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Many-Help-One Problem for Gaussian Sources with
a Tree Structure on Their Correlation

Yasutada Oohama

Abstract—In this paper we consider the separate coding
problem for L + 1 correlated Gaussian memoryless sources. We
deal with the case where L separately encoded data of sources
work as side information at the decoder for the reconstruction
of the remaining source. The determination problem of the rate
distortion region for this system is the so called many-help-one
problem and has been known as a highly challenging problem.
The author determined the rate distortion region in the case
where the L sources working as partial side information are
conditionally independent if the remaining source we wish to
reconstruct is given. This condition on the correlation is called the
CI condition. In this paper we extend the author’s previous result
to the case where L + 1 sources satisfy a kind of tree structure
on their correlation. We call this tree structure of information
sources the TS condition, which contains the CI condition as a
special case. In this paper we derive an explicit outer bound of
the rate distortion region when information sources satisfy the
TS condition. We further derive an explicit sufficient condition
for this outer bound to be tight. In particular, we determine the
sum rate part of the rate distortion region for the case where
information sources satisfy the TS condition. For some class of
Gaussian sources with the TS condition we derive an explicit
recursive formula of this sum rate part.

Index Terms—Multiterminal source coding, many-help-one
problem, Gaussian, rate-distortion region, CEO problem.

I. INTRODUCTION

In multi-user source networks separate coding systems
of correlated information sources are significant from both
theoretical and practical point of view. The first fundamental
result on those coding systems was obtained by Slepian and
Wolf [1]]. They considered a separate source coding system
of two correlated information sources. Those two sources are
separately encoded and sent to a single destination, where the
decoder reconstruct the original sources.

In the above source coding system, we can consider the
situation, where the decoder wishes to reproduce one of two
sources. We call this source the primary source. In this case
the remaining source that we call the auxiliary source works as
a partial side information at the decoder for the reconstruction
of the primary source. Wyner [2], Ahlswede and Korner [3]]
determined the admissible rate region for this system, the set
that consists of a pair of transmission rates for which the
primary source can be decoded with an arbitrary small error
probability.

We can naturally extend the system studied by Wyner,
Ahlswede and Korner to the one where there are several
separately encoded data of auxiliary sources serving as side
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informations at the decoder. The determination of the admis-
sible rate region for this system is called the many-help-one
problem. In this sense Wyner, Ahlswede and Korner solved the
so called one-helps-one problem. The many-help-one problem
has been known as a highly challenging problem. To date,
partial solutions given by Korner and Marton [4], Gelfand
and Pinsker [5]], Oohama [8]],[10], and Tavildar et al. [11] are
known.

Gelfand and Pinsker [5] studied an interesting case of the
many-help-one problem. They determined the admissible rate
region in the case, where the auxiliary sources are condition-
ally independent if the primary source is given. We hereafter
say the above correlation condition on the information sources
the CI condition.

In Oohama [8]], the author extended the many-help-one
problem studied by Gelfand and Pinsker [3] to a continuous
case. He considered the many-help-one problem for L + 1
correlated memoryless Gaussian sources, where L auxiliary
sources work as partial side information at the decoder for
the reconstruction of the primary source. The mean square
error was adopted as a distortion criterion between the de-
coded output and the original primary source output. The rate
distortion region was defined by the set of all transmission
rates for which the average distortion can be upper bounded
by a prescribed level. In [8]], the author determined the rate
distortion region when information sources satisfy the CI
condition. This result contains the author’s previous works
for Gaussian one-helps-one problem [6] and Gaussian CEO
problem [7].

The problem still remains open for Gaussian sources with
general correlation. Pandya et al. [9] studied the general case
and derived an outer bound of the rate distortion region using
some variant of bounding technique the author [6] used to
prove the converse coding theorem for Gaussian one-helps-one
problem. However, their bounding method was not sufficient
to provide a tight result.

In Oohama [10], the author extended the result of [8§].
He considered a case of correlation on Gaussian sources,
where L + 1 sources satisfy a kind of tree structure on their
correlation. The author called this tree structure of information
sources the TS condition. The TS condition contains the CI
condition as a special case. In [10], the author derived an
explicit outer bound of the rate distortion region for Gaussian
sources satisfying TS condition. Furthermore, he had shown
that for L = 2, this outer bound coincides with the rate dis-
tortion region. The author also presented a sufficient condition
for the outer bound to coincide with the rate distortion region.

Subsequently, Tavildar et al. extended the TS condition
to a binary Gauss Markov tree structure condition. They
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studied a characterization of the rate distortion region for
Gaussian source with the complete binary tree structure and
succeeded in it. To derive their result, they made the full use of
the complete binary tree structure of the source. They further
determined the rate distortion region for Gaussian sources with
general tree structure.

In Oohama [[10], the analysis for matching condition of the
rate distortion region and the derived outer bound was not
sufficient, so that the author could not realize that there exists
a part of the rate distortion region where the outer bound
derived by him coincides with the rate distortion region. In
this paper we give a further analysis on matching condition
for the outer bound derived by Oohama [[10] to coincide with
the rate distortion region and derive a condition much stronger
than the matching condition in [10]. Through this analysis
we obtain an insight on a way of examining the sum rate
part of the rate distortion region to show that for Gaussian
sources with the TS condition the minimum sum rate part of
the outer bound given by Oohama [10] is tight. This result
implies that in Oohama [10], the author had already obtained
an explicit characterization of the sum rate part of the rate
distortion region before the work by Tavildar et al. [11]]. On
this optimal sum rate we derive its explicit recursive formula
for some class of Gaussian sources with the TS condition. Our
formula contains the result of Oohama for Gaussian CEO
problem as a special case.

The rest of this paper is organized as follows.

In Section II, we present a problem formulation and state
the previous works.

In Section III, we give our main result. We first derive
an explicit outer bound of the rate distortion region when
information sources satisfy the TS condition. This outer bound
is essentially the same as the author’s previous outer bound
in [10], but it has a form more suitable than the previous one
for analysis of a matching condition. Using the derived outer
bound, we presented an explicit sufficient condition for the
outer bound to coincide with the inner bound.

In Section IV, we investigate the sum rate part of the
rate distortion region. We show that for the outer bound in
this paper and that in [10], their sum rate parts coincide
with the sum rate part of the inner bound. Hence, in the
case where information sources satisfy the TS condition, we
establish an explicit characterization of the sum rate part of
the rate distortion region. This optimal sum rate has a form of
optimization problem. For some class of the Gaussian source
with the TS condition, we solve this optimization problem to
establish an explicit recursive formula of the optimal sum rate.

In Section V, we give the proofs of the results. Finally, in
Section VI, we conclude the paper.

II. PROBLEM STATEMENT AND PREVIOUS RESULTS

In this section we state the problem formulation and pre-
vious results. We first state some notations used throughout
this paper. Let ® = {1,2,--- ,|®|} and A;,i € ® be arbitrary
sets. Consider a random variable A;,7 € ® taking values in
A;. We write n direct product of A; as A? = A x - x A .

—_—————
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Fig. 1.
Let a random vector consisting of n independent copies of the
random variable A; be denoted by A; = A;14;2 -+ Ain.
We write an element of A" as a; = aj1a;2 - ain,. Let S
be an arbitrary subset of ®. Let Ag and Ag denote random
vectors (A;)ics and (A;);cs, respectively. Similarly, let ag
denote a vector (a;)ics. When S = {k,k+1,--- 1}, we also
use the notation Afc for Ag and use similar notations for other
vectors or random variables. When & = 1, we sometimes omit
subscript 1. Throughout this paper all logarithms are taken to
the natural.

Communication system with L side informations at the decoder.

A. Formal Statement of the Problem

Let X;,7 = 0,1,2,---, L be correlated zero mean Gaus-
sian random variables taking values in real lines A;. Let
A = {1,2, ---,L}. The CI condition Oohama treated
corresponds to the case where X1, Xo,---, X are indepen-
dent if X is given. In this paper we deal with the case where
Xy, ---, X have some correlation when X, is given. Let
{(Xo,, X0, ,XL7,5)}filbe a stationary memoryless mul-
tiple Gaussian source. Foreach t =1, 2,---, (Xo.4, X714, ,
Xp.t) obeys the same distribution as (Xo, X1, -+, X1).

The multiterminal source coding system treated in this paper
is depicted in Fig. [l For each i = 0,1,---,L, the data
sequence X; is separately encoded to ¢;(X;) by encoder
function ¢;. The encoded data ¢;(X;),i = 0,1,---, L are
sent to the information processing center, where the decoder
observes them and outputs the estimation X of X, by
using the decoder function . The encoder functions ¢; ,7 =
0,1,---,L are defined by

<P1in—>MZ:{1a277MZ} (1)
and satisfy rate constraints
1
—logM; < R;+¢ 2)
n

where 0 is an arbitrary prescribed positive number. The
decoder function 1) is defined by

1/}ZM0XM1X~-~XML—)X51. (3)

Denote by ]-"én)(Ro, Ry, -+ ,Ryr) the set that consists
of all the (L + 2) tuple of encoder and decoder functions

(<PO, P17 sPL; 1/}) SatiSfying (ﬂ])'@) Let d(Ia jj) = (I_jj)2?
(z,%) € XZ be a square distortion measure. For X and its



estimation X = ¥(p0(Xo), ¢1
the average distortion by

(X1), -+ ,0L(X1)), define

JAN

A(XO;XO = ZEd XOt;XOt)

t 1

For a given D > 0, the rate vector (Ro, Ry, -+, Ryr) is
admissible if for any positive § > 0 and any n with n > ng(0),
there exists (o, 1, ,0r,%) € F\)(Ro, Ry,---,Ry)
such that A(X g, Xo) < D + 4. Let Ry (D) denote the set
of all the admissible rate vector. Our aim is to characterize
Rr(D) in an explicit form. On a form of R (D), we have a
particular interest in its sum rate part. To examine this quantity,

define
R;
(Ro,Rl RL GRL(D) {Z }

To determine Rgum, (D, Ro) in an explicit form is also of our
interest.
By the rate-distortion theory for single Gaussian sources,
2
whenR0>—log[ ] Ry = Ry =-- = R, =0 is
admissible. Here log™ a = max{loga, 0}. Hence, we have

3l

>

Rsum,L (D, RO)

R1(D)N {RO > Llog™[?

={(Ro,R1,--- ,RL) : Ro

Throughout this paper we assume that D < a§<0 and Ry <
2

% log[ago ].

B. Tree Structure of Gaussian Sources

In this subsection we explain the tree structure of Gaussian
source which is an important class of correlation. Consider

the case where the . + 1 random variables X, Xy, -+, X,
satisfy the following correlations:
Yo = Xo,
Y=Y a+2,1<I<L,
“)

X =Y, +N,1<I<L-1,
XL =YL, N, =12,

where Z;,i € A are L independent Gaussian random variables
with mean 0 and variance UQZY, and N;,i =1,2, ---, L —1
are L — 1 independent Gaussian random variables with mean
0 and variance O'N We assume that Z” is independent
of X, and that NZ—1 is independent of X, and Z%. We
can see that the above (Xo,Xi,---,X) has a kind of
tree structure(TS). We say that the source (Xo, X1, -, X1)
satisfies the TS condition when it satisfies (@). The TS con-
dition contains the CI condition as a special case by letting
0z,,t=1,2,---,L—1 be zero. Let S be an arbitrary subset
of A. The TS condition is equivalent to the condition that
for S C A, the random variables Xg, (Xo, ZF71), Xge form
Markov chains Xg — (Xo, Z*~!) — Xge in this order. The
TS and CI conditions in the case of L = 4 are shown in Fig.
and B respectively.

CI condition in the case of L = 4.

Fig. 3.

C. Previous Results

In this subsection we state the previous results on the
determination problem of Ry, (D). Let U;,i = 0,1,--- , L be
random variables taking values in real lines U;. For S C A,
define

G(D) 2 {(Uo,U*) : (Uy,U*) is a Gaussian random
vector that satisfies
Ul - Xt = Xy — Uy
Us — XSU{O} — Xge = Uge
for any S C A and E[X, — (U, U)]? < D

for some linear mapping Uy x UP — X 1,

where S¢ = A —S. Let

m= (W(ll)wéz)w(LL)>

be an arbitrary permutation on A and II be a set of all
permutations on A. For S C A, we set m(S5) 2 {7(%) }ics -
Define L subsets S;,i = 1,2,---,L of A by S; 2 {i,i+1,



... L}. Set

Rr.1(D) 2 {(Ro, R1,- -, Rr) : There exists a random
vector (Up, UF) € G(D) such that
RO > I(Xo; U0|UL)
Ry 2 I(Xon(iy; Un(i) [Un(s))
fori=1,2,---,L},

R (D) = { U fzﬁ:,“z(m} ,
well
where conv{ A} denotes a convex hull of the set A. Then, we
have the following.
Theorem 1 (Oohama [I8]): For Gaussian sources with gen-
eral correlation '
R{™(D) € RL(D).

For Gaussian sources with the CI condition the inner bound
R\™ (D) is tight, that is

RE™ (D) =R (D).

The above inner bound ﬁgn)(D) can be regarded as a
variant of the inner bound which is well known as the inner
bound of Berger and Tung [14]. Theorem [I] contains
the solution that Oohama [6] obtained to the one-helps-
one problem for Gaussian sources as a special case. When
Ry = 0, the second result of Theorem [T has some implications
for the Gaussian CEO problem studied by Viswanathan and
Berger [15]] and Oohama (7] and source coding problem for
multiterminal communication systems with a remote source
investigated by Yamamoto and Itoh [16] and Flynn and Gray
.

The notion of TS condition for Gaussian sources was first
introduced by Oohama [10]. Tavildar er al. [11] extended
the TS condition to a binary Gauss Markov tree structure
condition. They studied a full characterization of the rate
distortion region for Gaussian sources with a binary tree
structure. In the next section we shall state the results of
Tavildar et al. [11] and compare them with our results.

III. RESULTS ON THE RATE DISTORTION REGION

In this section, we state our main results on inner and
outer bounds of Ry, (D) in the case where (Xo, X1, -+, X1.)
satisfies the TS condition.

A. Definition of Functions and their Properties

In this subsection we define several functions which are
necessary to describe our results and present their properties.
Let r;,7 € A be nonnegative numbers. Define the sequence of
nonnegative functions { f;(rf)}5," U{ fo(r")} by the follow-
ing recursion:

L 10 ~2"L-1 1—e 2L
fralri_y) = %, T X,
Ly _ S () 1—e 2"
fl(rl ) - 1+022H1fz+1(7"{“+1) 012Vz ' ®)
L-2>1>1,
f1r)

Jolr™) = 172 6my -

Next, we define the sequence of nonnegative functions

{g:(D,70)}1=0.1 U{gu(D, 70,71}
by the following recursion:
—2r
QO(DJ“O) = % - ;21—7
Xo
— _ 90o(D,ro)
91(Dyr0) = =3 57y
gi41(D, o, )
-1 1 —2r " (6)
B g1 (D,ro,r )7W(170 l)
- +
1_‘7221+1 {gl(D,ro,rlfl)—%(1—e*27‘1):|
1<I<L-2,
where [a]t = max{a,0}. Let Br(D) be the set of all

nonnegative vectors r that satisfy

=27y 1

fo(r") > go(D, 7o) = S5~ — =

Let 9B (D) be the boundary of By (D), that is, the set of all
nonnegative vectors r} that satisfy

—2r,
fo(r®) = go(D, 7o) = 5~ — ;}12;

We can easily show that the functions we have defined satisfy
the following property.
Property 1:

a) Foreachi € A, fo(rl) is a monotone increasing function
of r;. Foreach 1 <[ < L and foreachi =1,l+1,---, L,
fi(rF) is a monotone increasing function of 7;.

b) Foreach2 <[ < L-—1andforeachi=0,1,---,1—1,
g1(D,ro,7'=1) is a monotone decreasing function of ;.

¢) If vl € BL(D), then, for 0 <1< L—1,

gl(Da To, Tl_l) < fl(TlL) :
In the above L inequalities the equalities simultaneously

hold if and only if 7§ € 9BL(D).
Define

[1 +U%lfl(TlL)} l

G(D,rg,r"7?) [1 + U%Zgl(D,ro,rl_l)] )

For S C A, define

folrs) 2 forM)], o+ Flrs) 2 F(h)|, g -

We can easily show that the functions F(r%*) and G(D,ro,
rL=2) satisfy the following property.
Property 2:
a) Foreachi € S, F(rg) is a monotone increasing function
of Ti.
b) For each i = 0,1,---,L — 2, G(D,r9,7¥72) is a
monotone decreasing function of r;.
o) If r§ € Br(D), then

G(D,ro, rL_Q) < F(TL) )



The equality holds if and only if 7& € 9B (D).
For D > 0,r; > 0,7€ A and S C A, define

r 72,1"5|r5c)

A L-2 o2
[ 10g+ lG(D,ro,r ) XO

{1+a’x j() rgc }D

F(rsc)

Hew] |

€S

1+‘7x0 f()
1+UX0 fo (Tsc

A F(rh)
= 5 log lF((rsc) :

€S

We can show that for S C A, Kg(rg| rs<) and Js(D, 1o,
rL=2 rg|rse) satisfy the following two properties.
Property 3:

a) If vl € BL(D), then, for any S C A,
JS(D,TO,TL_2,7’5|7’5C) < Kg(rg|rse) .

The equality holds when r € OB (D).

b) Suppose that 7% € B (D). If TL}TS:O still belongs to
B (D), then,
Js(D,ro, v % rslrse)|, o = Ks(rsrse)l, —o
=0.

Property 4: Fix v € Br(D). For S C A, set

T L—2
ps = ps(rs|rse) = Js(D,ro, 77" =, 75|rse) .
By definition it is obvious that pg, S C A are nonnegative.

We can show that p = {ps}sca satisfies the followings:

a) py = 0.
b) pa < ppfor AC B CA.
¢) pa+pB < pans + paus-

In general (A, p) is called a co-polymatroid if the nonnegative
function p on 2 satisfies the above three properties. Similarly,
we set

- ~ A - ~
ps = ps(rs|rse) = Ks(rslrse), p={ps}tgcx -
Then, (A, p) also has the same three properties as those of
(A, p) and becomes a co-polymatroid.

B. Results

In this subsection we present our results on inner and outer
bounds of Ry (D). In the previous work [10], we derived
an outer bound of Ry (D). We denote this outer bound by

ﬁ(fut)(D). According to [10], 7A€(L°ut)(D) is given by
7%([/011‘5) (D)

= {(Ro, RF) : There exists a nonnegative vector
(1o, 7%) such that

2
Ry > _1 %0 ,
0=>T0 > Og |:{1+a_§(0f0(TL)}D:|

R; > r; for any i € A,

Ro—i—ZR

G(D,TQ,TL72)0’2XO
F(rsc){lJrUg(o fo(rsc)}D

+ZT¢
=1

forany S CA.}.

Set
RY"(D,r) 2 {(Ro, Ry, . Ry) -
Ry > 19,
ZR’L 2 JS (D;TOaTL727TS|TSC) )
ics

forany SCA.},

R () £ {(Ro, Ry, -+, Ry) :
Ry > 19,
ZRi > Ks (rs|rse) ,
€S
forany SCA.},
REM(DE U REMD.).
T(I)‘EBL(D)
in A in
REVDYE U REVEE).
rEeBL(D)

Our main result is as follows.
Theorem 2: For Gaussian sources with the TS condition

RE™(D) € RE™(D) € R1(D)
g 7%([/011‘5) (D) g R(L()ut) (D) )

Proof of this theorem will be given in Section V. The
inclusion Rp (D) C 7A€(Lout)(D) and an outline of proof of
this inclusion was given in Oohama [10]. Furthermore, by
Theorem [T we have ﬁ(in)(D) C Rr(D). Hence, it suffices to
show R\™"Y(D) € RI™(D) and R{™ (D) € R{™ (D) to
prove Theorem 2l Proofs of those two inclusions will be given
in Section V. We can directly prove Ry (D) € RY"(D) in
a manner similar to that of Oohama [10]. For the detail of the
direct proof of Ry (D) C R (D), see Appendix B.

An essential difference between R'\™"" (D) and R™ (D)
is the difference between Js(D,rg, 7772, rg|rse) in the
definition of R\ (D) and Kg(rg|rge) in the definition
of R{™ (D). By Property [l part a) and the definitions of
R(O“t§ D,rk) and R\ (rf), if rk € OBL(D), then,

RE(D,rk) = R (rf).



TS conditions in the case of L = 2 and the case of L = 3 and

Fig. 4.
Zy = 0.

This gap suggests a possibility that in some cases those two
bounds match. In the following we present a sufficient con-
dition for R\ (D) € RI™ (D). We consider the following
condition on G(D, g, r¥=2).

Condition: Foreach | = 1,2, .-+, L—2,e?"tG(D,rq, 7" 2?)
is a monotone increasing function of 7;.

We call the above condition the MI condition. The following
is our main result on a matching condition on inner and outer
bounds.

Lemma 1: For Gaussian sources with the TS condition if
G(D,rg,71=2) satisfies the MI condition, then,

RE™(D) € REV(D).

Proof of this lemma is given in Section V. Note that when
L =2o0royz =0, forl =2,3,---,L —1 under the TS
condition, we have

G(D,rg,r*72) =1+ J%Igl(D,ro) ,

which satisfies the MI condition. TS conditions in the case
of L = 2 and the case of L = 3,7, = 0 is shown in Fig.
[ Note that those two conditions are different from the CI
condition. Combining Lemma [I] and Theorem 2] we establish
the following.

Theorem 3: For Gaussian sources with the TS condition

REV(D) = Ra(D) = RY™ (D) = RY*(D).

Furthermore, if G(D,rq,71~2) satisfies the MI condition,
then,

REV(D) = Ri(D) = R (D) = R (D).

In Oohama [I0], the equality Ro(D) = RY™(D) was
stated without complete proof. We can see that this equality
can be obtained by Theorem 2] Lemma [1l and the fact that
the MI condition holds for L = 2.

Next, we present a sufficient condition for G (D, rg,r"~2)
to satisfy the MI condition. Let { f;}f:_f be a sequence of
positive numbers defined by the following recursion:

* 1 1
e A

* [ L*+1 1 (7)
fi = rr

= z >
1+azl+1fz+1 Ny

L—2>1>1.

By definition it is obvious that f; (rlL ) < f*. Then, we have
the following proposition.

Fig. 5. TS condition in the case of L = 3.

Proposition 1: If
L—2 ,
E 9241
012\,1
k=l

hold for [ = 1,2, -+, L—2, then, G(D, ro, 7" ~2) satisfies the
MI condition.

Proof of this proposition will be given in Appendix A. It can
be seen from this proposition that for L > 3, the MI condition
holds for relatively small values of 0z,,l =2,--- ,L — 1. In
particular, when L = 3, the sufficient condition given by (8)

is
2
7% J 1402 L L <1
012\,1{ + Zy ((7]2\,2_'—0'12\,3)}— )

Solving the above inequality with respect to 0%2, we have

2 2

CoN, -
2 1 1
1+\/1+4crN1 (G?VQ + o§V3>

The TS condition in the case of L = 3 is shown in Fig.

(103 i) I (140,5) <1 ®

=141

2
UZ2—

C. Binary Tree Structure Condition

As a correlation property of Gaussian source Tavildar et al.
introduced a binary Gauss Markov tree structure condi-
tion. They studied a full characterization of the rate distortion
region for Gaussian sources with this binary tree structure. In
this subsection we describe their result and compare it with
our results.

We first explain the binary tree structure introduced by
them. Let k be a positive integer. We consider the case where
L =2 Let NV 1 < i <21 <j <k, be zero
mean independent Gaussian random variables with variance
O’]QV(j). Those 251 — 2 random variables are independent of

Xo. Define the sequence of Gaussian random variables {Yi(j)
}1<i<2i,0<j<k by the following recursion:

Y = X,

v — yl-D NG

7 "l“ (3 _7
for1<i<2,0<j<k,

X, =Y"™ | for1<i<2k,

©)

where [a] stands for the smallest integer not below a. We
say that for L = 2% the Gaussian source (Xo,X1, ---,X1)



Fig. 7. BTS condition in the case of L = 4, INTE) — oo and N2(2) =0
is equivalent to the TS condition in the case of L = 3 and Z1 =0.

satisfies the binary tree structure (BTS) condition when it
satisfies (9). The binary tree structure in the case of k = 2
and L = 2¥ = 4 is shown in Fig. [@ In this example, let
TN — oo and N2(2) = 0. Then, X; becomes independent
of (X9, X3,X4) and (X2, X5, X,) has the same correlation
property as the TS condition in the case of L = 3 and Z; = 0.
The BTS condition in this case is shown in Fig.[7l In general
the set of Gaussian sources satisfying the TS condition and
Z1 = 0 can be embedded into the set of Gaussian sources
satisfying BTS condition.

The communication system treated by Tavildar et al. is
shown in Fig. [8l It can be seen from this figure that their
problem set up is slightly different from ours. In their commu-
nication system there is no encoder that can directly access to
the source X . Tavildar et al. studied a characterization of the
rate distortion region R, (D)N{ Ry = 0} for Gaussian sources
with the binary tree structure and succeeded in it. Their result
is the following.

Theorem 4 (Tavildar et al. [I1]]): When L = 2 for some
integer k and (Xo, X1, ---, X) satisfies the BTS condition,
we have

R.(D)N{Ry =0} = R™ (D) N {Ry =0} .

From the above theorem we have the following corollary.
Corollary 1 (Tavildar et al. [I1]): When (Xo, X1,---, X,
) satisfies the TS condition and Z; = 0, we have

R1(D)N{Ry =0} = RY™ (D) n {Ry = 0} .

The BTS condition differs from the TS condition in its
symmetrical property, which plays an essential role in the
proof of Theorem [l We think that the method of Tavildar

X 901(X1)
X1 $1
X, @2(X2) N
X P2 P X
XL or(Xr)
Xr YL

Fig. 8.  Communication system that Tavildar et al. treated.

et al. [11] is applicable to the general case where Z; is not
constant and Ry > 0 and that Rz (D) = ﬁg“)(D) still holds
in this general case.

Unfortunately, our approach developed in and this pa-
per can not establish Rz, (D) = ﬁgn) (D) for Gaussian sources
satisfying the TS condition without requiring the condition on
the variances of 7;,2 < ¢ < L —1 and N;,1 < i < L,
specified with (8) in Proposition [II However, we think that
our work in [10] had provided an important step toward the
full characterization of the rate distortion region established
by Tavildar et al. [I1].

IV. SUM RATE PART OF THE RATE DISTORTION REGION

In this section we state our result on the rate sum part of
R (D) Set

Régm (D, Ry) 2  min JA(D,Ro,TLiz,’I’L),
’ rL:fo(rL)
>go(D,Ro)
R™ (D,Ry)2 min  Ky(r).
’ TL:fo(rL)
>9g0(D,Ro)
Let Rigm (D, Ry) be the minimum sum rate for 73(5“) (D),
that is,
L
Rgl)m (D, Ry) = min Z R;p .
’ (Ro,R1,,Rp)eR™ (D) | i

Then, it immediately follows from Theorem [2] that we have
the following corollary.
Corollary 2: For Gaussian sources with the TS condition
RrY

sum, L

S Rsum,L(Du RO) S R(u)

sum, L

(Dv RO)
(D, Ry) .

(D, Ro) < R

um, L

On the other hand, we have the following lemma.

Lemma 2: For Gaussian sources with the TS condition, we
have
(D ’ RO) Z R(u)

sum, L

RO

sum, L

(D, Ry) .

Proof of this lemma will be given in Section V. Combining
Corollary 2] and Lemma 2] we have the following.



Theorem 5: For Gaussian sources with the TS condition

A0

sum, L
2

D

L
[Z T+ = log F(rh)
) 2

=1

Rsum, (D, Ro) = RSEL,L(D Ro) = (D, Ro)

=R\ [ (D,Ry)=—Ro+ log

4+ min
L fo(rt
=go0(D,Ro)

In [12], the author further derived an algorithm of comput-
ing Rsum,r(D, Ro). This algorithm, however, has a problem
that it can not provide Rgum,z.(D, Ro) forall D € (0,0%,]. In
fact, the function Reum, 1 (D, Ro) is determined for relatively
small value of D. In the remaining part of this subsection we
present the algorithm given by [[12] and concretely explain the
above problem.

The algorithm of computing Rsum,z(D, Ro) given by the
author is as follows. For L. > [ > 1, set O'N = al,
0%, = €o} . Furthermore, set 7, = o7 /oy for L > 1 > 2.
Let w € [0,1). Define the sequence of functions {6;(w)}%
by the following recursion:

HL(W) =W,
20p(w)=1 4 4

L(w
Pile) = 14 e T{%H} ’

0141(w)
Tz+1

+ 7

Til [291(&)) —

91_1(00) = 041 (@)
€11 Tt
14+ - [29[(&1) 414&1 (1+ l:rl(w))
I+1

+ 7

forL—-1>1>2.

(10)

Theorem 6 (Oohama [[12]]): Let {6;(w)}E£ , be a sequence

of functions defined by (I0). Suppose that the Gaussian source
satisfies the TS condition and the condition

7L >1, forl =1L, }

>, for L—1>1>2, (11

Then, we have the following parametric form of Rguym, (D,
Ry) with the parameter w € [0,1):

D — 672R0 O.%O.g{()
0%, 01(w) + o’
Rown (Do Ro) = — Ry + L 10g T0
sum,L (D, Ro) = — 0+§ Og?
L1
1 6‘1(&)) 91+1(w)
_- 1 1—
i ( 2) ;{og< 1 —eb(w) " Ti41

+log (1 — elel(w))} +log(l —w)|.

Here we state a problem which exists in the parametric
expression of (D, Rsum, (D, Ro)) in the above theorem. We
consider the case of Ry = 0. From (I0), we can see that
when 7, > 1 for L > 1 > 1, 6;(w) is strictly positive function
of w € [0,1]. This implies that the parametric expression in

Theorem 6l can not provide Ryum, (D, 0) forall D € (0,0%,].
In this paper, we solve this problem to provide Rgym (D, 0)
for all D € (0,0%,].

In the following argument, we consider the case of Ry = 0.
In this case we set Rsum,.(D) = Rsum,r(D,0). Furthermore,
set go(D) = go(D,0). The optimal sum rate Ryym, (D) has
a form of optimization problem. In the remaining part of this
section we deal with this optimization problem. We let €1, = 0.
Then the recursion @) is

fulre) = % (1-

6727"[‘) ,

f rL —2r;_
fiaalrfy) = %4_ 7 (1—e7n) (12)
for L >1>2,
Ly fi(r®)
folr®) = eormem -

The optimization problem presenting Rgum 1 (D) is

2

1 o
Rsum,L(D) =3 log go
+ ml(n ) lZm—i—Z log 1+€l01 hitrf ))1
rl for

=go(D

To describe an algorithm of computing Rsym, (D), for 1 <
1 < L, define R{Y (D) by

1 2
RUn(D) = Hog e

+ min [Zrl—I—Z—log 1+ €02 fi(r! ))]

rk Ty >0,TLL+1:0 i—1
fo(r*)=go(D)

By the above definition and an elementary computation we
have that foreach 1 <[ < L, R = Réfl)m(D) is monotone
decreasing and convex function of D > 0 and that

Ryum, (D) = min RW

1<i<p v

(D). (13)

From (I3), we can see that Ry (D) can be obtained by
computing Réu)m(D) for 1 <1 < L. In the following discus-
sion we propose an algorithm to compute {(D, Rﬁ]m( D)} ,.
To describe the algorithm, for each 1 < [ < L, we define
the sequence 95”(&1) = {Hgl)(w)}ézl which consists of [
continuous functions of w. Concretely, for each 1 < [ < L
and w € (0, (1+¢)~1), define 68" (w) = {6" (w)}!_, by the
following recursion:

60 @) H{(+e)o P @)}H1-ab @)} | 4
0 o +
0, (w) =
! 0 (@) +{(1+e)0 (@) H1-e10® (@)}
I+ |- — — +1

TI

(14)



14 @)
A
T+ | 14 -2
(l) i+1
ei—l(w) = )
of!), (@)
1+ Ti+1

oD () + 7
it1
1+e; | 1+

Ti4+1

L1200 (w) -

Ti

1+ 9=t 1200 (w) —

l—1>i>2 (15)

Our main result is the following:

Theorem 7: Let 6 (w) = {0\” (w)}_, be a sequence of
functions defined by (4) and (13). Suppose that the Gaussian
source satisfies the TS condition and the following condition:

n=ot/of 1 >1,L>1>2 (16)
Under (16), we have the following parametric form of
(D, R (D)) using 65 (w):

22
oi0%,

03,01 (W) + 0%’
7%,

D
N [t 6 (w)
()l

6" (w)
+10g (1~ Ei0§l’(w>)} +log <1 - mﬂ |

1
Proof of Theorem [7] is give in Section [Vl When ¢; = 0 for
L>[1>1and 7y =1 for L > [ > 2, the recursion (I4) and
(I4) defining HSL)(W) becomes the following:
H(LL)(w) =w, G(LLzl(w) = 2w
L L L
01 (w) = 260" () ~ 13 )
forL—-1>101>2.

RO

sum

(D) = 5 los

95521<w>>

Ti+1

a7)

Solving (1)), we obtain HI(L) (w) = (L—I+1)w. The parametric
form of Rsym, (D) becomes

0290(D) = 01 (w) = Lw,

L 1 %, (13)
Rsum,L(D) = <_§> log(l — W) + 5 log T .
From (I8), we have
L o?
Rsum,L(D) = <_§> log (1 - leO(D)>
1. o%
-1 o, 1
+2 og D (19)
In particular, by letting L — oo in (I9), we have
. 1, 1 03(0
Jim R, £(D) = 50790(D) + 5 log —
2 2 2
g1 | %%, 1 0%,
= —1 =1 .
20%, [ D ] 2% D

The above formula coincides with the rate distortion function
for the quadratic Gaussian CEO problem obtained by Oohama
[7]. Hence, our solution to Rsum, (D) includes the previous
result on the Gaussian CEO problem as a special case.

V. PROOFS OF THE RESULTS

In this section we prove Theorem 2] and Lemma [I] stated
in Section II and prove Lemma [ stated in Section [Vl
Furthermore, on the computation of Rgym, (D), we prove
Theorem [7] stated in Section [Vl

A. Derivation of the Outer Bound

In this subsection we prove 7%(L°ut) (D) C R(LOM)(D) stated
in Theorem

Proof of R\ (D) € RY™ (D): Set

T L—-2

JS(D,T'O,T' 7TS|TS°7R0)
+
G(D,T‘o,’I‘L72)(T§(O

L
1
Zlogt + i
L o8 [Fusc){“o?cofo““)}[’} ;T 0

1>

We first observe that

G(D,T‘(),TL72)(T§(O

(
1 ) +
== |log® fome
2 [Og |:F(Tsc){1+U§(0'f0(TSC)}D:| ; ' TO]
(

G(D,’I‘(),’I‘L72)O'§(O

L
log |:F(r5c){l+a§<0fo(rsc)}D:| + ; 2r; — 27"0]

D,TQ,TL_2,TS|TSC).

(20)



Then, we have the following.
7%([1011‘5) (D)

C {(Ro, R¥) : There exists a nonnegative vector
(1o, 7%) such that
ok
Ry > 1 1|
0>T0 > Og |:{1+U§(0f0(TL)}D:|
> R > Js<D, ro, r" 72,
icS
for any S C A .}

rs|rse, Ro)

: There exists a nonnegative vector
rL such that
Ro> Llog* 7y
— 0 -

0= 2 8 {1+U§(O.fo(rL)}D ’
Z R’L 2 jS(D; R07 TL_25
i€s

forany S C A.}

=
— =
—
2y
o
=y
=~
~

rs|rse, Ro)

N

{(Ro, R¥) : There exists a nonnegative vector
(1o, 7%) such that

> . T%e
RO TO lOg |:{1+O’§(0f0(TL)}D:| ’
ZR’L 2 JS(D;7’07TL727
€S

forany S CA.}.

rslrse,ro)

,\
INea

{(Ro, R : There exists a nonnegative vector
(1, 7%) such that

2
> %%
RO TO log |:{1+U§(0f0(TL)}D:| )

Z R; > Js(D,ro, "2
€S

forany SC A.} =

7TS|TSC)

out) (D) '

Step (a) follows from the definition of JS(D Ry, rt=2.rg
|rse, Ro) and the nonnegative property of RE. Step (b) fol-
lows from that JS(D ro, 772, r5|rse, Ry) is a monotone
decreasing function of ro. Step (c) follows from (20). Thus
R\ (D) € R (D) is proved. [ ]

B. Derivation of the Inner Bound
In this subsection we prove R(in) (D) C fz(i“) (D) stated in
Theorem 2l We first derive a prehmlnary result on a form of
R(m)( D). Fix Ry > ro and set
RE™ (rf | Ro) = {(By. -

(Ro, Ry, - -

,Rp):
JR1) € R{V(rE)}

Let (A, p), p = {ps(rs|rs<)}sca be a co-polymatroid defined
in Property Ml Expression of R( (rf|Ro) using (A, p) is
RV (rk|Ry) = {(R1, - Ry : > Ri > ps (rsrse)
ies
forany S C A.}.

10

The set Rgn) (rf |Ro) forms a kind of polytope, which
is called a co-polymatroidal polytope in the terminology of
matroid theory. It is well known as a property of this kind
of polytope that the polytope Rgn)(rg |Ro) consists of L!
end-points whose components are given by

{?w(i)
= Dn(i), w (LY (T (i) m @ T{r(1), o (= 1)})
— P (it1),e (D)} (P 1) o (DT (1), m(i)})
fori=1,2,--- ,L—1,
Ra(r) = pin@)y(ra(n)|min (1), m(z-1)1) 5

(21
where

(1 i L .
T=\r@) - w(@) - w(L)
is an arbitrary permutation on A. For each m € II and
rt € Br(D), let RSUL) (rf) be the set of nonnegative vectors

(Ro, R1,--- , Ry) satisfying
Ry > 1o
R
2 D)y m (@} Ty m (DT (1) o0 (= 1)})
=it 1), (D} (TG 1) e (DT (1) 0 (i) })
fori=1,2,---,L—1,
Ra(r) 2 pia@)y(ra(n)|min (1), m(z—1)1) -

(22)
Then, we have

R () = conv{ U Rgsng(ré)} .
mell
Proof of RV™(D) < RV™(D): Fix 7 € I and
r§ € Br(D) arbitrary. By (@2, it suffices to show that for
¢ € By(D), RU(rk) € RUY(D) to prove RY™(D) C
R{™ (D). Let V;, i € {0}UA be independent Gaussian random
variables with mean O and variance aV Suppose that V"

is independent of X{. Define the Gaussian random variables
Ui, € {O}UA by

Ui 2 X;+ Vi, i€ {0}UA.

From the above definition it is obvious that

Ul — Xt — Xo — U,

Us—>X5U{0}—>XSc — Uge, (23)
forany S C A.
For given r; > 0,7 € S and D > 0, set —— = 2;2 , when

r; > 0. When r; = 0, we choose U; so that U; takes the
constant value zero. Define the sequence of random variables

{Ql}lL:O by
Qp == g, 4 1—;2*2“ Uy
NL

NL—l

—2r

W= . S+ 5

1-|-<TZZZJrl fi41 (Tlllrl)

forL—-2>1>1

(24)

QO = —2—14"72 fl(r Ql



Note that Qg = Qy(U¥%) is a linear function of U~. Then, by
an elementary computation, we have

1
S e [ G Y
Xo Vo
+No, 25)

where Ny is a zero mean Gaussian random variable with
variance

1

a§(0

Ny is independent of (Uy, U*). Since 7 € By (D), we have

—1
s Ah)]

—2rg

¢ D Q(TL). (26)
We put ,
4 =1 27)
Vo
Then, from @26) and 7)), we have
-1
[03 + =+ fo(TL)}
X0 Vo
) —1
= [; + 55—+ folr )] <D. @8
0

Based on ([@3), @7), and (28), define the linear function 1 of
(U07 UL) by

O(Us, UL) 2 { 4l —i—fo(rL)]l
x [7
E [Xo — (U, UL)}2 — Var [NO}

-1
- [c,%( + Lzt +fo(rL)] <D.
0

From @3) and [@9), we have (Uy,U*) € G(D). By simple
computations, we can show that
ro = I(Xo; Uo|UT),
ri = I(X3; U] XoY 271,
for any i € A,
$log [Fs(rs) - {14 0%, fo(rs)}]
= I(XOYLil; US) )
for any S C A.
Using 23) and (30), the L+ 1 inequalities of (22)) are rewritten
as

U + Qo(U )} :

Then, we obtain

(29)

(30)

Ro > I(Xo; Up|U"),

Ry = I(XoY "™ Un(s)|Un(se))
HI(Xon(i); Un | XoY = 77)
—I(XoY "™ Uns,y)[Un(se, )

= I(XoY " Ui |Un(sey)
HL(Xn(iy; Un(iy[XoY ™ Unsy)
= I(XoY " ' Xon(3); Un(iy | Un(se))
= I(Xﬁ(l w( z)|U 59) )
fori=1,2,---,L.

11

Thus, we conclude that (Ro, Rr(1), -, Rx(1)) € ﬁ;ng(D)

C. Proofs of Lemmas [l and

In this subsection we prove Lemmas [1l and Bl We first
present a preliminary observation on R(Lout)(D). Fix Ry > 1o
arbitrary and set

ou A
RY"(D, 1§ Ro) = {(Ri.---
(Ro, Ry, -

7RL):

,Rp) € RY"™(D, 1)}

Let (A, p), p = {ps(rs|rs:)}sca be a co-polymatroid defined
in Property [ Expression of R(LOM)(DO, rE|Ry) using (A, p)
is
R (D, rf|Ro) = {(R1,-- \Ri): Y Ri > ps (rsrse)
€S
forany S C A.}.
The set Rfut) (D,r{ |Ry) forms a co-polymatroidal polytope.
The polytope R(Lout)(D, rt |Rp) consists of L! end-points
whose components are given by

Ry
= Per(i), (@) (T L), (DT (1), m(i—1)})
=it 1), (D)} (T 1) o (DT (1), (i) })

fori=1,2,---,L—1,
Ry = Pir()y To() |7 (1) e (L=1)}) 5
(31)
where
7 1 oo G e L c
= (1) - w(i) -+ (L) :
ForeachmeIland [ =1,2,---, L, set

Br.1(D) 2 {r§ : r§ € BL(D) and

T‘ﬂ.(i)ZOfOI‘iZZ-i-l,---

rf € 0BL(D) and
T‘ﬂ.(i)ZOfOI‘iZZ-i-l,--- ,L}.

) L} )
A

OB, (D) = {rl -

In particular, when 7 is the identity map, we omit 7 to write

Bi(D) and 0B,(D). By Property Bl when r} € B, (D), the
end-point given by (BI) becomes

Ry
= Per (i) m O} (T )ee T () (= 1)})
=it 1), (O (T (1) e} T (1) e (i) })
fori=1,2,---,1—1,
Ry = pia)} (M) 7 (1), m-1)}) 5
R.,r(l-) =0, foric=1014+1,---,L.
(32)

Next, we present a lemma on a property of G(D,rg,r=~1).
Lemma 3: For r{ € By(D), G(D,ro,7t=2) is computed
as
l
o H 1 +U%kgk(D,T‘o,Tk_l)] .
k=1
Proof: By Property [l part ¢), for | +1 < k < L

0 < ge(D,ro, 7" 1) < f(rE) = 0.

G(D,ro, rL_2)|

TL+1



Hence, the result of Lemma [3] follows. [ |

Proof of Lemma [l Fix m € 1l and r{ € B (D) arbitrary.
Let (R, RL) be a nonnegative rate vector such that Ry > rg
and L components of R satisfy (3I). To prove Lemma [1
it suffices to show that this nonnegative vector belongs to
Rgn)(D). Forl=1,2,---, L, we prove the claim that under
the MI condition, if TOL S Bw,l(D), then, the rate vector
(Ro, RF) satisfying Ry > o and (32) belongs to R\™ (D).
We prove this claim by induction with respect to [. When
I =1, from (32), we have

)

The function p(1)}(7(1)) is computed as

Rr1) = Py (Tr(1)) 5

. (33)
Rﬂ.(i) =0, fori=2,---

P} (r(1))
L—-2
= Jiny (Dy70,7 72 me ) Irgmane)l, 2o

L—-2 2 —2 2r .
G(D,ro,r )|T{ﬂ(1)}c:o"xoc r0o (1)]

1
=3 log™ (34)

By the above form of pr(1)}(7x(1)) and
2 —2r0 2

X, X,
D z D

—2Rg

>1,
pin(1)} (Te(1)) is positive. Since r§ € By (D), we can
decrease rr(1) keeping rt € Br1(D) so that it arrives at
77y =0 or a positive 77 ;) satisfying

(0, P2 (1) s T{m (1))
= (T‘O,'f‘:,(l),o, ,0) (S aBﬂ—J(D).

L—-1

(35)

Let (RO, R, -+, R ) be a rate vector corresponding

(1) (L)
0 (o, 77 (1), T{ﬂ—(l)}c) If r7 ;) = 0, then by Property [3] part
b), prran(r ,r(l)) must be zero. This contradicts the fact that
Pix(1)}(rx(1)) is positive. Therefore, 7% (1) must be positive.
Then, from (@3), we have

(Ro, Rty Bagry)
= (Ro, Ri(1),0,-+-,0) € R{™V(D).
L-1

On the other hand, by Lemma 3| we have
G D L—2
(Do, )’T{wu)}c:ﬂ

= G(Da T07TL72)| L

rE 4 =0, (0 -1=0

m(1)
H 1+ 0%,gc(D,ro,r ] (36)
k=1 rr()—1—q

From (34) and (36), we can see that G (D, 7o, L_2)‘T{ -

does not depend on 7 (1y. This implies that pyr (1)} (1)) is a
monotone increasing function of 7 ;). Then, we have R 1) >
R;(l)' Hence, we have

(Ro, Rr(1ys 5 Re(ry)

= (ROaRﬂ'(l)aov T 50) € Rgn)(D) :
L—-1
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Thus, the claim holds for [ = 1. We assume that the claim
holds for [ — 1. Since fo(rf) is a monotone increasing
function of 7.y on By (D), we can decrease ;) keeping
r§ € Br(D) so that it arrives at ey = 0 or a positive 77,
satisfying

(7’0, T;:'(l)7 T{ﬂ.([)}c) S 8871-71(1)) . (37)

Let (R, R;(l), Rﬂ( L)) be a rate vector corresponding
to (ro, r;(l), T{r(1)}c)- By Property [ part b) and the MI
condition, the [ functions

Py W} (T {m(i) e e T (1) e (= 1)})

=it 1), (O} (T (1) oo e T (1) e (i) })
fori=1,2,---,1—1,

PLr} (e T (1) ra=1)}) 5

appearing in the right members of (32)) are monotone increas-
ing functions of 7 ;). Then, from (32), we have

7L'} (38)

When T:r(l) = 0, we have (ro,r;(l),r{ﬂ(”}c) € Bri—1(D).
Then, by induction hypothesis, we have

Rey 2 Ry fori=1,2,--- 1,
Rw(z‘)ZR;(i)ZOfori:l+17...

(Ro, Ry REy) € REV(D).

When r;(l) > 0, from (@7), we have

(Ro, Ryay» = Ryry) € R (D).
Hence, by (B8], we have

(R07R7'r(1)7 T
= (RO)RTF(].)) e

s Rery)
7R7r(l)507" ! 50)
——

L—1

e R (D).

Thus, the claim holds for [. This completes the proof of
Lemma [Il [
Proof of Lemma 2} For Ry > 0 and for 1 <1 < L, set

) € Bi(D)},
) € 0B)(D)} .

Bi(D|Ro) 2 {r' : (Ro, 7"
OB (D|Ry) 2 {rt: (Ry, r*

We first observe that

Rﬂfm L(D, Ro)
. . D L-2 L
12 rlelgl(lfiI)llRo) JaD, Bo,r )|T1L+1:0 ’
Rézzn L(D7 RO)
= min min KA(TZ)] :
1<I<L | rt€dBi(D|Ro)

We compute Ja(D, Ry, X~
rl € Bi(D|Ry)

2 .L ‘
T ) T1L+1:

o BY Lemma 3] for

G(Dv RO) TL7 )|

L+1

!
o= H [l—i-aélgk(D,Ro,rk*l)} .
k=1



From the above formula, we can see that for r' € B;(D|Ry),
G(D, Ry,mt72) | 1,0 is a function of 7/~1. We denote this

function by G(D, RO, —1), that is,

1
A
G(D,Ro,v' ™) 2 [ [1 + 0%, 90(D, Ro, 7 1)] .
k=1
Then, for r! € By(D|Ry),
Ja(D, R, " 277"L)‘T —0
I+1
1 o3 l
=3 log® |G(D, Ro,7""") - %67230 HGQ”] - (39)

We denote the right member of 39) by Jx (D, Ro, '~
Using this function, Rgu)m (D, Ry) can be written as

1,Tl).

RO

sum, L

(D,Ryp) = min

min  Ja(D, Ry, 771 rh)| .
1<i<L TEBL(D\RO)

Note here that Jx (D, Ry, !

function of 7;. To prove Rium I

suffices to show that for 1 < I <L,
JA(Du R07 Tl_l B Tl) 2

—1,r!) is a monotone increasing
(D,Ro) > R(\ (D, Ry), it

sum, L

min Ky (r!).

rtedB(D|Ro)

min
r'e€Bi(D|Ro)
We prove this claim by induction with respect to [. When
[ =1, the function Jx(D, Ro,r1) is computed as

Ja(D, Ry, m1) = 21 g" [{ngzlgl(D’R(}:)J}gg(ocQROCZH]
- 11 n [ 0% e 20e?m ]
T2 {1fo2zlgg(D,Ro)}D
o2 e 2o
Since 05— > 1, Jx(D,Rg,r1) is positive. Since

Ja(D, Ryp,r1) is a monotone increasing function of 71, the
minimum of this function is attained by r; = 0 or a positive
r} satisfying r7 € 0B1(D|Ry). If 7 = 0, then, by Property
B part b), Jo(D, Ry, r1) must be zero. This contradicts that
Ja(D, Ry, r1) is positive. Therefore, r; must be positive.
Then, by r} € 9B1(D|Ry), we have

Ja(D, Ry, r1) > JA(D, Ro,77)

= Kx(r]) > min

> Ka(r1)-
1 6861(D|R0)

Thus, the claim holds for [ = 1. We assume that the claim
holds for [ — 1. Since Ja(D, Rg,7'~1,7!) is a monotone
increasing function of 7;, the minimum of this function is
attained by 1 = 0 or a positive r; satisfying (7,1—1’7,[*) €
OB,(D|Ry) . When 77 = 0, we have r'~! € B;_1(D|Ry) and

JA(D, Ro, ' =1, 1Y) > JA(D, Ry, 7'~ 77 F) . (40)
Computing J5 (D, Ry, '~ 1, r!=1r}), we obtain
JA(D,RO,rlfl,Tlflrf)
= JA(D,R(),TL72,TL)‘T[L:0
| -2 Ugfo —2R = 2r;
:§log G(D, Ro,r -5 OHe i
i=1
= JA(D, Ro, 772 771y (41)
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Combining @0) and @I}, we have

JA(D, Ro, '™t r') 2 Ja(D, Ro,r' 2,00 (42
On the other hand, by induction hypothesis, we have
JA(D, Ro,r' 2,771 > Ka(r'™h) . 43)

> min
rt=1€dB;_1(D|Ro)
Combining @2)) and @3), we have

JA(D7R07TZ717TZ) >

> min
rl=1€dB;_1(D|Ro)
!
K (r').

KA(T,lfl)

> min
TleaBl(DIRo)

When r] > 0, we have

JA(D, Ro,ri-1,7') 2 JA(D, Ro,ri1,7' 1)
= Ka(ri-1r])
Z Hlin KA(’I"l ,
rtedB;(D|Ro)

where the second equality follows from (r'=!,7/) € 9B(
D|Ry) . Thus, the claim holds for I, completing the proof. B

D. Computation of {Réf}m(D)}le
When rf, | = 0, by ([2), we can prove the following:

Z(TL)—OZ+1<1<L

(r[ ) ( - _2”)7
fima(riy) = #2“)) + 01_2171 (1—e2r-1), (44)
forl >1i> 2,
TL
Iolr") = rrettrm

Define the sequence {f;(r)}._
tion fo(r') by

fi(rh)

1 of { functions and the func-

2 fi(TéaTlLH) f‘(TiL)|rlL+1:07 forl>i>1

fo(r') £ folri )

rl+1:O'

Then, by (@4) and the definitions of f;(rl),l > i > 1 and
fo(r!), we have

filr) = a_lf (1 — e’Q”) )
_ fi(ry) el
fica(rly) = The,02fi(rh) + 05171 (1—emrm) (45)
for [ > i > 2,
fo(r) = Ai(r)

1+€1G’%f1 (rt) -

We define the transformation of the vector ! into the vector
1
o' by

27 (4l
a = — TG (46)
1+ €07 fi(r})
From (@6), we have
1 i .
el = Jforl>i>1 (47
f .f() 01_2 1— o or ? 47)



Note that for [ > ¢ > 1, f; > 0. From D), oy, | > i > 1
. _ . A

must satisfy 0 < a; < ¢; *. For [ >4 > 2, set 7,= 02/0? ;.

Considering @3) and @7), we have

e et (48)
1-— €1
e i — - ML LM S0 (49)
l-—eoi1 7
Since 7; > 0 and @), oy; must be
O<ay<(l+e) (50)

Furthermore, since r;_; > 0 for [ — 1 > ¢ > 2 and (#9),
;, 1 > 1 > 2 must satisfy the following:

TiO—1
l—€e; 1417

—1)<ai<e;1.

0<a; <
s ShH
i (1*6«;7106«;71
We next express the objective function in the optimization
problem defining Rgfl)m(D) using ol. Set

N . -1 a;
I

i=1

—i-%) +log (1 — eiai)} + log (1 B )
Ti+1 1—¢o

Then we have
L L-1,

ZTI + Z 3 log (1 + eof fi(rf)) = ¢V (ad).

=1 =1
Let .A; be a domain of the objective function in the optimiza-
tion problem defining Réfl)m(D). Considering a form of the
objective function and (1)), the domain 4; is a set of o! such
that for [ — 1 > i > 2, ol satisfies (31) and

T -1
l—€ 1071

0<o <
Q1 —1 (52)
U (71_61716”71 - 1) <a<(l+¢)
Summarizing the above arguments, we can obtain an expres-
sion of Rgf])m(D) using o!. This expression is given by
1 0%
D)= -log—=%+4+  min
(D) 2 D abeA (o),
ozlzafgo(D)

RO

sum

¢ (ab).

A

Here we set A;(a1) = {ah : ol = (a1,0)) € A}

Then we have the following lemma.

Lemma 4: For o € Aj(ai1), (—2)¢(ah) ob is strictly
concave with respect to o}

Proof of this lemma will be given in Appendix C.

The following lemma is a key result to establish recursive
algorithms of computing Rgfl)m(D) for1 <[ <L.

Lemma 5: We assume that

n=oifof 121, L>1>2

Under this assumption, the sequence o) = {Hl(l)(w)}lizl of
I continuous functions defined by (I4) and (I3) satisfies the
following three properties:

(53)
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a) We have

(1)
0< 9(” < 716, (w)
e N

91(1—)1(‘*)) ) -1
Tl(m—l <9l (W)<(1+€l)

(54)
Furthermore, for [ — 1 > ¢ > 2, we have
) TiGEQI(w)
O S 91 (w) S 1*61’719591(“’) Ll
(55)

- 00 (@)
v 1767;719521(0.1)
The conditions (54) and (B5) imply (le))liﬁ(w) €
1
(01 (w)).

1) < Hl(l)(w) <&t

b)

v¢® =0.

=0 @)l
c) Foreach [ —1 > i > 1, 6" (w) is differentiable with
respect to w € [0, (1+¢)~!) and satisfies the following:
g\

A

Q
[V

>(l—i+1) 2

Q)

>0.

!
1
< 11
2 o) () :
j=i+1  1+€;-1 7 +1

This implies that for each [ > ¢ > 1, the mapping w €
[0,1)— 951) (w) is an injection.
Proof of this lemma is given in Appendix D. From this
lemma, we immediately obtain Theorem [71

VI. CONCLUSIONS

We have considered the Gaussian many-help-one problem
and given a partial solution to this problem by deriving explicit
outer bound of the rate distortion region for the case where
information sources satisfy the TS condition. Furthermore, we
established a sufficient condition under which this outer bound
is tight. We have determined the sum rate part of the rate
distortion region for the case where information sources satisfy
the TS condition.

For the case that information sources do not satisfy the
TS condition we can not derive an outer bound having a
similar form of R (D) since the proof of the converse
coding theorem depends heavily on this property of informa-
tion sources. Hence the complete solution is still lacking for
Gaussian information sources with general correlation.

APPENDIX
A.  Proof of Proposition [I]
In this appendix we prove Proposition [[I To prove this

proposition we give some preparations. For 0 < [ < L — 2,
we set

m = m(D,ro,r")
A go(D,T‘()), fOI'l:O7
) gD, o, ) - (1

Ny

—e ) for 1 <I<L—2,



For1<[I<L-—2,and a < 2,deﬁne
é [a]+ _ 1 a2
Tl(a) - 170221 [a]t %, (1 € ) )

Then, {n;}; satisfies the following:

nl(Du 7o, rl) =T (77l—1(D77°077°l_1))

for1 <I<L-2. (56)

Fix a < and set

Zg41
o2

A [a]*
pr(a) = Sup{p loglz’“ﬁ > p(b—a)

Zk+1 }

-, for()§a<021 ,
Zg41

for any b <

By a simple computation we have

2
(e
Zg41

1—
T Zq1

0, fora <0

pr(a)

2
(e
Zg41
2

IN

for a <

(57)

1—0o
Zk41 Zk41

Fix a < U% and set

Zj

A
01(0) s s7500) - 5(0) 2 a0~ 0
for any b < —— } )
Zj
By a simple computation we have

m’ f0r0§a<;%—,
qi(a) = & %
0, for a <0

for a < . (58)
Zj

1

< (l—a%j a)?”’

Proof of Proposition [l Let £ be a set of integers [ such

that (D, ro, ') is positive for some r& € By, (D). From (56),

there exists a unique integer 1 < L* < L — 2 such that £

={0,1,---,L*}. Using {m};=,% and L*, log G(D, 1y, r572)

can be rewritten as

L—1

log G(D,ro,rt7%) = Z log {1+ 0%, gi(D,ro,7
k=1
L-1

= log [1 2 e e w]

k=1

kfl)}

L-2

= log [1 s gREED k>1+}
k=0
.-

=> log {1 Uzmm(D } (59)

k=0

L Foreachs; >r, 1 <1<L—2let
L-2)

Fix nonnegative vector r
G(s1) be a function obtained by replacing r; in G(D, ro,r
with s;, that is

A
G(Sl) ZG(D,T‘(), -1 Sl,TlJrlQ).
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It is obvious that when s; = ry,
G(r)

By Property 2] part b), we have G(s;) < G(r;) for 1 <1 <
L—2.Foreach sy, > ri, | < k < L—2,let ni(s;) be a function
obtained by replacing 7; in 1y (D, ro,7*) with s;, that is

= G(Da To, Tlil; T, T[I/+_12) = G(D, To, TL72) .

A _
nk(sl) = ’I]k(D,T(),’I’l 17 Slvrlk-i—l) .

It is obvious that when s; = ry,
— (D -1 kY —p (D k
nk(rl)_nk( yT0, T 7Tl7Tl+1)—77k( ,To, T )

By Property [l part b), we have n(s;) < ni(ry) for I < k <
L —2 Foreach! =1, ---,L* we evaluate an upper bound
of log G(s;) — log G(r;). Using (39), we have

Zl 1- Uz,cﬂ [ (r))
1— UZ,c ()Tt
1=, ln(r)]®
- Zlog |:1 O'Zk+1[77k( DR

By definition of py(-), we have

(60)

1—oZ,  [ns(r)]"

g | gt | 2 o) ) = ()

2
[ed
Zk

2 Wﬁm(n) [k (s1) — i ()] (61)

where the last inequality follows from nx(s;)< nx(r;) and

(&7). From (60) and (&I, we have

log G(r) > Z = gzz“ék oy (ke (s1) = me(r1) - (62)

k+1
By definition of ¢;(-) and (36), for I + 1 < j < k, we have

—nj—1(r1)]
(63)

—n;(r) = q;(nj—1(r0)) [nj—1(s1)

e s) = ()]
Z (Cogn o) im0 =)

n;(s1)

where the last inequality follows from n,_1 (s;) <n;_1(r;) and
(38). Using (63) iteratively for [ +1 < j < k, we obtain

nk(s1) — M)
k
(m(st) —m(r1)) H Y (64)
j=l+1 (1-02,m-1)
Observe that
m(sl) — m(rl) = é [6—251 _ e—2m}
l
2072” _
z - (s1—11)- (65)

From (64) and (63), we have

k
M (1) = me(r) > =257 (s — ) L
jHl (1_‘72 M 1)
k
> — - Y 66
> Z(Sl m)j:111 T (66)



From (62) and (66), we have

1 G(Sl)
~log
2 G(Tl)
L k
> —(s1— 7 e Ll (67)
( ); 0'12\,[ 1*0’2Zk+177k ng (170'22j77j71)2

By Property [I part b) and the definition of 7;, we have

. Ll (1 am2r) — fit1
= i o, (L—e™) = of  fitn?
from which we have
1 2 . 2 *
1—0Z  n <1+ 0Z;1 Ji+1 <1+ OZii1dj+1- (68)

341

From (&7) and (68), we have

1 G(Sl) - 0%
— 1 > _ k41 (1 2 *)
318 Gy 2 70 2 (i
k
2
< II (1+0%,0) . ©9
J=l+1
If
L-2 k )
%z 2 * 2 *
> (1 +azk+lfk+1).rl£l (1+0%,05) <100
- i

hold for [ = 1,2,---, L — 2, then, by (69), we have

Q

(s1
G(n)

1
510g Z —(Sl —’I’l)

or equivalent to
1 1
Ss; + 5 10gG(Sl) >+ 5 IOgG(’I’l)

forl =1,2,---,L — 2. Hence, (70) is a sufficient condition
for the MI condition. [ |

B. Proof of R (D) € R\ (D)

In this appendix we prove R (D) C R(LOM)(D) stated in
Theorem [2I We first present a lemma necessary for the proof
of this inclusion.

Lemma 6:

3 n ag(
I(XOa XO) 2 5 1Og <A(X0,OX0)> .
Proof: See the proof of Lemma 1 in Oohama [7]. [ ]
Next, we present an important lemma which is a mathe-
matical core of the converse coding theorem. Let the encoded
outputs of X;,i = 0,1,---, L by encoder functions ¢; be
denoted by ¢;(X ;) = W,. Set
1
2 (X0 WoWH)
n

To

r 2 %I(Xi;WHYL_l)
%I(Xi;wim), for1<i<L—1,
- %I(XL; WerlY—1), fori=1L,
¢ A Ug(oe—%l(Xo;WOWL) '
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Then, we have the following lemma.
Lemma 7:

n
I(Xo;Wh) < B log [1 + og(ofo(rL)} )
For 1 <[ <L —1, we have
n _
% log [1+ 0%, 01(r0, 7', )]
n
<Y ;WEH Y1) < 5 log [1+0% A(r1)] .

From the above lemma we immediately obtain the follow-

ing.
Lemma 8:
I(Xo:Ws) < 5 log [L+ 0%, folrs)] .
I(YE 1 W X o) < glogF(rs), S C A,
IYE L WE X)) > glog G(&, 70, 7572) .

We prove R (D) C Rgmt)(D) by Lemmas [@] and [8] and
standard arguments for the proof of the converse coding
theorem.

Proof of Ri(D) € R (D): We first observe that by
virtue of the TS condition,

Wy —= Xg—= (X0, Z5 1) = Xge = Wse  (71)

hold for any subset S of A. Assume (Ro, Ri, -+, Rp) €
Rr(D). Then, for any 6 > 0, there exists an integer no(d)
such that for n > n(9) and for i € A, we obtain the following
chain of inequalities:

n(Ro + 8) > log My > H(Wo) > H(Wo|W")

= I(Xo; Wo|WE) = nrg. (72)

Furthermore, for any subset S C A, we obtain
nro + Z n(R; +9)
=
I(X s WolW5) + ) H(W,)
i€S
= H(Wo[W")+ > H(W;)
=
> HWo|[WsWse) + HWg|Wse) = HWoWg|Wse)
= I(XoZ" " WoWs|[Wse)
+H(WoWs|[Wse X0 Z571)
W (X2 WoWs [ Wee) + S H(W,| X025
=
= I(XoY" S WoWs|Wee) + > I(X 3 Wi YE7h). (73)
=
Step (a) follows from (ZI). On the other hand, by Lemma [
we have for n > ng(9),

Y

2
I(Xo; WoW5) = 3 log ("g)

& n o2
>1(Xo; Xo) > §log (Dioé) ,



which together with (Z2), (Z3), and Lemma [§] yields the
following lower bounds of I(Xo; Wo|W %) and I(XY*™*
s WoWs|Wse):

I(X o; Wo|WHE) =

n o
— 10 __ "Xo
2 8 [{l-i-og(ofo(TL)}J

I(Xo; WoW?h) — I(Xo; WH)

Y

Y

n o
=1 X0 74
2 Og|:{1+0§(0f0(TL)}(D+§):| ) ( )

I(XoY S WoWs|Wse)
= I( XY L WoWsWee) — I( XY™ W)
= I(Xo;WoWh) + 1(YE~1 Wl X,)
—I(Xo; Wse) = I(Y" ™ Wse| Xo)
n o2 G(f,’r‘o,’I‘L72)
—1 Xo
5 og [F(TSC){H(@O fo rsc)}g]

Y

n 0% G(D+8,ro,rt =)
> —1 X0 75
=39 |:F(r5c){l+axof0 rsc)}(D+5):| (75)
From (73) and (73), we have
0% G(D+8,r0,rt=2)
R;,+6)>=1o |: Xo ]

;( ) 5 108 F(rse)(D+6){1+0% fo(rse) }

+> = (76)

icS
Note here that ), o(R; + &) are nonnegative. Hence, from

(@2, [74) and (Z6), we obtain

2
Ro+6> ~1 7o 77
0+ ro > 0g[{1+0§(0f0(rL)}(D+5):| 77
and for S C A
Z(Rl + 6) > Js(D + 5, To,TL_2, 7‘S|TS°) .
icS

The inequality (77) implies that rf € By ( D + §). Thus, by
letting & — 0, we obtain (Rg, Ry, -+, Rp)e R™(D). m

Finally, we prove Lemma [/l For n dimensional random
vector U with density, let 4(U) be a differential entropy of U'.
The following two lemmas are some variants of the entropy
power inequality.

Lemma 9: Let U;,i = 1,2,3 be n dimensional random
vectors with densities and let 7" be a random variable taking
values in a finite set. We assume that U3 is independent of
U, Uy, and T'. Then, we have

Le%h(Uz-i-Us\UlT) > QL

2h(Uo|ULT) 4 1 2h(Us3)
2me een +2 en :

Lemma 10: Let U;, i = 1,2,3 be n random vectors with
densities. Let 7,75 be random variables taking values in
finite sets. We assume that those five random variables form
a Markov chain T} — Uy — U3 — Uy — T% in this order.
Then, we have

1 en h(Ul +U2|U3T1T2)
2me
1

h(Ul‘Ung) + zh(Ug‘Ung) .

>

2me en

Proof of Lemma [/l Define the sequence of n dimensional
random vectors { Sl}lL;ll by

1 1
SZZWXI—FU?
1

Zi41

Yi,1<li<L-1. (78
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By an elementary computation, we obtain

0'2* ~
Xo= §°Y1+N07

2 (79)
Yl:alYll—l—o’ Sl+Nl,1<l<L—1

Zy

where Nl, 0 <1l < L —1is an n dimensional random
vector whose components are n independent copies of a

Gaussian random variable with mean O and variance O'JQV

NO is independent of Y';. For each 1 < < L—1, Nl is
independent of Y;_; and S;. The variance 0 L0<I<L-1
have the following form:

1 1
AT T (50)
o 1 1 <]< ] —
=S QZ+UNZ+UQZH1,1_Z_L 1
Set
Ao 2 SLenhXolW™) | h) & Lo Th(YalW®)
71'0 e ’
A L
o 2 gz,
= Le%h(Y”YHWLL) 1<1<L,
2me ) - =
- A 2 L 2 L
= ﬁenh(sl‘yl—lwl )7 = Qice”‘h(s”ylwl )7
1<I<L-1.
We can easily verify that
fio = podozi—fiu = iz, 1<I<L—1. (1)
No Ny
Applying Lemma ] to (Z9), we obtain
4
A0 MO +U ) (82)
/\l>0 ul—i—a 1§1§L—1.
From (1) and (82), we obtain
Ml< + 3 (1-2),
0 ) — ?{ o’Z1 ( O'Z1 (83)
- 1 1
)\[ SE—FUN—’_UZ _,ulvlngL_l-

1 Z141
On the other hand, we note that for each 1 <[ < L — 1, the
five random variables W;, X;, Y, Y41, and WlL , form a
Markov chain W; - X; - Y; — Y41 — Wi, in this
order. Then, applying Lemma [I0] to (Z8), we obtain
,QM—I——4—/\I+171<Z<L_1

1 9241

Combining (83) and (84), we obtain for 1 <[ < L —1,

—e72) 4 (1 e ) (85)

Ny Zi41 Zi41

o> e (84)
N,

Setuoé)\al—%, wEN" = 1<I<L—1.Then,
we have
I(Xo, WE) = glog(l + 0%, 1),
YL, WEY ) = glog(l +o% ), 1<I<L-1,
(Y, WL|Y ) = glog(l + 0% vL) =nrp



Note that 14,0 < [ < L — 1 are nonnegative. From (83) and
3D, {v}}, satisfies the following recursion:

1 2
I/L:UQ_(e TL—l)a (86)
zZr
vr 1-e 27L-1
VL-1 S 1+0'QZLUL UZQVL,l
1—e ?"L 1—e 2"L-1
= + 87
N 7
Vg1 1—e 2m
y < L-2>1>1
> 1+UQZL+1 Vit 0.12\]1 ) - - 9 (88)
—2rq
|21 e 1
VO S 1+o.221 vy ;VO - 5 Ug(() (89)

From (86)-(89), we obtain the upper bounds of I(Xq; WF)
and I(Y;; WE|Y—1), 1 <1< L—1in Lemma[Z On the
other hand, from (88), 89), and the nonnegative property of
1,0 <1< L-—1, we have

R +
e -0 1 Vo
vy = [ z 03(0:| sV 2> 1_0%11,05

+
|:UL*U+(17072”):|
™ —,1<I<L-1.

o ]

N

(90)

Vig1 > oD

From (@0) and @I), we obtain the lower bound of I(Y;
WE|Y,21),1<1<L-1in Lemmal[] ]

C. Proof of Lemma

Let of, ¥ € Ap(aq). Let t € [0,1] and £ = 1 — ¢. Then,
we have the following chain of inequalities:

t(—2)¢" (a5) +1(=2)¢M (83)
-1
_ _ Qi+l
B ; {tlog (1 1 — €y i Tit1 )
- Bi Bit1
+tlog (1_ 1 —€fs +E) }
-1

+ ) {tlog (1 — o) + Flog (1 — €,8;)}

i=1

- B
t1 1-— tl 1-—
* og( 1—€lal)+ og( 1—apb
O p— p—
& 1— ¢y Tit1 1—eBi Tiqa

-1

=+ Z log (1 — Ei[tai + Eﬁl])

i—1
tay t6;
1 1-— —
+ og( 1 —eaq 1—6151)

() A ta; + tB;

< 1 1-— ! L

N ; o8 ( 1 —€ifta; +134]
-1

4 Zlog{l — eiftay + 53]}

i=1
tag + 153
log (1 — — et
+ Og( 1—afta +tﬁl])

tagi1 + t_ﬁiﬂ)
Ti+1

= (=2)¢" (toy +1753) -
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Step (a) follows from the strict concavity of the logarithm
function. Step (b) follows from the strict concavity of ;==
for a € (0,e”—1). [

D. Proof of Lemma[3

Proof of Lemma 13 part a): For the proof we use the
following inequality:

1+a a 1 ©92)

1+e(l+a) 14ea = 1+e€

The recursion (13) is equivalent to
01, ()
le(l) 14+ 'L:»l
T 171(“)) _ 29(1) (w) _ Q41 +7
e oW ¢ 0D (w)
1 67‘_161-71((&)) 1+€7, |:1 + Yig1lw) w :|
Ti41

93)

for {—1 >4 > 2. Applying (92) to the second term in the right

members of (@3) and considering the assumption 7; > %ﬁz
for L —1>1> 2, we have
01, ()
Z,9(1) 1:;
T, 17152’;) > 291@(‘0) —5
1-— 61'_16‘1-71((4)) 1+¢ _91+1( w)
G
or equivalent to
0, (w)

0, o
Tl—l() _ 91@@) > 95“@) - T (94)
1+€i—19i_1(W) 14+ 'L91+1( w)

Ti41
for [ — 1 >4 > 2. We first prove (34) for ¢ = [. The equality
l
0 ()
6 (@) +H{(A+eof” @}H1-ad" (@)} | 4
- 9<”(w)+{(1+z )0 () H{1—€68 (W)} (%)
1+€l1[l S — +1
is equivalent to the following two equalities:
95“1(‘0) 0
) = -1 -6"(w

l(1—6119z 10 (W) o)

= {1+ )b @)HL —ab” (@)} (96)

— 0 (w) — 1+ et (W {2- (1+e)dP (W)} ©7)

From (©6), we have
9(1)
m l*;(bu) 1) = G(Z)(w)
O] L
1-— 61_16‘171(00)
(a)
{1+ &) (@1 — etV ()} <0.  (98)

Step (a) follows from the original assumption 95”(&1) €

(0, (1 + ¢)~1). From @), we have
)
Tlez( 1 (W) Hfl)(w)
1- 10" ()

=7 =146 W) + et (W){2 - 1+ )8 (W)}

(b)
>7—1>0. (99)



Step (b) follows from the assumption 7; > 1. From (O8) and

(©9), we have

! 760, ()
0<67) < Tom

W
n (e -1) <o) < 1+ a)

1—e 100, ()
Thus, (33) holds for i = [. We next assume that (33)) holds for
some 7 + 1 with [ > i + 1, that is,

(100)

0) 108 (w)
0< 6i+1(w) < -0 (@)’
0" (w)

I _
Tit1 (71_;9(”(@ - 1) < 95421(“) <€

Then, from (I01)), we obtain

(101)

(102)

0 (w) <

1
( ) :
(@)
i+ 1
1+¢€; (1+ CY )
Using (93], we have

o)

710,21 (w) _9(1)(w)
=10 ()
1+1("")

1+ o (a)

_ m() +7 < T
1+€1<1+ 1+1w>

Ti41

Step (a) follows from the second inequality of (I02). Using
(©4), we have

o0 @) 0{2, (w) (a)
TiV; (W g a
)0y 2 0w - — o,
1 —€i-16;2 (w) 14 ¢ 2l
€i Tit1
Step (a) follows from the first inequality of (I02). Thus, (33)
holds for ¢, completing the proof. [ ]

Proof of Lemma [3 part b): We first observe that

(=2)¢1" ()
-1
= ; {log (1 1

— 6y

+log (1 S )
1—6[0&1

l

= Zlog {1 — €101 — o1+ (1= 61‘—1%—1)%}
p

i—2 i

+log <1 S )
1-— €
—Zlog[l—i— {1+ei(1+%)}az}
Ti+1 Ti+1

+ log <1— a )
1—6104[

+ Z“) +log (1 - elal)}

Ti+1

(103)
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9_¢W(ak), we obtain

Computing (—2)5.-

(_2)%<(l)(al2) = az—‘n( (}4171 1)

I—ep_1oq_1

1
T -0FeNa(d—eap) ?
(—2)6%@(@12):&4( 1 =

1-ej 121

(104)
1
1+O‘i+1

Tit1 —a;
e
forl—1>7>2.

From ([04), when V¢ (ab) = 0, o), must satisfy
o — T (b;ﬁﬁ - 1) ={1-(1+e)y}l—ega),
14 it
Ti4+1
Ite; {1+ ”1]

forl—1>4¢>2.

Xi—1

(105)
From (T03), we obtain
aHI1-(+e)o }(1—€ay) +1
Qp—1 = -
1+e [O‘H-{l (Oteoutd—ean) 1}
Tl
QXg41
1 o T4l .
= |20 1+€i(1+ C;Ll) o (106)
1 =
it
—1 L Ti4l ;
[2061 Ttes (1+ iZill) + Ti
forl—1>i>2.
The relation (I06) implies that V¢ | =P (W), =0 m

Proof of Lemma [ part c): For the proof we use the
following recursion for [ > ¢ > 2:

(l)
(@)
19(” 1+ 1:1
_ T 15)) =20 (w) — S (107)
1—e 169, (W) 4o {1+ Mw]
Ti41

Taking the derivative of both sides of (I07) with respect to w,
we obtain

l
Ll
2 K2
{1 - elflez(l—)l(w)} e
ag® 1 al,
—_ 9% _ L2t (108)

dw ) 2 dw
)

Since 0 (w) € A, (9§l)(w)), we have

6\
T —171(?‘;)) -1 < 91@ (w).
1—ei16;7(w)

The above inequality is equivalent to

0 (w) 1
Ti 1 —€-10;" (w)
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From (I08) and (I09) we have Step (b) follows from that for w € [0, (1 +¢)~!), we have
2 201 1- > 2,
e 0 (w) . aol, . (1 +e)(1 —eaw))
i—1 T dw wH{l+e)w—-1}1-qw) <w
oW 1 d@(izl X By (I13), we have
>2— - == 7. (110) ! ! I I
YR ) 2(w) 2 8(w) + (1= )8 ) = (1 — i+ )2 (w),
from which we obtain
The above inequality is equivalent to ao® o2 ﬁ .
(l - Z + 1)_12 ° (w) 2
R LI W o o i e (52 )}
R T o? | dw completing the proof. [ |
1 do® 1 Proof of Lemma [3] part c): For the proof we use the
> 92 <_2 i ) _ - following recursion for [ > i > 2:
i dw 14+ 0521("") +1 I (w)
i 70, () 0 L+ =
T g () — E3n L (114)
1 d6‘1+1 1-— 61'_16‘1-71((4)) 14+¢ |14 20 0; 1((—0)
X <5 . (111) Tit+1
oy dw
Taking the derivative of both sides of (I14) with respect to w,
Forl >i > 1, set we obtain
o (w) ! a2,
oW 0 2 dw "
(% : ) H %l)( ) 2 l 22227 {1_6l_19i71(w)}
i — € < l
S ) S B R
1 do(l) dw o) (w) 2 dw i+l
— ,i=1. {1—1-61[1“ +1}}
o] dw
Then, by (III), we have Since 0 (w) € A, (9%1)@1)), we have
ol (w) > 20 (w) — dY (W) forl—1>i>2. (112) < 09 (w) 1) < 60)
Ti| ————p—— (W) .
From (I12) we have 11— 51'7195_)1(‘0)
! ! ! ! The above inequality is equivalent to
20 (@) - 2 (@) > 2" (w) - 2}, () l
> 60 () — 3" (w) 0 (w) 1
> z 1+eq +1) > ——f——. (116
d9l(l)1 1 T 1—€i10;" (w)
- . — —_— 1 —_
1 e {1+€L—1<%+1)}2 o7 From ([13) and (I16) we have
-1 10 2 a0®
XH {} ] {14‘61‘—1(1—(“)4'1)} d;_lln
LT (w)+1)} Ti w
e 1 o
(@) 2(1+e)(1—cw)) >0t s— L2 (117)
{HEP [w{(uel)il ya- elw)ﬂ} }2 dw {1 e (6”)1(w) N 1)} dw
= '
v . 1 . . .
{1+611(;+1)}21 P> H {1+E] 1( 7 +1)} The above inequality is equivalent t(2)
_ 0 o
® . 1 = . I (- CO 1 &g
= 7 L 22 H 0, (W) 2 T 0, 1 dw
R S L S e i
o | 113 So(Ld07) _ :
(W) (113) =2\ 02 dw o0 o 2
o {1+e¢ <%+1>}
Step (a) follows from 6, (w) = w and o
d6‘
—1\W) =T Rt =T i1



Forl >i>1, set

2 (w)
1 40" ) .
—~ H oo N L2z
|\ R )
Loy
02 dw’ '

Then, by (I18), we have

o (w) > 20V (w) — ®Y (W) forl—1>i>2. (119
From we have
l ! ! !
2 (@) - 2 (w) > 2" (w) — 2}, ()
! l
> o (@) - 2" (w)
()
= |7 do -1 _ 1 i
dw {1+q,1(%+1)}2 o?
-1
1
X
I ey
@) 2(14¢;)(1—€w)) _
{1+ezfl[“’H(”e”ﬁl’”(“elwul}}
1—
1
_—1 —_— 1
oy |7 ey
(b) 1 -1
> 1 . 1
oy U emay
— o (w). (120)
Step (a) follows from 9l(l) (w) = w and
o(l) ( )_ 6171{w+{(1+€l)wl 1= élw)-l—l]
Tl
Step (b) follows from that for w € [0, (1 +¢)~!), we have

214 )(1 — qw)) > 2,
wH{(l+ew-1}1-qw) <w
By (120), we have
@El)(w) > @l(l) (w) + (I -

)0 (w) = (1 —i+ 1) (W),

from which we obtain
l

ds o?
> (—it1)=- L ,
a + N ey
completing the proof. [ ]
REFERENCES

[1] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inform. Theory, vol. 1T-19, pp. 471-480, July
1973.

[2] A. D. Wyner, “On source coding with side information at the decoder,”
IEEE Trans. Inform. Theory, vol. IT-21, pp. 294-300, May 1975.

[3] R. F. Ahlswede and J. Korner, “Source coding with side information
and a converse for degraded broadcast channels,” IEEE Trans. Inform.
Theory, vol. IT-21, pp. 629-637, Nov. 1975.

21

[4] J. Korner and K. Marton, “How to encode the module-two sum of binary
sources,” IEEE Trans. Inform. Theory, vol. 1T-25, pp. 219-221, Mar.
1979.

[5] S. L. Gelfand and M. S. Pinsker, “Source coding with incomplete side
information,”(in Russian) Probl. Pered. Inform., vol. 15, no. 2, pp. 45-57,
1979.

[6] Y. Oohama, “Gaussian multiterminal source coding,” IEEE Trans. In-
form. Theory, vol. 43, pp. 1912-1923, Nov. 1997.

[71 Y. Oohama, “The rate-distortion function for the quadratic Gaussian
CEO problem,” [EEE Trans. Inform. Theory, vol. 44, pp. 1057-1070,
May 1998.

[8] Y. Oohama, “Rate-distortion theory for Gaussian multiterminal source
coding systems with several side informations at the decoder,” IEEE
Trans. Inform. Theory, vol. 51, pp. 2577-2593, July 2005.

[9]1 A.Pandya, A. Kansal, G. Pottie and M. Srivastava, "Lossy source coding
of multiple Gaussian sources: m-helper problem” Proceedings of IEEE
Information Theory Workshop, San Antonio, TX, pp. 34-38, Oct. 2004.

[10] Y. Oohama, “Gaussian multiterminal source coding with several side
informations at the decoder,” Proceedings of IEEE International Sym-
posium on Information Theory, Seattle, USA, July 9-14, pp. 1409-1413,
July 2006.

[11] S. Tavildar, P. Viswanath, and A. B. Wagner, “The Gaussian many-help-
one distributed source coding problem,” Proceedings of IEEE Informa-
tion Theory Workshop, pp. 596-600, Oct. 2006, preprint; available at
http://arxiv.org/PS _ cache/arxiv/pdt/0805/0805.1857v1.pdf.

[12] Y. Oohama, "Sum rate characterization for the Gaussian many-help-one
problem,” Proceedings of IEEE Information Theory Workshop, pp. 323-
327, Oct. 2009.

[13] T. Berger, “Multiterminal source coding,” in the Information Theory
Approach to Communications (CISM Courses and Lectures, no. 229),
G. Longo, Ed. Vienna and New York : Springer-Verlag, 1978, pp. 171-
231.

[14] S. Y. Tung, “Multiterminal source coding,” Ph.D. dissertation, School
of Electrical Engineering, Cornell University, Ithaca, NY, May 1978.

[15] H. Viswanathan and T. Berger, “The quadratic Gaussian CEO problem,”
IEEE Trans. Inform. Theory, vol. 43, pp. 1549-1559, Sept. 1997.

[16] H. Yamamoto and K. Itoh, “Source coding theory for multiterminal
communication systems with a remote source”, Trans. of the IECE of
Japan, vol. E63, no.10, pp. 700-706, Oct. 1980.

[17] T.J. Flynn and R. M. Gray, “Encoding of correlated observations,” IEEE
Trans. Inform. Theory, vol. IT-33, pp. 773-787, Nov. 1987.


http://arxiv.org/$PS_-$cache/arxiv/pdf/0805/0805.1857v1.pdf

	Introduction
	Problem Statement and Previous results
	Formal Statement of the Problem
	Tree Structure of Gaussian Sources
	 Previous Results 

	Results on the Rate Distortion Region
	Definition of Functions and their Properties
	Results
	Binary Tree Structure Condition

	Sum Rate Part of the Rate Distortion Region
	Proofs of the Results
	Derivation of the Outer Bound
	Derivation of the Inner Bound
	 Proofs of Lemmas 1 and 2 
	Computation of {Rsum(l)(D)}l=1L

	Conclusions
	Appendix
	 Proof of Proposition 1 
	 Proof of RL(D) RL(out)(D) 
	 Proof of Lemma 4 
	 Proof of Lemma 5 

	References

