of the table and by removing the subdominant terms.

4.2 Specific Form and Estimates

It turns out, that for all the lower bounds of Theorem 1.1, it suffices to have a very simple
choice of the parameters γj in (4.1). Our choice follows a rather standard construction [12, 9]
of a gradient between a high value of the coefficient for j = 0 and 0 for large j. The adversary
matrix is specified by a single parameter 1 ≤ t ≤ k/5, which dictates the steepness of the
gradient. By changing t, we will be able to “slide” along the trade-off curve. Namely, we define

γj = max

{
1− j

t
, 0

}
. (4.4)

We have ‖Γ‖ = 1. Also, γi = 0 for all j ≥ t.
We will now use the general results from Section 4.1 to get estimates in this specific case.
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Proposition 4.7. In order to have ‖Γ ◦ Ψ◦ℓ‖ = Ω(1), it suffices that the following conditions
are met:

t ≥ 2ℓ, and ℓ ≤ Cmin

{√
k

ε
,
n

kε2

}

for a sufficiently small constant C.

Proof. Using Lemma 4.2 repeatedly, we see that Γ ◦ Ψ◦s =
∑k

j=0 γ
(s)
j Φj for some coefficients

γ
(s)
j . For s ∈ {0, 1, . . . , ℓ}, let us denote

D = minℓj=0〈φj , φ′j〉 and γ(s) = minℓ−sj=0 γ
(s)
j .

First, from our assumption t ≥ 2ℓ and using (4.4), we get that γ(0) ≥ 1/2. Next, from Lemma 4.2
applied to Γ ◦Ψ◦s, we get for s < ℓ and j < ℓ− s:

γ
(s+1)
j = γ

(s)
j−1φj,1φ

′
j,1 + γ

(s)
j φj,2φ

′
j,2 + γ

(s)
j φj,3φ

′
j,3 + γ

(s)
j+1φj,4φ

′
j,4 ≥ γ(s)

〈
φj , φ

′
j

〉
≥ γ(s)D.

This implies by induction γ(ℓ) ≥ Dℓ/2, and

‖Γ ◦Ψ◦ℓ‖ ≥ γ
(ℓ)
0 = γ(ℓ) ≥ Dℓ/2.

To prove the lemma, it suffices to lower bound D. Let αj be the angle between φj and φ′j .
Since both vectors have unit norm and using (4.3):

〈φj , φ′j〉2 = cos2 αj = 1− sin2 αj = 1−O
(
‖φj − φ′j‖2

)
= 1−O

(
ε2
j

k
+ ε2

k

n

)
.

Hence, by the definition of D:

Dℓ ≥
(
1−O

(
ℓ

k
ε2 +

k

n
ε2
))ℓ/2

≥ 1−O

(
ℓ2

k
ε2 +

ℓk

n
ε2
)

= Ω(1)

by our assumption on ℓ. This ends the proof of Proposition 4.7.

Proposition 4.8. Both
∥∥Γ ◦∆ψ

∥∥ and
∥∥Γ ◦∆ψ∗

∥∥ are O

(
ε

√
k

n
+ ε

√
t

k
+

1

t

)
.

Proof. We prove the estimate on
∥∥Γ ◦∆ψ∗

∥∥, the second one being completely analogous. We
use Lemma 4.3. If j > t + 1, we get Γjφj − γjφ

′
j = 0 by the definition of γj in (4.4). On the

other hand, for a fixed j ≤ t+ 1:

∥∥Γjφj − γjφ
′
j

∥∥ ≤
∣∣γj − γj−1

∣∣φj,1 +
∣∣γj − γj+1

∣∣φj,4 + γj‖φ′j − φj‖ = O

(
1

t
+ ε

√
k

n
+ ε

√
j

k

)
,

where we used that |γj−γj−1| ≤ 1/t, all φj,i and γj are at most 1, and (4.3). The lemma follows
by our assumption j ≤ t+ 1.

Proposition 4.9. We have ‖Γ ◦∆ψψ∗‖ = O

(
1

t
+ ε

)(√
k

n
+

√
t

k

)
.
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Proof. We have

Γjφjφ
∗
j =




γj−1φj,1φj,1 γj−1φj,1φj,2 γj−1φj,1φj,3 γj−1φj,1φj,4
γjφj,2φj,1 γjφj,2φj,2 γjφj,2φj,3 γjφj,2φj,4
γjφj,3φj,1 γjφj,3φj,2 γjφj,3φj,3 γjφj,3φj,4
γj+1φj,4φj,1 γj+1φj,4φj,2 γj+1φj,4φj,3 γj+1φj,4φj,4




φ′jφ
′
j
∗
Γj =




γj−1φ
′
j,1φ

′
j,1 γjφ

′
j,1φ

′
j,2 γjφ

′
j,1φ

′
j,3 γj+1φ

′
j,1φ

′
j,4

γj−1φ
′
j,2φ

′
j,1 γjφ

′
j,2φ

′
j,2 γjφ

′
j,2φ

′
j,3 γj+1φ

′
j,2φ

′
j,4

γj−1φ
′
j,3φ

′
j,1 γjφ

′
j,3φ

′
j,2 γjφ

′
j,3φ

′
j,3 γj+1φ

′
j,3φ

′
j,4

γj−1φ
′
j,4φ

′
j,1 γjφ

′
j,4φ

′
j,2 γjφ

′
j,4φ

′
j,3 γj+1φ

′
j,4φ

′
j,4




We estimate the difference that comes from changing the index of γ in the first matrix to align
it with the second matrix. After that, we bound the difference using the inequality ‖A‖ ≤ ‖A‖1,
where ‖A‖1 is the sum of the absolute values of all the entries of A. Using that all the involved
number are non-negative, all γj ≤ 1, and the estimates from Lemma 4.6, we obtain:

‖Γjφjφ∗j − φ′jφ
′
j
∗
Γj‖ ≤ 4

t

(
(φj,1 + φj,4)(φj,2 + φj,3) + φj,1φj,4

)
+
∥∥φ′jφ′∗j − φjφ

∗
j

∥∥
1

= O

(
1

t

)(√
k

n
+

√
j

k

)
+
∥∥φ′jφ′∗j − φjφ

∗
j

∥∥
1
.

For the latter, using Lemma 4.6 again:

∥∥φ′jφ′∗j − φjφ
∗
j

∥∥
1
≤
∥∥φ′jφ′∗j − φjφ

′∗
j

∥∥
1
+
∥∥φjφ′∗j − φjφ

∗
j

∥∥
1

≤
(∥∥φ′j

∥∥
1
+ ‖φj‖1

)∥∥φ′j − φj
∥∥
1
= O

(
ε

√
k

n
+ ε

√
j

k

)
.

Combining the last two equations:

‖Γjφjφ∗j − φ′jφ
′
j
∗
Γj‖ = O

(
1

t
+ ε

)(√
k

n
+

√
j

k

)
.

By Lemma 4.4, and using that Γjφjφ
∗
j − φ′jφ

′
j
∗Γj = 0 for j > t + 1 due to (4.4), we get the

required bound.

Proposition 4.10. We have ‖Γ ◦∆i‖ = O

(
1

t
+ ε

)√
k

n
.

Proof. We use Lemma 4.5. We estimate the first difference

∣∣∣∣

√
(k − j)(n − k′ − j)

n− 2j
γj −

√
(k′ − j)(n − k − j)

n− 2j
γj+1

∣∣∣∣

in the formulation of the lemma, the second one being similar. It is bounded by

O

(√
k

n

)∣∣γj+1 − γj
∣∣+O

(
1√
n

)∣∣∣
√
k − j −

√
k′ − j

∣∣∣+O

(√
k

n

)∣∣∣
√
n− k′ − j −

√
n− k − j

∣∣∣

= O

(√
k

n

)
1

t
+O

(
1√
n

)
ε
√
k +O

(√
k

n

)
εk√
n
.
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4.3 Proof of Theorem 1.1

Let us gather up all the inequalities from Section 4.2. We assume that

2ℓ ≤ t ≤ k/5, ℓ ≤ Cmin

{√
k

ε
,
n

kε2

}
, (4.5)

and we have that
∥∥∥Γ ◦∆ψ

∥∥∥,
∥∥∥Γ ◦∆ψ∗

∥∥∥ = O

(
ε

√
k

n
+ ε

√
t

k
+

1

t

)
, (4.6)

‖Γ ◦∆ψψ∗‖ = O

(
1

t
+ ε

)(√
k

n
+

√
t

k

)
, (4.7)

‖Γ ◦∆i‖ = O

(
1

t
+ ε

)√
k

n
. (4.8)

The proof of the Theorem follows from the two lemmata below. In both of them, we assume
notation of Theorem 1.1.

Lemma 4.11. Assume the algorithm has ℓ copies of the state ψx where ℓ satisfies the conditions
of (4.5), the first inequality reading as 2ℓ ≤ k/5. Assume also that the algorithm uses the state-
generating oracle

qG ≤ Cmin

{
1

ε

√
n

k
,

1

ε

√
k

ℓ
,
k1/3

ε2/3

}
(4.9)

times, where C is a sufficiently small constant. Then, in order to solve the problem, the algorithm
has to

• either execute the reflecting oracle Ω

(
min

{
1

ε

√
n

k
,

1

ε

√
k

ℓ+ qG
,

√
k

ε

})
times;

• or execute the membership oracle Ω

(
1

ε

√
n

k

)
times;

Lemma 4.12. Assume the algorithm does not have any copies of the state and does not execute
the state-generating oracle. Then, in order to solve the problem, it has to

• execute the reflecting or the membership oracle Ω

(√
n

k

)
times.

Proof of Theorem 1.1 assuming Lemmata 4.11 and 4.12. Theorem 1.1 states that, in order to
solve the problem, the algorithm must satisfy one of the conditions in Rows 1 through 8 of
Table 1. Let us prove that if Rows 1 through 7 do not hold, then Row 8 holds.

From the falsity of Row 1 and the falsity of Rows 3 and 4, we get that, respectively, the
conditions of (4.5) and (4.9) are satisfied. These being the two conditions of Lemma 4.11, one
of the two bullets of Lemma 4.11 must hold. However, the falsity of Row 2 rules out the second
bullet, so the first bullet must hold.

Further on, from the falsity of Rows 5 and 6, we have that

qR = o

(
min

{
1

ε

√
n

k
,
1

ε

√
k

ℓ+ qG
,

√
k

ε
+

√
n

k

})
.

Contrasting this with the truth of the first bullet of Lemma 4.11, we see that both qR = Ω(
√
k/ε)

and qR = o(
√
n/k). The former, together with the falsity of Row 7, implies that ℓ = qG = 0,

therefore the conditions of Lemma 4.12 are satisfied. By this lemma, since qR = o(
√
n/k), it

must be that qM = Ω(
√
n/k), and thus Row 8 holds.
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Proof of Lemma 4.11. In the proof, we will need a bit more careful tracking of constants than
usually. We will use two constants: C as in the statement of the lemma, and one additional
constant C ′. The Os and Ωs in the proof of the lemma do not depend on C and C ′, whereas
the Ωs in the formulation of the lemma do depend on them.

We will take

t = max

{
2ℓ, C ′qG,

1

5ε

}
,

where C ′ is a sufficiently large constant. First, we have to check that t satisfies (4.5). Indeed,
t ≥ 2ℓ. Also, the three possible values of t are upper-bounded as

2ℓ ≤ k/5, C ′qG ≤ C ′C
k1/3

ε2/3
≤ k

5
, and

1

5ε
≤ k

5
,

if C is small enough and because ε ≥ 1/k.
Now we can use (4.6)–(4.8). Since t = Ω(1/ε), we have that O

(
ε + 1/t

)
= O(ε). Proposi-

tion 3.5 gives us that at least one of the following three cases holds:

• The state-generating oracle is used

Ω

(
min

{
t,

1

ε

√
n

k
,

1

ε

√
k

t

})
= Ω

(
min

{
t,

1

ε

√
n

k
,
1

ε

√
k

ℓ
,

1

ε

√
k

C ′qG
,

√
k

ε

})
(4.10)

times; or

• the reflecting oracle is used

Ω

(
min

{
1

ε

√
n

k
,

1

ε

√
k

t

})
= Ω

(
min

{
1

ε

√
n

k
,

1

ε

√
k

ℓ+ C ′qG
,

√
k

ε

})

times; or

• the membership oracle is used Ω

(
1

ε

√
n

k

)
times.

Now, in order to prove the lemma, it suffices to show that the first case cannot hold, that is,
qG is smaller than (4.10). For that, we have to compare qG to the five elements in the minimum
on the right-hand side of (4.10).

First, t ≥ C ′qG. This gives contradiction to qG = Ω(t) if C ′ is large enough. Second and

third, we have qG ≤ C 1
ε

√
n
k and qG ≤ C 1

ε

√
k
ℓ , and we can take C small enough. Forth, we have

qG ≤ C
k1/3

ε2/3
=⇒ q

3/2
G

≤ C3/2

√
k

ε
=⇒ qG ≤ C3/2 1

ε

√
k

qG

and we can take C small enough. Fifth and finally, we have

qG ≤ C
k1/3

ε2/3
≤ C

√
k

ε

because ε ≥ 1/k. Again, we can take C small enough.
The order of choosing the values of the constants above is as follows. First, we choose the

value of C ′ large enough to get contradiction to qG = Ω(t). Then, based on the value of C ′, we
choose the value of C small enough. This ends the proof of Lemma 4.11
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Proof of Lemma 4.12. In this case we have ℓ = qG = 0. We take t = 1. Thus, γ0 = 1 and γj = 0
for all j ≥ 1. Clearly (4.5) is satisfied.

By (4.8), we have that5

1

‖Γ ◦∆i‖
= Ω

(√
n

k

)
.

We will use a different analysis of ‖Γ ◦∆ψψ∗‖, tailored for this special case. Note that φ0,1 =
φ′0,1 = φ0,3 = φ′0,3 = 0, hence, we get that the matrix Γ0φ0φ

∗
0 − φ′0φ

′
0Γ0 from Lemma 4.4 equals




0 0 0 0
0 φ20,2 − φ′ 20,2 0 φ0,2φ0,4
0 0 0 0
0 −φ′0,2φ′0,4 0 0


 ,

and

Γ1φ1φ
∗
1 − φ′1φ

′∗
1 Γ1 =




φ21,1 − φ′ 21,1 φ1,1φ1,2 φ1,1φ1,3 φ1,1φ1,4
−φ′1,1φ′1,2 0 0 0

−φ′1,1φ′1,3 0 0 0

−φ′1,1φ′1,4 0 0 0




and all the remaining matrices are zeroes. Now we can use Lemma 4.4. From Lemma 4.6, it is
straightforward to see that

1

‖Γ ◦∆ψψ∗‖ = Ω

(√
n

k

)
.

Application of Proposition 3.5 finishes the proof of Lemma 4.12.

5 Preliminaries on Representation Theory

To conclude the proof of our lower bounds, we are left with two tasks. The first one is to define
the morphisms Φj used in the construction of the adversary matrix Γ. The second one is to
prove Lemmata 4.2–4.5. In this section, we introduce the basics of representation theory of the
symmetric group, and use them to define morphisms Φj. We leave the proofs of Lemmata 4.2–4.5
to the final three sections.

5.1 Representation theory

In this section, we introduce basic notions from representation theory of finite groups. For more
background, the reader may refer to [17, 30].

Let G be a finite group. The group algebra CG consists of formal linear combinations of
the form

∑
g∈G αgg with αg ∈ C. It is clearly a linear space, but it is also an algebra because

we can extend the multiplication law of G to all CG by linearity. A left module over CG is a
vector space M with a left multiplication operation by the elements of CG satisfying the usual
associativity and distributivity axioms and such that ev = v for e the identity in G and every
v ∈ M. Such modules are also known as representations of G. We will use the term G-module,
which is a standard [29, 21] misnomer, since what is actually meant is a CG-module. We can
treat elements of CG as linear operators acting on M. Due to linearity, it suffices to specify
these operators for g ∈ G.

We assume the module M is equipped with a G-invariant inner product, that is, 〈gv, gu〉 =
〈u, v〉 for all u, v ∈ M and g ∈ G. Thus, the linear operators corresponding to g ∈ G are unitary.

5This estimate can be also obtained directly, since in this case Γ is the normalised all-1 matrix.
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If V and W are two G-modules, then the direct sum V ⊕W and the tensor product V ⊗W are
also G-modules defined by g(v,w) = (gv, gw) and g(v ⊗w) = (gv)⊗ (gw) for all v ∈ V, w ∈ W,
and g ∈ G.

A G-morphism (or just morphism, if G is clear from the context) between two G-modules V
and W is a linear operator θ : V → W that commutes with all α ∈ CG: θα = αθ. By linearity, it
suffices to check commutativity with all α ∈ G. Let us denote by HomG(V,W) the linear space
of G-morphisms from V to W.

An important special case of a G-module is CX , where X is a finite set with a group action of
G on it. A group action is a map (g, x) 7→ g(x) from G×X onto X satisfying g(h(x)) = (gh)(x)
for all g, h ∈ G and x ∈ X. By linearity, this gives a G-module. The linear operators on C

X

corresponding to g ∈ G are given by permutation matrices. Hence, the standard inner product
in C

X is G-invariant. We have the following easy characterisation of morphisms in this case:

Proposition 5.1. Assume X and Y are two sets with group action of G defined on them. A
linear operator A : CY → C

X is a G-morphism if and only if A[[x, y]] = A[[g(x), g(y)]] for all
x ∈ X, y ∈ Y , and g ∈ G.

A G-module is called irreducible (or irrep) if it does not contain a non-trivial G-submodule.
Schur’s Lemma is an essential result in representation theory, stated as follows.

Lemma 5.2 (Schur’s Lemma). Assume θ : V → W is a morphism between two irreducible G-
modules V and W. If V and W are non-isomorphic, then θ = 0. Otherwise, θ is uniquely
determined up to a scalar multiplier.

In other words, the second part of the above lemma states that HomG(V,V) ∼= C for irre-
ducible V. Let us note that while the first part holds for any base field, for the second part it is
essential that the base field C is algebraically closed.

Schur’s Lemma has a large number of consequences. First, on an irrep V, there is only
one, up to a scalar multiplier, G-invariant inner product. Hence, any isomorphism between two
irreducible G-modules is an isometry times a scalar. Second, if M is a G-module, and V and W
are two its non-isomorphic irreducible submodules, then V and W are orthogonal as subspaces.

Let V be an irrep. A submodule of M isomorphic to V is called a copy of V in M. The
dimension of HomG(V,M) is known as the multiplicity of V in M. It is equal to the number of
pairwise orthogonal copies of V that can be embedded in M.

Next, let IsoG(V,M) denote the span of all the copies of V inM, which is known as the isotyp-
ical subspace. The mapping θ⊗v 7→ θ(v) defines an isomorphism between HomG(V,M)⊗V and
IsoG(V,M) as linear spaces. The whole module M can be expressed as M =

⊕
V IsoG(V,M)

as V ranges over the irreps of G. This is called the isotypical decomposition of M. The terms
in the isotypical decomposition are pairwise orthogonal.

We use the following palpable way to represent HomG(V,M). Fix some reference non-
zero vector vV ∈ V, and define the slice of vV in a module M, denoted SliceG(vV ,M), as
the set of all θ(vV) as θ ranges over HomG(V,M). The space HomG(V,M) is isomorphic to
SliceG(vV ,M), the isomorphism being θ 7→ θ(vV). Combining the two above isomorphisms,
we get that IsoG(V,M) is isomorphic to SliceG(vV ,M) ⊗ V. This allows us to write down the
following isotypical decomposition of a morphism θ : M → N between two G-modules M and
N :

θ =
⊕

V
θV ⊗ IV . (5.1)

Here V ranges over all irreps of G, a linear operator θV : SliceG(vV ,M) → SliceG(vV ,N ) is the
restriction of θ to SliceG(vV ,M) for a fixed non-zero vV ∈ V, and IV is the identity on V. In
particular, (5.1) implies

‖θ‖ = max
V

‖θV‖. (5.2)

21



We will use group algebra extensively in our proofs. Its elements are important as they give
linear operators that are preserved under isomorphisms. In particular, if α ∈ CG is a group
element, and αM is the corresponding linear operator in a G-module M, we have the following
decomposition complementing (5.1):

αM =
⊕

V
IHomG(V ,M) ⊗ αV , (5.3)

where again V ranges over all irreps of G. An important use-case is provided by an α that is
zero on all irreps but one (call it V) and is a 1-dimensional projector on V. In this case, by (5.3),
α projects onto the slice of v in every G-module M, where v is a non-zero vector in α(V).

5.2 Symmetric group

In this section, we consider a special case of the symmetric group. If A is a finite set, SA
denotes the symmetric group on A, that is, the group with the permutations of A as elements,
and composition as the group operation. We will write Sn instead of S[n]. If A ⊆ B, then we
consider SA as a subgroup of SB , where each permutation π ∈ SA is extended to B \ A by
identity. We also use the following elements of the group algebra CSA:

S
+
A =

∑

π∈SA

π and S
−
A =

∑

ρ∈SA

(sgn ρ)ρ,

where sgn ρ stands for the sign of ρ. Both of them are scalar multiples of orthogonal projectors.
Representation theory of Sn is closely related to partitions of integers. A partition λ of an

integer n is a non-increasing sequence (λ1, . . . , λℓ) of positive integers satisfying λ1+· · ·+λℓ = n.
For each partition λ of n, one assigns an irreducible Sn-module Sλ, called the Specht module.
All these modules are pairwise non-isomorphic, and give a complete list of all the irreps of Sn.

A partition λ = (λ1, . . . , λℓ) of n is often represented in the form of a Young diagram that
consists, from top to bottom, of rows of λ1, λ2, . . . , λℓ boxes aligned by the left side. We often
identify λ with the corresponding diagram. A Young tableau of shape λ is a Young diagram of λ
with each box containing an element from [n], each element used exactly once. As an example,
the following is a Young tableau of shape (4, 3, 1):

t =
4 6 5 1

2 3 8

7

For a Young tableau t, define its row permutations Rt and its column permutations Ct as
the permutations in Sn that permute the elements within each row or column of t, respectively.
In our example above, Rt = S{1,5,6,4}×S{2,3,8} and Ct = S{2,4,7}×S{3,6}×S{5,8}. This gives rise
to the following two elements of the group algebra CSn:

R
+
t =

∑

π∈Rt

π =
∏

R is a row of t

S
+
R, and C

−
t =

∑

ρ∈Ct

(sgn ρ)ρ =
∏

C is a column of t

S
−
C .

The following is one of the key results in representation theory of the symmetric group. In
fact, this is the only result from this theory we rely on in our forthcoming proofs.

Theorem 5.3 ([21, Chapter 3], [17, §28]). Let t be a Young tableau of shape λ. The element
C
−
t R

+
t of the group algebra annihilates (is identical zero on) every Specht module Sµ with µ 6= λ.

On Sλ, it is a 1-dimensional projector times a scalar.
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This result is important as C−
t R

+
t is the projector onto SliceSn(v,M) in every Sn-module M,

where v lies in the image of C−
t R

+
t in Sλ. Note that while both C

−
t and R

+
t are non-normalized

orthogonal projectors, they generally do not commute, hence, C−
t R

+
t is not Hermitian, and is

not an orthogonal projector.

5.3 The Module C(
[n]
k )

For the remaining part of this paper, we assume the value of n is fixed, so our notation will
often implicitly depend on n.

For positive integers n ≥ 2k, the set
([n]
k

)
of all subsets of [n] of size k admits group action

of Sn on it. Namely, x ∈
([n]
k

)
is mapped by π ∈ Sn to π(x) = {π(i) | i ∈ x}. Let C(

[n]
k ) be the

corresponding Sn-module. We will write the elements of C(
[n]
k ) as formal linear combinations of

subsets similar as we write group algebra elements. This module has close connection to the
Johnson association scheme [6], and both spaces CX and C

Y in Section 4 are of this form.
In this section, we will use Theorem 5.3 to analyse its structure. Although the results are

well-known, this serves as a warm-up for the next sections. We will need the following piece of
notation. For two disjoint sets A,B ⊆ [n], let A⊔×B denote their disjoint union. We extend this
notation to formal linear combinations of sets in a straightforward way. For instance,

(
{1} − {2}

)
⊔×
(
{3, 5} − {4, 5}

)
= {1, 3, 5} − {1, 4, 5} − {2, 3, 5} + {2, 4, 5}.

This notation is similar to tensor products with the distinction that the sets are unordered and
the promise that the multipliers are disjoint. The symbol ⊔× is a combination of the symbols for
the disjoint union ⊔ and the product ×.

Take any 3 distinct elements a, b, c ∈ [n] and T ∈
([n]
k

)
. Either

∣∣{a, b, c} ∩ T
∣∣ ≥ 2, or

∣∣{a, b, c}∩ ([n]\T )
∣∣ ≥ 2. In either case, S−{a,b,c}T = 0, hence, S−{a,b,c} annihilates the whole C(

[n]
k ).

By Theorem 5.3, C(
[n]
k ) does not contain a copy of any Sλ for λ with more than two rows.

Now consider two-row diagrams λj = (n − j, j), which also includes the one-row case of
λ0 = (n). For notational convenience, we choose the following tableau of shape λj :

tj =
a1 a2 a3 . . . aj 1 2 3 . . . n−2j

b1 b2 b3 . . . bj

, (5.4)

where ai = n − 2i + 2 and bi = n − 2i + 1 for i = 1, . . . , j. If T ⊆ [n], then C
−
tj
T = 0 unless it

satisfies the following intersection condition:

∀i ∈ [j] :
∣∣T ∩ {ai, bi}

∣∣ = 1. (5.5)

By Theorem 5.3, there is no irrep isomorphic to S(n−j,j) in C
([n]

k ) for k < j.
Now let us consider the case k = j. If T ∈

([n]
j

)
and satisfies the intersection condition (5.5),

then C
−
tj
T = (−1)|T∩{b1,...,bj}|Cj, where

Cj =
(
{a1} − {b1}

)
⊔×
(
{a2} − {b2}

)
⊔× · · · ⊔×

(
{aj} − {bj}

)
. (5.6)

For any π ∈ Rtj , the sets T ∩ {b1, . . . , bj} and π(T ) ∩ {b1, . . . , bj} have the same size, hence,

the image of C−
tj
R
+
tj

is non-empty on C
([n]

j ), as there are no cancellations. The image is spanned

by Cj, which, by Theorem 5.3, means that Cj belongs to the only copy of S(n−j,j) contained in
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C
([n]

j ). We will use the latter as our reference instance of S(n−j,j), and Cj as our reference vector

in S(n−j,j). Note that, while they are related, Cj is an element of the module C
([n]

j ), and C
−
tj

is
an element of the group algebra CSn.

For the general case k ≥ j, we can use the same logic as above with C
−
tj
replaced by C

−
tj
S
+
[n−2j].

As above, for any T ∈
([n]
k

)
, the vector C−

tj
S
+
[n−2j]T is a scalar multiple of the vector

Cj ⊔×R
[n−2j]
k−j with RAs =

∑

B⊂A,|B|=s
B, (5.7)

where the scalar is 0 unless the intersection condition (5.5) is met. If the latter is satisfied,
the scalar is (−1)|T∩{b1,...,bj}|(k − j)!(n − j − k)!. We have that S[n−2j] is a subgroup of Rtj ,

thus, S+[n−2j]R
+
tj
= (n − 2j)!R+

tj
. Using the same reasoning as above, there are no cancellations

again, and the image C
−
tj
R
+
tj

(
C
([n]

k )
)
= C

−
tj
S
+
[n−2j]R

+
tj

(
C
([n]

k )
)
is one-dimensional and spanned by

Cj ⊔×R
[n−2j]
k−j of (5.7). In light of Theorem 5.3, we have proven the following result:

Theorem 5.4. We have the following decomposition into irreps, each irrep having multiplicity
1:

C
([n]

k ) ∼= S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) ⊕ . . . ⊕ S(n−k,k). (5.8)

Also, for j ≤ k, SliceSn

(
Cj ,C

([n]
k )
)
is one-dimensional and spanned by the following normalised

vector

vkj =
1√

2j
(n−2j
k−j

) Cj ⊔×R
[n−2j]
k−j . (5.9)

On C(
[n]
k ), both C

−
tj
R
+
tj

and C
−
tj
S
+
[n−2j] are a scalar times a projector onto vkj .

We will need the following small technical result.

Claim 5.5. Assume a, b, c ∈ [n] are 3 distinct elements. Then, S−{a,b,c} annihilates any irrep of

the form S(n−j,j).

Proof. As we saw earlier, S−{a,b,c} annihilates the whole C(
[n]
k ). Hence, it annihilates all the terms

in (5.8), which proves the claim.

We can also describe the isometric isomorphisms Φℓ→k
j between the copies of S(n−j,j) in C

([n]
ℓ )

and C
([n]

k ). They transform the corresponding normalised vectors (5.9):

Φℓ→k
j : vℓj 7→ vkj . (5.10)

Since it is a morphism, it also transforms Φℓ→k
j : π

(
vℓj
)
7→ π

(
vkj
)
for every choice of π ∈ Sn.

For the ease of notation, we will prove Lemmata 4.2–4.5 for the operator Γ: C(
[n]
ℓ ) → C

([n]
k )

given by

Γ =
⊕

j

γjΦ
ℓ→k
j . (5.11)

The statements of the Lemmata are then obtained substituting k′ instead of ℓ.

We will also need a more convenient way of going from C(
[n]
ℓ ) to C(

[n]
k ), where k > ℓ. Define

the following map

W ℓ→k : C(
[n]
ℓ ) → C(

[n]
k ), T 7→ T ⊔×R

[n]\T
k−ℓ =

∑

S:T⊆S⊆[n],|S|=k
S. (5.12)
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In other words, W ℓ→k[[S, T ]] = 1T⊆S . The latter condition is preserved under the action of any
π ∈ Sn, hence, by Proposition 5.1, W ℓ→k is a morphism.

Claim 5.6. For a subset A ⊆ [n− 2j] of size ℓ− j, we have

W ℓ→k : Cj ⊔×A 7→ Cj ⊔×A ⊔×R
[n−2j]\A
k−ℓ . (5.13)

Proof. Indeed, take any basis element T used on the left-hand side of (5.13). By construction,
|T∩{ai, bi}| = 1 for every i. AssumeW ℓ→k extends T to a superset S ⊇ T such that {ai, bi} ⊆ S.
But S can also then be obtained from T△{ai, bi}, where △ is the symmetric difference. The
subsets T and T△{ai, bi} have opposite signs in Cj ⊔×A, hence, S cancels out.

The only terms that are not cancelled out in this fashion come from extensions by the
elements in [n− 2j] \A, which gives (5.13).

Proposition 5.7. The morphism W ℓ→k satisfies

W ℓ→k : Cj ⊔×R
[n−2j]
ℓ−j 7→

(
k − j

ℓ− j

)
Cj ⊔×R

[n−2j]
k−j . (5.14)

Therefore, it has the following isotypical decomposition:

W ℓ→k =

ℓ∑

j=0

√(
n− j − ℓ

k − ℓ

)(
k − j

ℓ− j

)
Φℓ→k
j . (5.15)

Proof. Eq. (5.14) follows from Claim 5.6, as each B used in R
[n−2j]
k−j has exactly

(k−j
ℓ−j
)
choices of

A in R
[n−2j]
ℓ−j it can be obtained from. Taking into account the normalisation factors from (5.9),

the coefficient of Φℓ→k
j in the isotypical decomposition of W ℓ→k is

(
k − j

ℓ− j

)√√√√
(
n−2j
k−j

)
(
n−2j
ℓ−j
) =

√(
n− j − ℓ

k − ℓ

)(
k − j

ℓ− j

)
.

6 Proof of Lemma 4.5

Due to symmetry, the norms of all Γ ◦∆i are the same, thus, we may consider Γ ◦∆1. Recall
that we assume that Γ in an

([n]
k

)
×
([n]
ℓ

)
-matrix from (5.11). Let Π◦

k and Π•
k denote orthogonal

projections in C(
[n]
k ) onto the span of

{
T ∈

([n]
k

) ∣∣ 1 /∈ T
}
and

{
T ∈

([n]
k

) ∣∣ 1 ∈ T
}
, respectively.

Then Γ ◦∆1 decomposes as the following direct sum

Γ ◦∆1 = Π◦
kΓΠ

•
ℓ ⊕Π•

kΓΠ
◦
ℓ , (6.1)

and it suffices to estimate the norms of both terms on the right-hand side independently.
This matrix is no longer symmetric with respect to the whole group Sn, but it is an S[2..n]-

morphism, where [2..n] denotes {2, 3, . . . , n}. The group S[2..n] is clearly isomorphic to Sn−1,

and the vector Cj from (5.6) still acts as a reference vector in the irrep S(n−1−j,j) of S[2..n].
Let us denote

Ak
j = SliceS[2..n]

(
Cj ,C

([n]
k )
)
,

where C(
[n]
k ) is considered as an S[2..n]-module. The proof of the following proposition is essen-

tially identical to Theorem 5.4.
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Proposition 6.1. If j < k, the space Ak
j is two-dimensional with the following orthogonal basis:

[O]kj = Cj ⊔×R
[2..n−2j]
k−j and [I]kj = Cj ⊔×{1} ⊔×R

[2..n−2j]
k−j−1 ,

with the vectors being in the image of Π◦
k and Π•

k, respectively. If j = k, the space is 1-

dimensional and spanned by [O]jj . If j > k, the space is empty.

Proof. As in Theorem 5.4, we have that Ak
j is equal to the image of C−

tj
S
+
[2..n−2j]

in C(
[n]
k ). For

T ∈
([n]
k

)
, the vector C

−
tj
S
+
[2..n−2j]T is a scalar multiple (possibly, zero) of either [I]kj or [O]kj in

dependence on whether 1 ∈ T or not, respectively.

We have the following estimates on the norms of these vectors:

∥∥[O]kj
∥∥2 = 2j

(
n− 2j − 1

k − j

)
and

∥∥[I]kj
∥∥2 = 2j

(
n− 2j − 1

k − j − 1

)
.

We will establish relation between this basis and the Sn-isotypical structure of C
([n]

k ) because
the latter is what the morphism Γ is using. Let us rewrite the decomposition (5.8) as

C
([n]

k ) = Bk0 ⊕ Bk1 ⊕ · · · ⊕ Bkk ,

where Bki is isomorphic to S(n−i,i) as an Sn-module. Now our goal is to find vectors ṽj,1
k ∈ Ak

j∩Bkj
and ṽj,2

k ∈ Ak
j ∩ Bkj+1.

Let us start with the first vector. If k = j, we have

ṽj,1
j = [O]jj = Cj ∈ Aj

j ∩ Bjj .

For k > j, we define

ṽj,1
k =W j→kṽj,1

j = Cj ⊔×R
[n−2j]
k−j = [O]kj + [I]kj ∈ Ak

j ∩ Bkj , (6.2)

where W j→k is as in (5.12), and we use (5.14). The inclusion holds here because W j→k is an
Sn-morphism, hence, also an S[2..n]-morphism, therefore, it preserves membership in both Aj

and Bj .
For the second vector, observe that, for c ∈ [2..n− 2j], the vector Cj ⊔×

(
{c}−{1}

)
is in Bj+1

j+1

by Theorem 5.4. Summing over all c, we obtain

ṽj,2
j+1 =

n−2j∑

c=2

Cj ⊔×
(
{c} − {1}

)
= [O]j+1

j − (n− 2j − 1)[I]j+1
j ∈ Aj+1

j ∩ Bj+1
j+1.

Using Claim 5.6, we get:

W j+1→k[O]j+1
j = (k − j)[O]kj + (k − j − 1)[I]kj and W j+1→k[I]j+1

j = [I]kj .

Hence, we obtain the following vector

ṽj,2
k =W j+1→kṽj,2

j+1 = (k − j)[O]kj − (n− j − k)[I]kj ∈ Ak
j ∩ Bkj+1. (6.3)

The normalised versions of these vectors

vkj,1 =
ṽj,1

k

∥∥ṽj,1k
∥∥ and vkj,2 =

ṽj,2
k

∥∥ṽj,2k
∥∥
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form an orthonormal basis of Ak
j . Also, by (5.15), W ℓ→k is a positive multiple of Φℓ→k

j on

S(n−j,j), which means that

Φℓ→k
j vℓj,1 = vkj,1 and Φℓ→k

j+1 v
ℓ
j,2 = vkj,2.

Therefore, we can write the following isotypical decomposition of Γ as an S[2..n]-morphism in
the sense of (5.1):

Γ =
⊕

j

(
γj

γj+1

)
⊗ IS(n−j−1,j) , (6.4)

where the column basis is vℓj,1, v
ℓ
j,2, and the row basis is vkj,1, v

k
j,2.

The operator Π◦
k restricted to Ak

j is an orthogonal projector onto the vector [O]kj . Let us
find the coordinates

φk,◦j =

(
φk,◦j,1
φk,◦j,2

)

of the normalised [O]kj in the basis
{
vkj,1, v

k
j,2

}
. For that, it suffices to find the inner product

between the corresponding normalised vectors. For the first coordinate, we have

φk,◦j,1 =

〈
ṽj,1

k, [O]kj

〉

∥∥ṽj,1k
∥∥∥∥[O]kj

∥∥ =

∥∥[O]kj
∥∥

∥∥ṽj,1k
∥∥ =

√√√√2j
(
n−2j−1
k−j

)

2j
(
n−2j
k−j

) =

√
n− j − k

n− 2j
.

We can also explicitly calculate the second coordinate. First,

‖ṽj,2j+1‖2 = ‖[O]j+1
j ‖2+(n−2j−1)2‖[I]j+1

j ‖2 = 2j(n−2j−1)+2j(n−2j−1)2 = 2j(n−2j)(n−2j−1).

Then, using (5.15) and that ṽj,2
j+1 ∈ Bj+1:

‖ṽj,2k‖2 = ‖W j+1→kṽj,2
j+1‖2 =

(
n− 2j − 2

k − j − 1

)
· 2j(n− 2j)(n − 2j − 1).

Which gives us

φk,◦j,2 =

〈
ṽj,2

k, [O]kj

〉

∥∥ṽj,2k
∥∥∥∥[O]kj

∥∥ =
(k − j)

∥∥[O]kj
∥∥

∥∥ṽj,2k
∥∥ = (k − j)

√√√√ 2j
(n−2j−1

k−j
)

2j
(n−2j−2
k−j−1

)
(n− 2j)(n − 2j − 1)

=

√
k − j

n− 2j
.

Thus, the restrictions of Π◦
k and Π•

k to Ak
j project onto the following orthonormal vectors

φk,◦j =
1√

n− 2j

(√
n− k − j√
k − j

)
and φk,•j =

1√
n− 2j

( √
k − j

−√
n− k − j

)
,

respectively, where we use the basis
{
vkj,1, v

k
j,2

}
as before. Utilising (6.4), we get

Π◦
kΓΠ

•
ℓ =

⊕

j

[
φk,◦j (φk,◦j )∗

(
γj

γj+1

)
φℓ,•j (φℓ,•j )∗

]
⊗ IS(n−j−1,j) .

Therefore,

‖Π◦
kΓΠ

•
ℓ‖ = max

j

∣∣∣∣(φ
k,◦
j )∗

(
γj

γj+1

)
φℓ,•j

∣∣∣∣ = max
j

∣∣∣γj
√

(n− k − j)(ℓ − j)− γj+1

√
(k − j)(n − ℓ− j)

∣∣∣
n− 2j

.

Similarly,

‖Π•
kΓΠ

◦
ℓ‖ = max

j

∣∣∣∣(φ
k,•
j )∗

(
γj

γj+1

)
φℓ,◦j

∣∣∣∣ = max
j

∣∣∣γj
√

(k − j)(n − ℓ− j)− γj+1

√
(n− k − j)(ℓ− j)

∣∣∣
n− 2j

.

By (6.1), the norm of Γ ◦∆1 is the maximum of the two, which gives us Lemma 4.5.
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7 Proofs of Lemmata 4.2–4.4

Here we will prove the first three of the main lemmata from Section 4.1. For greater clarity,

we use ex to denote the element of the standard basis of C(
[n]
k ) corresponding to x ⊆ [n] in this

section.
In the context of Lemmata 4.2–4.4, the Sn-module C(

[n]
k ) ⊗ C

n becomes important. It is a

tensor product of two Sn-modules C(
[n]
k ) and C

n = C(
[n]
1 ). It can be also seen as an Sn-module

corresponding to the set
([n]
k

)
× [n] with the obvious group action of Sn on it.

We will express all the operators appearing in the above lemmata using the following isometry

Vk : C
([n]

k ) → C
([n]

k ) ⊗ C
n, ex 7→ ex ⊗ ψx, (7.1)

where ψx = 1√
|x|
∑

i∈x|i〉 is as defined in (1.1). In other words, Vk[(x, i), x] = 1i∈x/
√
k, from

which Proposition 5.1 tells us Vk is a morphism.

Proposition 7.1. For an
([n]
k

)
×
([n]
ℓ

)
-matrix Γ, we have

Γ ◦Ψ = V ∗
k (Γ⊗ In)Vℓ, (7.2)

Γ ◦∆ψ = VkΓ− (Γ⊗ In)Vℓ, (7.3)

Γ ◦∆ψ∗

= V ∗
k (Γ⊗ In)− ΓV ∗

ℓ , (7.4)

Γ ◦∆ψψ∗

= VkV
∗
k (Γ⊗ In)− (Γ⊗ In)VℓV

∗
ℓ , (7.5)

where Ψx,y = 〈ψx, ψy〉, ∆ψ
x,y = ψx−ψy, ∆ψ∗

x,y = ψ∗
x−ψ∗

y, and ∆ψψ∗

x,y = ψxψ
∗
x−ψyψ∗

y are
([n]
k

)
×
([n]
ℓ

)

(block) matrices defined as in (3.10), (3.7) and (3.6). Also, In stands for the identity on C
n.

Proof. Everywhere in this proof x ranges over
([n]
k

)
and y over

([n]
ℓ

)
. Let us denote γx,y = Γ[[x, y]]

so that Γ =
∑

x,y γx,yexe
∗
y. Also, we have Vk =

∑
x(ex ⊗ ψx)e

∗
x and Vℓ =

∑
y(ey ⊗ ψy)e

∗
y. Thus,

V ∗
k (Γ⊗ In)Vℓ =

∑

x

ex(ex⊗ψx)
∗∑

x,y

γx,y(exe
∗
y ⊗ In)

∑

y

(ey⊗ψy)e
∗
y =

∑

x,y

γx,yexe
∗
y ·ψ∗

xψy = Γ ◦Ψ.

Also,

VkΓ =
∑

x

(ex ⊗ ψx)e
∗
x

∑

x,y

γx,yexe
∗
y =

∑

x,y

γx,y(ex ⊗ ψx)e
∗
y

and
(Γ⊗ In)Vℓ =

∑

x,y

γx,y(exe
∗
y ⊗ In)

∑

y

(ey ⊗ ψy)e
∗
y =

∑

x,y

γx,y(ex ⊗ ψy)e
∗
y,

from which (7.3) follows since

Γ ◦∆ψ =
∑

x,y

γx,y
(
ex ⊗ (ψx − ψy)

)
e∗y.

Similarly,

V ∗
k (Γ⊗ In) =

∑

x

ex(ex ⊗ ψx)
∗∑

x,y

γx,y(exe
∗
y ⊗ In) =

∑

x,y

γx,yex(ey ⊗ ψx)
∗

and
ΓV ∗

ℓ =
∑

x,y

γx,yexe
∗
y

∑

y

ey(ey ⊗ ψy)
∗ =

∑

x,y

γx,yex(ey ⊗ ψy)
∗,
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which implies (7.4). Finally,

VkV
∗
k (Γ⊗ In) =

∑

x

(ex ⊗ ψx)(ex ⊗ ψx)
∗∑

x,y

γx,y(exe
∗
y ⊗ In) =

∑

x,y

γx,yexe
∗
y ⊗ ψxψ

∗
x

and

(Γ⊗ In)VℓV
∗
ℓ =

∑

x,y

γx,y(exe
∗
y ⊗ In)

∑

y

(ey ⊗ ψy)(ey ⊗ ψy)
∗ =

∑

x,y

γx,yexe
∗
y ⊗ ψyψ

∗
y ,

from which we get (7.5).

Let us explore the structure of C(
[n]
k )⊗C

n. We know from Theorem 5.4 that C(
[n]
k ) decomposes

into irreducible submodules as

C
([n]

k ) = Bk0 ⊕ Bk1 ⊕ · · · ⊕ Bkk ,

where Bki is isomorphic to S(n−i,i). Similarly, as a special case of k = 1, we have the following
decomposition into submodules:

C
n = E0 ⊕ E1

with Ei is isomorphic to S(n−i,i). We are interested in the relation between tensor products of

these submodules and the isotypical decomposition of C(
[n]
k ) ⊗ C

n. We will prove the following
two results in Section 8.

Lemma 7.2. Assume j > 0 and k > j. For the vector Cj ∈ S(n−j,j) from (5.6), the space

Ak
j = SliceSn

(
Cj ,C

([n]
k ) ⊗ C

n
)

(7.6)

is 4-dimensional with an orthonormal basis wkj,1, w
k
j,2, w

k
j,3, w

k
j,4, where

wkj,1 ∈ Bkj−1 ⊗ E1, wkj,2 ∈ Bkj ⊗ E0, wkj,3 ∈ Bkj ⊗ E1, and wkj,4 ∈ Bkj+1 ⊗ E1. (7.7)

If j = 0, the space is 2-dimensional and spanned by wkj,2 and wkj,4. We additionally have, for all
ℓ and k where the corresponding operators exist:

(Φℓ→k
j−1 ⊗ In)w

ℓ
j,1 = wkj,1, (Φℓ→k

j ⊗ In)w
ℓ
j,2 = wkj,2,

(Φℓ→k
j ⊗ In)w

ℓ
j,3 = wkj,3, (Φℓ→k

j+1 ⊗ In)w
ℓ
j,4 = wkj,4.

(7.8)

Lemma 7.3. For the operator Vk defined in (7.1), we have the following isotypical decomposition
in the sense of (5.1):

Vk =
⊕

j

φkj ⊗ IS(n−j,j) =
⊕

j




φkj,1
φkj,2
φkj,3
φkj,4


⊗ IS(n−j,j) , (7.9)

where φkj are defined in (4.2). The column basis is vkj from (5.9) and the row basis is wkj,1, . . . , w
k
j,4

from (7.7).
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Now we are in position to prove the lemmata from Section 4.1. We prove them for an([n]
k

)
×
([n]
ℓ

)
matrix Γ given by

Γ =
⊕

j

γjΦ
ℓ→k
j =

⊕

j

(γj)⊗ IS(n−j,j) , (7.10)

where the last one is its isotypical decomposition in the sense of (5.1). In the latter, we assume
that the 1× 1-matrix has the column basis vℓj and the row basis vkj . Similarly, using (7.8):

Γ⊗ In =
⊕

j

Γj ⊗ IS(n−j,j) =
⊕

j




γj−1

γj
γj

γj+1


⊗ IS(n−j,j) , (7.11)

where the notation Γj is borrowed from (4.2). Here the column basis is wℓj,1, . . . , w
ℓ
j,4 and the

row basis is wkj,1, . . . , w
k
j,4.

Now, by Proposition 7.1 and using the decompositions (7.9), (7.10) and (7.11) above, we
have

Γ ◦Ψ = V ∗
k (Γ⊗ In)Vℓ =

⊕

j

(
(φkj )

∗Γjφ
ℓ
j

)
⊗ IS(n−j,j) .

Γ ◦∆ψ = VkΓ− (Γ⊗ In)Vℓ =
⊕

j

(γjφ
k
j − Γjφ

ℓ
j)⊗ IS(n−j,j) .

Γ ◦∆ψ∗

= V ∗
k (Γ⊗ In)− ΓV ∗

ℓ =
⊕

j

(Γjφ
k
j − γjφ

ℓ
j)

∗ ⊗ IS(n−j,j) .

Γ ◦∆ψψ∗

= VkV
∗
k (Γ⊗ In)− (Γ⊗ In)VℓV

∗
ℓ =

⊕

j

(
φkj (φ

k
j )

∗Γj − Γjφ
ℓ
j(φ

ℓ
j)

∗)⊗ IS(n−j,j) .

Lemmata 4.2, 4.3 and 4.4 follow from the above four equations with ℓ = k′ and with the use
of (5.2) to bound the norms where necessary.

8 The Module C(
[n]
k ) ⊗ Cn

In this section, we analyse the Sn-module C
([n]

k ) ⊗ C
n similarly as we did for the Sn-module

C(
[n]
k ) in Section 5.3. We will denote the basis elements of this module by T ⊗{d} with T ∈

([n]
k

)

and d ∈ [n].

By Theorem 5.3, to get a slice of C(
[n]
k ) ⊗ C

n, it suffices to apply C
−
tj
R
+
tj

with tj in (5.4).
However, directly dealing with this group algebra element is complicated. We will use the
following group algebra element instead:

Dj = C
−
tj
S
+
[n−2j]S

+
(a1,b1),...,(aj ,bj)

, (8.1)

where S(a1,b1),...,(aj ,bj) is the group permuting the pairs {(a1, b1), . . . , (aj , bj)}. The latter is
isomorphic to Sj, where σ ∈ Sj corresponds to the permutation mapping ai 7→ aσ(i), bi 7→ bσ(i)
for i ∈ [j], and the identity elsewhere.

Proposition 8.1. The operator Dj is a scalar times an orthogonal projector. On every Sn-
module M, its image contains the image of C−

tj
R
+
tj
. Moreover, if M ∼= S(n−i,i), the two images

coincide. In particular, Dj annihilates all S(n−i,i) with i 6= j.
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Proof. First, all the multipliers in (8.1) are orthogonal projectors up to a constant, and they
commute. Hence, Dj is also a constant times an orthogonal projector.

Both S[n−2j] and S(a1,b1),...,(aj ,bj) are subgroups of Rtj , hence

(n− 2j)!j!C−
tj
R
+
tj
= C

−
tj
S
+
[n−2j]S

+
(a1,b1),...,(aj ,bj)

R
+
tj
= DjR

+
tj
.

Thus, the image of C−
tj
R
+
tj

is contained in the image of Dj .

Also, Dj contains C
−
tj
S
+
[n−2j], hence, by Theorem 5.4, the image of Dj is contained in the

image of C−
tj
R
+
tj

in all Sλ with λ having 2 or less rows.

One problem is that Dj is not guaranteed to annihilate irreps Sλ with λ having more than 2
rows. Because of that, the image of Dj turns out to be strictly larger than that of C−

tj
R
+
tj
, which

annihilates all such irreps.
The main reason for our choice of Dj is that all the multipliers in (8.1) commute, therefore,

it is very easy to describe its image. For that, we will need the following version of the vector
Cj from (5.6) with one of the multipliers dropped:

Cys
j−1 =

(
{a1} − {b1}

)
⊔× · · · ⊔×

(
{as−1} − {bs−1}

)
⊔×
(
{as+1} − {bs+1}

)
⊔× · · · ⊔×

(
{aj} − {bj}

)
.

Proposition 8.2. Assuming k ≥ j + 1, the image of Dj in C
([n]

k ) ⊗ C
n has the following

orthogonal basis:

[O]kj =

j∑

s=1

Cys
j−1 ⊔×R

[n−2j]
k−j+1 ⊗ ({as} − {bs}),

[IA]
k
j =

j∑

s=1

Cys
j−1 ⊔×R

[n−2j]
k−j ⊔× ({as} ⊗ {as} − {bs} ⊗ {bs}),

[IB]
k
j =

j∑

s=1

Cys
j−1 ⊔×R

[n−2j]
k−j ⊔× ({as} ⊗ {bs} − {bs} ⊗ {as}),

[II]kj =

j∑

s=1

Cys
j−1 ⊔×{as, bs} ⊔×R

[n−2j]
k−j−1 ⊗ ({as} − {bs}),

[IIIA]
k
j = Cj ⊔×

∑

T⊆[n−2j],|T |=k−j
T ⊗

∑

d∈T
{d},

[IIIB]
k
j = Cj ⊔×

∑

T⊆[n−2j],|T |=k−j
T ⊗

∑

d∈[n−2j]\T
{d}.

If k = j, the basis consists of [O]jj , [IA]
j
j, [IB]

j
j and [IIIB]

j
j . If k = j − 1, the basis consists only

of [O]j−1
j . For k < j − 1, the image is zero.

Proof. Take any basis element T ⊗ {d} of C
([n]

k ) ⊗ C
n and consider its image under Dj . If

d ∈ [n− 2j], the derivation is similar to that of (5.7) and the image is a scalar multiple of either
[IIIA]

k
j or [IIIB]

k
j in dependence on whether d ∈ T or not.

Now consider the case d > n − 2j. We may assume d = aj, the other cases being similar.
Again, we have that DjT = 0 unless

∣∣T ∩ {ai, bi}
∣∣ = 1 for all i < j, so we assume the latter

condition is satisfied. For T ∩{aj , bj} all four options ∅, aj , bj, or {aj , bj} are permissible though,

and we get that DjT a scalar multiple of [O]kj , [IA]
k
j , [IB]

k
j , or [II]

k
j , respectively.
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The vectors are orthogonal because they are supported on pairwise disjoint subsets of basis
vectors. The cases of k = j and k = j−1 follow from observing that, in these cases, the unlisted
vectors are 0.

We will need few properties of these vectors. First, simple calculation reveals that the norms
of these vectors satisfy

∥∥∥[O]kj

∥∥∥
2
= j2j

(
n− 2j

k − j + 1

) ∥∥∥[IA]kj
∥∥∥
2
=
∥∥∥[IB]kj

∥∥∥
2
= j2j

(
n− 2j

k − j

)

∥∥∥[II]kj
∥∥∥
2
= j2j

(
n− 2j

k − j − 1

)

∥∥∥[IIIA]kj
∥∥∥
2
= (k − j)2j

(
n− 2j

k − j

) ∥∥∥[IIIB]kj
∥∥∥
2
= (n− k − j)2j

(
n− 2j

k − j

)
.

Second, using Claim 5.6, we get the following action of W ℓ→k ⊗ In on these vectors, where In
acts on C

n:

[O]ℓj 7→
(
k − j + 1

ℓ− j + 1

)
[O]kj +

(
k − j

ℓ− j + 1

)(
[IA]

k
j − [IB]

k
j

)
+

(
k − j − 1

ℓ− j + 1

)
[II]kj ,

[IA]
ℓ
j 7→

(
k − j

ℓ− j

)
[IA]

k
j +

(
k − j − 1

ℓ− j

)
[II]kj ,

[IB]
ℓ
j 7→

(
k − j

ℓ− j

)
[IB]

k
j −

(
k − j − 1

ℓ− j

)
[II]kj ,

[II]ℓj 7→
(
k − j − 1

ℓ− j − 1

)
[II]kj ,

[IIIA]
ℓ
j 7→

(
k − j − 1

ℓ− j − 1

)
[IIIA]

k
j ,

[IIIB]
ℓ
j 7→

(
k − j − 1

ℓ− j

)
[IIIA]

k
j +

(
k − j

ℓ− j

)
[IIIB]

k
j .

(8.2)

8.1 Proof of Lemma 7.2

Our overall proof strategy is as follows, see also Figure 1. First, we will identify non-zero
vectors

w̃j,2
j ∈ Aj

j ∩
(
Bjj ⊗ E0

)
,

w̃j,1
j−1 ∈ Aj−1

j ∩
(
Bj−1
j−1 ⊗ E1

)
, w̃j,3

j ∈ Aj
j ∩
(
Bjj ⊗ E1

)
, w̃j,4

j+1 ∈ Aj+1
j ∩

(
Bj+1
j+1 ⊗ E1

)

which feature the smallest values of k, where the corresponding spaces are non-zero. Let,
correspondingly, ℓj,1 = j − 1, ℓj,2 = ℓj,3 = j, and ℓj,4 = j + 1. Then, we define

wkj,i =
w̃j,i

k

∥∥w̃j,ik
∥∥ with w̃j,i

k =
(
W ℓj,i→k ⊗ In

)
w̃j,i

ℓj,i .

The operation W ℓ→k ⊗ In is well-suited for that since it is a morphism from C
([n]

ℓ ) ⊗ C
n to

C
([n]

k ) ⊗C
n, but it also maps Bℓj ⊗ Ei into Bkj ⊗ Ei. Also, by Proposition 5.7, W ℓ→k is a positive

multiple of Φℓ→k
j on S(n−j,j), hence, Eq. (7.8) is automatically satisfied.

First, by Proposition 8.2, the image Dj

(
C
( [n]
j−1) ⊗ C

n
)
is 1-dimensional and is spanned by

w̃j,1
j−1 = [O]j−1

j =

s∑

j=1

Cys
j−1 ⊗ ({as} − {bs}) ∈ Aj−1

j ∩
(
Bj−1
j−1 ⊗ E1

)
.
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Figure 1

C
( [n]
j−1) ⊗ C

n
C
([n]

j ) ⊗ C
n

C
( [n]
j+1) ⊗C

n · · · C
([n]

k ) ⊗ C
n · · ·

w̃j,1
j−1 w̃j,1

j w̃j,1
j+1 · · · w̃j,1

k · · ·

w̃j,2
j w̃j,2

j+1 · · · w̃j,2
k · · ·

• • · · · • · · ·

w̃j,3
j w̃j,3

j+1 · · · w̃j,3
k · · ·

∗ · · · ∗ · · ·

w̃j,4
j+1 · · · w̃j,4

k · · ·

Bℓj−1 ⊗ E1
Bℓj ⊗ E0

Bℓj ⊗ E1

Bℓj+1 ⊗ E1

The structure of the image of Dj in various modules. The columns correspond to the

modules C
([n]

ℓ ) ⊗ C
n for various ℓ starting with ℓ = j − 1. If ℓ > j, the image of Dj

in this module is 6-dimensional, but only 4 of these dimensions are in Aℓ
j (highlighted in

yellow). We find the first vector in each row (indicated by the framed vectors), and use the
morphism W ℓ→k to move further in each row (indicated by the arrows). The bullets and
the stars correspond to vectors perpendicular to Aℓ

j. They are identified in (8.3) and (8.5).

For the inclusion, note that each term in the sum belongs to Bj−1
j−1 ⊗ E1, and it is the image of

Cj under the morphism T 7→∑
d∈T (T \ {d}) ⊗ {d}, hence, belongs to Aj−1

j .

Now consider the imageDj

(
C
([n]

j )⊗C
n
)
, which, by the same Proposition 8.2, is 4-dimensional.

We already know one its vector w̃j,1
j ∈ Aj

j ∩
(
Bjj−1 ⊗ E1

)
. Also,

w̃j,2
j = [IA]

j
j + [IB]

j
j + [IIIB]

j
j = Cj ⊗R

[n]
1 ∈ Aj

j ∩
(
Bjj ⊗ E0

)
.

Indeed, membership in Bjj⊗E0 is obvious, and this vector is the image of Cj under the morphism

T 7→ T ⊗R
[n]
1 .

The remaining two dimensions of Dj

(
C
([n]

j )⊗C
n
)
come from Bj

j ⊗E1. It is easier to identify

the one orthogonal to Aj
j. Consider the vector

Cys
j−1 ⊔×

(
{as} ⊗ {bs} − {bs} ⊗ {as} − {as} ⊗ {d} − {d} ⊗ {bs}+ {bs} ⊗ {d} + {d} ⊗ {as}

)
,

where d ∈ [n− 2j]. It is an eigenvector of S−{as,bs,d}, hence, it is orthogonal to Aj
j by Claim 5.5.

We can pair the terms in the sum in two different ways:

Cys
j−1 ⊔×

[(
{as} − {d}

)
⊗ {bs}+

(
{d} − {bs}

)
⊗ {as}+

(
{bs} − {as}

)
⊗ {d}

]

=Cys
j−1 ⊔×

[
{as} ⊗

(
{bs} − {d}

)
+ {bs} ⊗

(
{d} − {as}

)
+ {d} ⊗

(
{as} − {bs}

)]
,

which shows that this vector is in Bjj ⊗ E1. By summing over all s ∈ [j] and d ∈ [n − 2j], we
obtain the following vector in the image of Dj :

[O]jj + (n− 2j)[IB]
j
j − j[IIIB]

j
j ∈ (Aj

j)
⊥ ∩

(
Bjj ⊗ E1

)
. (8.3)
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The remaining fourth vector can be obtained by finding the vector orthogonal to w̃j,1
j , w̃j,2

j

and (8.3). However, it is also possible to use the vector

(n−2j)[IA]
j
j+(n−2j)[IB]

j
j −2j[IIIB]

j
j = Cj ⊗

(
(n−2j)

n∑

a=n−2j+1

{a}−2j
∑

d∈[n−2j]

{d}
)

∈ Bjj ⊗E1

and perform Gram-Schmidt orthogonalisation process with (8.3). This gives us the following
vector in Bjj ⊗ E1 orthogonal to (8.3):

w̃j,3
j = −n[O]jj + (n− j + 1)(n − 2j)[IA]

j
j − (j − 1)(n − 2j)[IB]

j
j − j(n − 2j + 2)[IIIB]

j
j. (8.4)

Now we show that this vector belongs to Aj
j. Note that [IA]

j
j ∈ Ajj as the image of Cj under

the morphism T 7→ T ⊗ ∑d∈T d. The vector w̃j,3
j ∈ Bjj ⊗ E1 has non-zero inner product

with [IA]
j
j, hence, Bjj ⊗ E1 contains a copy of the irrep S(n−j,j). Thus, by Proposition 8.1,

Dj(Bjj ⊗ E1) must contain a vector from Aj
j. As the space is 2-dimensional, and the vector

in (8.3) is orthogonal to Aj
j, the vector w̃j,3

j, which is orthogonal to (8.3), lies in Aj
j. Therefore,

we have w̃j,3
j ∈ Aj

j ∩
(
Bjj ⊗ E1

)
as required.

Now let us move to Dj

(
C
( [n]
j+1) ⊗ C

n
)
. The situation is similar. The space is 6-dimensional,

and we have identified four dimensions. The remaining two come from Bj+1
j+1 ⊗ E1. Again, it is

easier to identify the one perpendicular to Aj+1
j . Consider the vector

Cys
j−1 ⊔×

[
({as} − {bs}) ⊔× ({c} − {d}) ⊗ ({c} − {d})

+({bs} − {c}) ⊔× ({as} − {d}) ⊗ ({as} − {d})

+({c} − {as}) ⊔× ({bs} − {d}) ⊗ ({bs} − {d})
]
,

where c, d ∈ [n − 2j] are distinct. The vector is in Bj+1
j+1 ⊗ E1. It is an eigenvector or S

−
{as,bs,c},

hence, it is orthogonal to Aj+1
j by Claim 5.5. Summing over s ∈ [j] and c, d ∈ [n− 2j] gives us

the following vector in the image of Dj :

2[O]j+1
j − (n− 2j − 1)[IA]

j+1
j + (n− 2j − 1)[IB]

j+1
j + (n − 2j)(n − 2j − 1)[II]j+1

j

+ (n− 2j − 1)j[IIIA]
j+1
j − j[IIIB]

j+1
j ∈ (Aj+1

j )⊥ ∩
(
Bj+1
j+1 ⊗ E1

)
.

(8.5)

In principle, it is possible to find the sixth vector by solving a 5× 6 linear system, but there is
a more computationally efficient way. Observe that

Cj ⊔× ({c} − {d}) ⊗ ({c} − {d}) ∈ Bj+1
j+1 ⊗ E1.

Summing over c, d ∈ [n− 2j] gives

(n− 2j − 1)[IIIA]
j+1
j − [IIIB]

j+1
j ∈ Bj+1

j+1 ⊗ E1.
Performing Gram–Schmidt orthogonalization on two vectors gives us the following vector in
Bj+1
j+1 ⊗ E1 orthogonal to (8.5):

w̃j,4
j+1 = −2[O]j+1

j + (n− 2j − 1)[IA]
j+1
j − (n− 2j − 1)[IB]

j+1
j − (n − 2j)(n − 2j − 1)[II]j+1

j

+ (n− 2j + 1)(n − 2j − 1)[IIIA]
j+1
j − (n− 2j + 1)[IIIB]

j+1
j .

This vector belongs to Aj+1
j because it has non-zero inner product with [IIIA]

j+1
j − [II]j+1

j , which
is the image of Cj under the morphism T 7→ T ⊔×∑d/∈T {d} ⊗ {d}.

Let us note in passing, although we will not need this, that the vectors from (8.4) and (8.5)
are from the isotypical subspace of S(n−j−1,j,1).
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8.2 Proof of Lemma 7.3

To find decomposition of Vk, it suffices to find the projections of the normalized

ukj =
√
kVk

(
Cj ⊔×R

[n−2j]
k−j

)
= [IA]

k
j + [IIIA]

k
j

onto the vectors wkj,1, w
k
j,2, w

k
j,3, w

k
j,4 from Section 8.1. We have

‖ukj ‖2 = k2j
(
n− 2j

k − j

)
.

First, take the vector

w̃j,1
k =

(
W j−1→k ⊗ In

)
w̃j,1

j−1 = [O]kj + [IA]
k
j − [IB]

k
j + [II]kj .

We have

〈
ukj , w̃j,1

k
〉
= ‖[IA]kj‖2 = j2j

(
n− 2j

k − j

)
and

∥∥w̃j,1k
∥∥2 = j2j

(
n− 2j + 2

k − j + 1

)
,

which gives

φkj,1 =

〈
ukj , w̃j,1

k
〉

‖ukj ‖ · ‖w̃j,1k‖
=

√
j(k − j + 1)(n− k − j + 1)

k(n− 2j + 2)(n − 2j + 1)
.

Second, take the vector

w̃j,2
k =

(
W j→k ⊗ In

)
w̃j,1

j = Cj ⊔×R
[2n−j]
k−j ⊗R

[n]
1

We have 〈
ukj , w̃j,2

k
〉
= k2j

(
n− 2j

k − j

)
and

∥∥w̃j,2k
∥∥2 = n2j

(
n− 2j

k − j

)

which gives

φkj,2 =

〈
ukj , w̃j,2

k
〉

‖ukj ‖ · ‖w̃j,2k‖
=

√
k

n
.

Third, consider the vector w̃j,3
k = (W j→k⊗ In)w̃j,3j. Eq. (8.2) and some simplifications give

us
〈
ukj , w̃j,3

k
〉
=
(
−(k − j)n + (n− 2j)(n − j + 1)

)∥∥[IA]kj
∥∥2 − j(n − 2j + 2)

∥∥[IIIA]kj
∥∥2

= 2jj(n − j + 1)(n − 2k)

(
n− 2j

k − j

)
.

To get the norm of w̃j,3
k, we can use (5.15). After some calculations, we arrive at

∥∥∥w̃j,3k
∥∥∥
2
=

(
n− 2j

k − j

)
‖w̃j,3j‖2 = 2jnj(n − 2j)(n − j + 1)(n − 2j + 2)

(
n− 2j

k − j

)
.

Therefore,

φkj,3 =

〈
ukj , w̃j,3

k
〉

‖ukj ‖ · ‖w̃j,3k‖
=
n− 2k√
nk

√
j(n − j + 1)

(n− 2j)(n − 2j + 2)
.
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Finally, consider the vector w̃j,4
k = (W j+1→k ⊗ In)w̃j,4

j+1. Eq. (8.2) gives us

〈
ukj , w̃j,4

k
〉
= (n− j − k)(k − j)

∥∥[IA]kj
∥∥2 + (n− j − k)(n − 2j + 1)

∥∥[IIIA]kj
∥∥2

= 2j(n− j − k)(k − j)(n − j + 1)

(
n− 2j

k − j

)
.

For the norm of w̃j,4
k, we again use (5.15). After some calculations we arrive at

∥∥∥w̃j,4k
∥∥∥
2
=

(
n− 2j − 2

k − j − 1

)
‖w̃j,4j+1‖2 = 2j(n − j + 1)(n − 2j + 1)(n − 2j)2(n− 2j − 1)

(
n− 2j − 2

k − j − 1

)

= 2j(n − j + 1)(n − 2j + 1)(n − 2j)(n − j − k)(k − j)

(
n− 2j

k − j

)
.

Therefore,

φkj,4 =

〈
ukj , w̃j,4

k
〉

‖ukj ‖ · ‖w̃j,4k‖
=

√
(k − j)(n − j − k)(n − j + 1)

k(n− 2j)(n − 2j + 1)
.

One can verify that
(φkj,1)

2 + (φkj,2)
2 + (φkj,3)

2 + (φkj,4)
2 = 1,

which is the content of Claim 4.1. This identity is obvious now as they are coordinates of a unit
vector in an orthonormal basis.
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A Upper bounds

In this section, we briefly describe the algorithms matching our lower bounds in Theorem 1.1.
None of them are particularly complicated, but some can be found interesting in their own merit.
Some of the algorithms are folklore, and some are taken from [1]. Unless specified otherwise, all
algorithms in this section are supposed to give correct answer with probability at least 2/3. By
Remark 2.4, it is possible to reduce error by repetition.

A.1 Algorithmic Preliminaries

Before we proceed, we need some well-known results both from the theory of randomized and
quantum algorithms. They all are only needed for Section A.2, and are not used anywhere else
in the paper. We assume the reader is familiar with basic probability theory.

Theorem A.1 (Chebyshev’s Inequality). Let X is a probability distribution with variance σ2.
It is possible to get an estimate of the mean E[X] with additive precision O(σ) using 1 sample
from X.

Recall that in the above theorem, as elsewhere, we assume here that the algorithm can err
with probability up to 1/3. A distribution that is concentrated on values 0 and 1 is called
Bernoulli distribution. For that, we have an important corollary:

Theorem A.2. Let X be a Bernoulli distribution with unknown mean p. Then, O(1/(pε2))
samples from X are enough to estimate p with multiplicative precision ε.

Theorem A.3 (Coupon collector). Assume we are sampling uniformly at random elements out
of a set S of size s. The expected number of samples needed to obtain t distinct elements of S is

• O(t), if t ≤ s/2;

• O(s log s), if t = s.

For the quantum part, we will need the following version of the quantum amplitude ampli-
fication and estimation, which follows the original design of [14].

Theorem A.4. Let φ ∈ H be some state known to the algorithm. It has a decomposition of the
form φ = α|φ0〉 + β|φ1〉 for some orthogonal and normalised φ0, φ1 ∈ H and non-negative reals
α and β with β < 1/

√
2. The decomposition is unknown to the algorithm, but it has black-box

access to a unitary R satisfying Rφ0 = φ0 and Rφ1 = −φ1. Under these assumptions, the
following two procedures are available:

• (Amplitude Estimation) It is possible to get an estimate of β with multiplicative precision
ε using O(1/(εβ)) executions of R.

• (Amplitude Amplification) With probability Ω(1), it is possible to get a state φ′1 such that
|〈φ1, φ′1〉| = Ω(1) using O(1/β) executions of R.
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We will call φ1 the marked part of the state φ, and β the marked amplitude.

Remark A.5. Amplitude amplification works by applying the operator SR to φ some specific
number of times, where S is reflection about φ. This has two consequences:

• The state of the algorithm is guaranteed to stay in the span of φ0 and φ1.

• In the extreme case β = 0, the algorithm stays in the state φ = φ0.

Corollary A.6. We can use Theorem A.4 in one of the following three ways. In all of them,
φ1 = ψx = 1√

|x|
∑

i∈x|i〉 is the state from (1.1).

(a) (From the outside, Grover’s search [18] and quantum counting [15]). We have φ =
1√
n

∑
i∈[n]|i〉. In this case, it is possible to get an element in x after O(

√
n/|x|) exe-

cutions of the input oracle, and estimate |x| to multiplicative precision ε in O
(
1
ε

√
n/|x|

)

queries, where the input oracle can be any of the following: state-generating, reflecting, or
membership.

(b) (From the inside). We have φ = 1√
|A|
∑

i∈A|i〉, where A is some subset of x with |A| ≤
|x|/2 which is known to the algorithm. In this case, it is possible to get an element in x\A
in O(

√
|x|/|A|) queries, and estimate |x| with multiplicative precision ε in O

(
1
ε

√
|x|/|A|

)

queries, where the input oracle can be any of the following: state generating or reflecting.

Moreover, the first algorithm is guaranteed to output an element of x (but possibly lying
in A).

(b’) (Incorrect execution of (b)). The settings are as in (b), but φ = |i〉 with i /∈ x. In this
case, amplitude amplification will stay in the state |i〉.

Proof. For (a), we have φ0 = 1√
n−|x|

∑
i/∈x|i〉. The membership oracle implements R by defini-

tion. R can be also implemented as the negation of the reflecting oracle, or using 2 queries to
the state-generating oracle. The marked amplitude β =

√
|x|/n.

For (b), we have φ0 as a vector orthogonal to φ1 in the span of φ and φ1. Again, R can be
implemented as the negation of the reflecting oracle, or using 2 queries to the state-generating
oracle. The marked amplitude is β =

√
|A|/|x|.

In either (a) or (b), to get an element of x, we use amplitude amplification and measure φ′1 in
the computational basis. Estimate of β with multiplicative precision ε converts to an estimate
of |x| with multiplicative precision O(ε), hence, we can use amplitude estimation to obtain the
latter.

To get the “moreover” part of (b), we use the first point of Remark A.5 to observe that
the state of the amplitude amplification algorithm stays in the span of φ0 and φ1, hence, is not
supported on the elements outside of x.

Point (b’) follows from the second point of Remark A.5, as in this case φ is orthogonal to φ1
and we have β = 0.

A.2 Algorithms

In this section, we prove that Theorem 1.1 is tight. We first describe the algorithms, and then
show how they correspond to the entries of Table 1.

In the following two algorithms we assume classical samples from x for clarity. Clearly,
quantum samples ψx as well as the state-generating oracle also work.
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Proposition A.7. It is possible to solve the approximate counting problem using O(k log k)
classical samples from x.

Proof. The algorithm is similar to the classical coupon collector problem. Sample the elements
out of x sufficiently many times. Output that |x| = k if the number of distinct elements observed
is at most k, otherwise output that |x| = k′. The algorithm has 1-sided error.

For the analysis, we apply Theorem A.3 with t = s = k′ to obtain an upper bound of
O(k′ log k′) = O(k log k).

Proposition A.8 ([1]). It is possible to solve the approximate counting problem using O
(√

k
ε

)

classical samples from x.

Proof. The idea of the algorithm is to sample from x and count the number of pairs of equal
samples. Assume we have ℓ classical samples: s1, s2, . . . , sℓ. For 1 ≤ i < j ≤ ℓ, let Zij = 1si=sj .
The expectation and the variance satisfy E[Zij] = 1/|x| and Var[Zij ] = O(1/k). The events Zij
are not independent, but they are pairwise independent, which allows us to write

E

[∑

i,j

Zij

]
=
ℓ(ℓ− 1)

2|x| and Var

[∑

i,j

Zij

]
= O

(
ℓ2

k

)
.

By Chebyshev’s inequality, we can distinguish whether |x| = k or |x| = k′ if

ℓ(ℓ− 1)

2k
− ℓ(ℓ− 1)

2k′
= Ω

(
ℓ√
k

)
.

Since
ℓ(ℓ− 1)

2k
− ℓ(ℓ− 1)

2k′
= Ω

(
ℓ2

k
ε

)
,

this happens when ℓ ≥ C
√
k/ε for a sufficiently large constant C.

Proposition A.9 ([1]). It is possible to solve the approximate counting problem using O
(

n
kε2

)

copies of the state ψx from (1.1).

Proof. Consider the following procedure. Take a copy of the state ψx and measure it against the
uniform superposition 1√

n

∑
i∈[n]|i〉. The probability of measuring the uniform superposition is

exactly |x|/n. We have to detect whether this probability is k/n or (1+ε)k/n. By Theorem A.2,

this takes O
(

n
kε2

)
samples.

Proposition A.10 ([1]). It is possible to solve the approximate counting problem in O
(
k1/3/ε2/3

)

queries to the state-generating oracle.

Proof. Let t ≤ k/2 be some parameter to be specified later. We first obtain t different elements
out of x using O(t) classical samples from x by Theorem A.3 (implemented via the state-
generating oracle). Next, we execute the estimation algorithm of Corollary A.6(b). Altogether,
it takes

O

(
t+

1

ε

√
k

t

)

queries to the state-generating oracle. The optimal value of t is k1/3/(2ε2/3) ≤ k/2.
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Proposition A.11. Assume the algorithm is given an element j ∈ x. Then, it is possible to

solve the approximate counting problem using O
(√

k/ε
)
queries to the reflecting oracle.

Moreover, if it actually turns out that j /∈ x, the algorithm will report this after O(
√
k)

queries with probability 1.

Proof. We repeatedly execute the search algorithm of Corollary A.6(b) starting with A = {j},
and extending A with newly found elements until |A| = t, where t < k/2 is some parameter to
be specified later. If j ∈ x, we are guaranteed that A ⊆ x throughout the whole procedure.

When |A| = t, we use the estimation algorithm of Point (b) of Corollary A.6 with this choice
of A. The total number of queries to the input oracle is

O

(√
k +

√
k

2
+ · · ·+

√
k

t− 1
+

1

ε

√
k

t

)
= O

(√
kt+

1

ε

√
k

t

)
.

The optimal choice for t is 1/(2ε) ≤ k/2.
If j /∈ x, by Point (b’) of Corollary A.6, we will always get the element j back on the first

execution of the search algorithm. Therefore, if we keep on getting j, we can end and report
that j /∈ x.

Proposition A.12. The approximate counting problem can be solved using either O

(√
k
ε +

√
n
k

)

queries to the reflecting oracle, or O

(√
k
ε

)
queries to the reflecting oracle and O

(√
n
k

)
queries

to the membership oracle.

Proof. The idea is to use Proposition A.11, but we need an element of x beforehand. For that
we use Grover’s search of Corollary A.6(a). Moreover, if Grover’s search fails, the algorithm of
Proposition A.11 is able to detect this, in which case we run Grover’s search again. After O(1)
tries, we will succeed with high enough probability.

Grover’s search requires O(
√
n/k) applications of the reflecting or membership input oracle.

Together with the estimate of Proposition A.11, this gives the required complexity.

Theorem A.13. The Table 1 is tight except for k replaced by k log k in the first item of the
first row.

By this we mean that it is possible to solve the approximate counting problem if the resources
allocated to the algorithm satisfy one of the eight rows of Table 1 with the meaning of Ω as
follows. We consider Row 4 for concreteness, the other rows being similar. There exists a
universal constant C such that for every choice of qG and ℓ satisfying qG

√
ℓ ≥

√
k/ε, it is

possible to solve the approximate counting problem using at most Cℓ copies of the state ψx and
at most CqG executions of the state-generating oracle.

Proof of Theorem A.13. We will go through the table and comment on which propositions the
corresponding entries are based.

In Row 1, these are Propositions A.7, A.8 and A.9, respectively, where, as mentioned above,
k is replaced by k log k in the first case.

In Row 2, it is the estimation algorithm of Corollary A.6(a).
In Row 3, the first item is from Corollary A.6(a) again, and the second one is Proposi-

tion A.10.
In Row 4, we can assume that ℓ = O(k) since otherwise we fall under the scope of Row 1.

By Theorem A.3, we can obtain t = Ω(ℓ) distinct elements of x using ℓ classical samples. After
that, we refer to the estimation algorithm from Corollary A.6(b).
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The first item of Row 5 is from Corollary A.6(a), and the second one is Proposition A.12.
Row 6 is obtained in the similar way as Row 4, where we use ℓ+ qG classical samples from x.
Row 7 is Proposition A.11. Note that in this case it suffices to have only a single copy of ψx

to reduce error probability via repetition, cf. Remark 2.4.
Row 8 is Proposition A.12.

B Proofs omitted from Section 3

Let us first define the subrelative and the relative γ2-norms.

Definition B.1 (Subrelative γ2-norm). Let A = (Ax,y) and ∆ = (∆x,y) be two families of
matrices labelled by x ∈ X and y ∈ Y . All matrices Ax,y are of the same dimension, and all
matrices ∆x,y are of the same dimension.

The subrelative γ2-norm is defined as

γ̃2(A|∆) = γ̃2(Ax,y | ∆x,y)x∈X, y∈Y = max
Γ

‖Γ ◦ A‖
‖Γ ◦∆‖ (B.1)

Definition B.2 (Relative γ2-norm). Under the same assumptions as in Definition B.1, the
relative γ2-norm,

γ2(A|∆) = γ2(Ax,y | ∆x,y)x∈X, y∈Y ,

is defined as the optimal value of the following optimisation problem, where Υx and Φy are
linear operators of appropriate size and W is a vector space:

minimise max
{
maxx∈X‖Υx‖2,maxy∈Y ‖Φy‖2

}
(B.2a)

subject to Ax,y = Υ∗
x(∆x,y ⊗ IW)Φy for all x ∈ X and y ∈ Y . (B.2b)

These norms are related by the following simple inequality.

Proposition B.3. For all A and ∆, we have γ̃2(A|∆) ≤ γ2(A|∆).

Proof. From (B.2b), we get that for every X × Y -matrix Γ:

Γ ◦ A = diag(Υ∗
x)((Γ ◦∆)⊗ IW) diag(Φy),

where diag(Φy) is a block-diagonal matrix with blocks Φy on the diagonal. Hence,

‖Γ ◦ A‖ ≤ max
x∈X

‖Υx‖ · ‖Γ ◦∆‖ ·max
y∈Y

‖Vy‖ ≤ γ2(A|∆)‖Γ ◦∆‖.

Let us note that the norms are equal in an important special case when Ax,y are 1 × 1-
matrices [9]. In particular, we recover the usual γ2-norm of an X × Y matrix A = (ax,y):

γ2(A) = γ̃2(ax,y | 1)x∈X,y∈Y = γ2(ax,y | 1)x∈X,y∈Y .

Now let us prove Lemma 3.3.

Proof of Lemma 3.3. Let T be the X × Y -matrix defined by T [[x, y]] = 〈τx, τy〉. We claim that
γ2(T ) ≤ 2

√
δ. From this the lemma follows, as

∥∥Γ ◦ E
∥∥ =

∥∥Γ ◦ (Ξ− T )
∥∥ ≥

∥∥Γ ◦ Ξ
∥∥−

∥∥Γ ◦ T
∥∥ ≥ 3

√
δ − 2

√
δ =

√
δ,

using the dual formulation of the γ2-norm.
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Let us prove the claim. Recall that we assume that the workspace H = C
2⊗H′. Let Π0 and

Π1 be the projectors on the values 0 and 1 of the first qubit, respectively. By condition on the
error of the algorithm, ‖Π1τx‖2, ‖Π0τy‖2 ≤ δ for all x ∈ X and y ∈ Y . Thus,

〈τx, τy〉 =
〈

4
√
δΠ0τx ⊕

Π1τx
4
√
δ
,
Π0τy

4
√
δ

⊕ 4
√
δΠ1τy

〉
.

The norm of the both vectors on the right-hand side of this equation is at most
√
2 4
√
δ, and the

claim follows by the primal formulation of the γ2-norm.

Let us now move to the proofs of γ2-equivalences from Section 3.2. By Proposition B.3, to
prove that A and ∆ are γ2-equivalent as in Definition 3.4, it suffices to show that

γ2(A|∆), γ2(∆, A) = O(1).

Proposition B.4 ([10]). For the state-generating input oracle Ox as defined in (2.4), we have
that the family (Ox −Oy)x,y∈D is γ2-equivalent to the family ∆ψ ⊕∆ψ∗

defined in (3.7).

Proof. In particular, the state |0〉 is orthogonal to all ψx.
In one direction, we have that

ψx − ψy = (Ox −Oy)|0〉 and ψ∗
x − ψ∗

y = −(Ox|0〉)∗(Ox −Oy)O
∗
y ,

implying that
γ2
(
∆ψ
x,y ⊕∆ψ∗

x,y | Ox −Oy
)
x,y∈D ≤ 1.

Now let us prove the opposite direction. Let Lx = ψx ⊕ ψ∗
x = |ψx〉〈0| + |0〉〈ψx|. Note that

Lx − Ly = ∆ψ
x,y ⊕∆ψ∗

x,y and L2
x is the projector onto the span of |0〉 and |ψx〉. The latter gives

us that Ox = Lx + I − L2
x. Hence,

Ox −Oy = Lx − Ly + L2
y − L2

x = (Lx − Ly)− (Lx − Ly)Ly − Lx(Lx − Ly),

which implies

γ2
(
Ox −Oy | ∆ψ

x,y ⊕∆ψ∗

x,y

)
x,y∈D = γ2

(
Ox −Oy | Lx − Ly

)
x,y∈D ≤ 3.

Proposition B.5 ([9]). For the membership oracle Ox as defined in (2.5), we have that the

family (Ox −Oy)x,y∈D is γ2-equivalent to the family (∆membership
x,y )x,y∈D defined in (3.8).

Proof. Let us denote

O0 =

(
1 0
0 1

)
and O1 =

(
0 1
1 0

)
,

so that Ox =
⊕

i∈[n]Oxi . We have

1xi 6=yi = (Oxi |0〉)∗(Oxi −Oyi)|0〉

implying that
γ2
(
∆membership
x,y | Ox −Oy

)
x,y∈D ≤ 1.

On the other hand,
Oxi −Oyi = Oxi1xi 6=yi − 1xi 6=yiOyi ,

which gives
γ2
(
Ox −Oy | ∆membership

x,y

)
x,y∈D ≤ 2.
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C Proof of Theorem 3.1

The proof closely follows the proof of Theorem 10 from [9].

Let ψt,x and ψ
(i)
t,x be like in Section 2.2. Let T be the total number of invocations of the

combined input oracle. We have 〈ψ1,x, ψ1,y〉 = 〈ξx, ξy〉, and we define ψT+1,x = τx. This gives

〈ξx, ξy〉 − 〈τx, τy〉 =
T∑

t=1

(
〈ψt,x, ψt,y〉 − 〈ψt+1,x, ψt+1,y〉

)

Let φt,x be the state of the algorithm just after the t-th application of the combined input

oracle. Let φ
(i)
t,x be the part of φt,x that was processed by O

(i)
x . Here we consider the case when

the application of the oracle is direct: the inverse case is similar. We have φ
(i)
t,x = (I ⊗O

(i)
x )ψ

(i)
t,x.

This gives us

〈ψt,x, ψt,y〉−〈ψt+1,x, ψt+1,y〉 = 〈ψt,x, ψt,y〉 − 〈φt,x, φt,y〉

=
s∑

i=1

(〈
ψ
(i)
t,x, ψ

(i)
t,y

〉
−
〈
φ
(i)
t,x, φ

(i)
t,y

〉)

=

s∑

i=1

(〈
(I ⊗O(i)

x )ψ
(i)
t,x, (I ⊗O(i)

x )ψ
(i)
t,y

〉
−
〈
(I ⊗O(i)

x )ψ
(i)
t,x, (I ⊗O(i)

y )ψ
(i)
t,y

〉)

=

s∑

i=1

〈
(I ⊗O(i)

x )ψ
(i)
t,x,
(
I ⊗ (O(i)

x −O(i)
y )
)
ψ
(i)
t,y

〉
.

Let us define

u(i)x =

T⊕

t=1

(I ⊗O(i)
x )ψ

(i)
t,x and v(i)y =

T⊕

t=1

ψ
(i)
t,y.

In particular, we have
∥∥u(i)x

∥∥2 =
∥∥v(i)x

∥∥2 = L
(i)
x . Recall that E[[x, y]] = 〈ξx, ξy〉 − 〈τx, τy〉 and

∆
(i)
x,y = Ox −Oy. Therefore, for the properly-sized identity matrix I:

E[[x, y]] =
s∑

i=1

u(i)x
∗(
I ⊗∆(i)

x,y

)
v(i)y .

Now we proceed, similarly as in the proof of Proposition B.3. For every D × D-matrix Γ, we
have

Γ ◦ E =

s∑

i=1

diag
(
u(i)x

∗)(
Γ ◦ (I ⊗∆(i))

)
diag

(
v(i)x
)
.

Therefore,

‖Γ ◦E‖ ≤
s∑

i=1

max
x∈D

∥∥u(i)x
∥∥ ·
∥∥∥Γ ◦∆(i)

∥∥∥ ·max
y∈D

∥∥v(i)y
∥∥ ≤

s∑

i=1

∥∥Γ ◦∆(i)
∥∥max
x∈D

L(i)
x .

D Limitations of the positive-weighted adversary

The approximate counting problem with the usual membership oracle is a prime example of the
power of the original formulation of the adversary method due to Ambainis [2]. For completeness,
we briefly restate the formulation of the bound and its application to approximate counting.
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Theorem D.1. Let f : {0, 1}n ⊇ D → {0, 1} be a (possibly partial) function. Suppose X ⊆
f−1(1), Y ⊆ f−1(0), m,m′, ℓ, ℓ′ > 0, and a relation ∼ between X and Y are such that

• for each x ∈ X, there are at least m different y ∈ Y such that x ∼ y;

• for each y ∈ Y , there are at least m′ different x ∈ X such that x ∼ y;

• for each x ∈ X and j ∈ [n], there are at most ℓ different y ∈ Y such that x ∼ y and
xj 6= yj;

• for each y ∈ Y and j ∈ [n], there are at most ℓ′ different x ∈ X such that x ∼ y and
xj 6= yj.

Then, any quantum algorithm evaluating f has to use Ω

(√
mm′

ℓℓ′

)
queries to the standard input

oracle.

Theorem D.2. Consider the same counting problem as in Theorem 1.1, but assume that the
algorithm only has access to the standard membership oracle. Then, in order to solve the problem,
the algorithm has to use Ω

(
1
ε

√
n
k

)
queries.

Proof. Let X contain all the sets of size k, and Y contain all the sets of size (1 + ε)k. Define
the relation ∼ so that two inputs x ∈ X and y ∈ Y satisfy x ∼ y iff x ⊆ y. Then, it is easy to
check that

m =

(
n− k

εk

)
, m′ =

(
(1 + ε)k

εk

)
, ℓ =

(
n− k − 1

εk − 1

)
, and ℓ′ =

(
(1 + ε)k − 1

εk − 1

)
.

Hence, √
mm′

ℓℓ′
=

√
(n− k)

εk

(1 + ε)k

εk
= Ω

(
1

ε

√
n

k

)
.

This is a particularly short and nice combinatorial proof, and the question arises whether
it is possible to adapt a variant of this technique for a more general Theorem 1.1. We argue
that it is most likely impossible, in the sense that the most natural yet quite general adaptation
provably fails.

Previous research suggests that it is possible to substitute a general lower bound like in Propo-
sition 3.5 with a simple combinatorial argument like in Theorem D.1 when Proposition 3.5 admits
a solution with Γ having only non-negative real entries, see e.g. [8, Section 3.2.3]. The latter is
known as positive-weighted adversary, and it is subject to some limitations, see [8, Section 3.3.2].

We will prove that it is impossible to obtain a good lower bound via Proposition 3.5 if we
restrict Γ to have non-negative entries. For simplicity, we consider the case ε = 1 and n ≫ k.
Moreover, we will restrict the algorithm. We assume the algorithm only has access to the copies
of the state ψx and the usual membership oracle, and we only consider the exact version of the
problem (with no error allowed).

Repeating the reasoning of Section 3.3 but for the case when we only have the membership
oracle and assuming that there is no error, we get that the lower bound is given by

maximise ‖Γ ◦Ψ◦ℓ‖
subject to ‖Γ ◦∆i‖ ≤ 1 for all i ∈ [n].

The usual dual formulation of this problem is

minimise max
z∈D

∑
j∈[n]

Xj [[z, z]]

subject to
∑

j : xj 6=yj
Xj [[x, y]] = Ψ[[x, y]]ℓ for all x ∈ X and y ∈ Y ;

Xj � 0 for all j ∈ [n],
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whereD = X∪Y and the optimisation is overD×D positive semi-definite matricesXj . However,
if we restrict Γ to have non-negative entries, the bound becomes (the proof is essentially the
same as in [8, Section 3.3.2]):

minimise max
z∈D

∑
j∈[n]

Xj [[z, z]] (D.1a)

subject to
∑

j : xj 6=yj
Xj [[x, y]] ≥ Ψ[[x, y]]ℓ for all x ∈ X and y ∈ Y ; (D.1b)

Xj � 0 for all j ∈ [n]. (D.1c)

Now we will show that this optimisation problem admits a feasible solution with objective

value O
(√ n

k2ℓ

)
. This therefore rules out a non-trivial lower bound on the number of queries to

the membership oracle whenever ℓ = ω(log n).
Indeed, when ℓ = 0, the approximate counting problem can be solved in O(

√
n/k) queries.

This means that (D.1) has a feasible solution with objective value O(
√
n/k) when the right-hand

side of (D.1b) is replaced by 1. (It is also not hard to come up with an explicit solution.) Now
note that

Ψ[x, y] = 〈ψx, ψy〉 ≤ 1/
√
2.

This means that, if we scale down the solution by
√
2ℓ, we get a feasible solution to the original

variant of (D.1) with the objective value O
(√ n

k2ℓ

)
.
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