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Many-Help-One Problem for Gaussian Sources with

a Tree Structure on Their Correlation
Yasutada Oohama

Abstract—In this paper we consider the separate coding
problem for L+ 1 correlated Gaussian memoryless sources. We
deal with the case where L separately encoded data of sources
work as side information at the decoder for the reconstruction
of the remaining source. The determination problem of the rate
distortion region for this system is the so called many-help-one
problem and has been known as a highly challenging problem.
The author determined the rate distortion region in the case
where the L sources working as partial side information are
conditionally independent if the remaining source we wish to
reconstruct is given. This condition on the correlation is called the
CI condition. In this paper we extend the author’s previous result
to the case where L+ 1 sources satisfy a kind of tree structure
on their correlation. We call this tree structure of information
sources the TS condition, which contains the CI condition as a
special case. In this paper we derive an explicit outer bound of
the rate distortion region when information sources satisfy the
TS condition. We further derive an explicit sufficient condition
for this outer bound to be tight. In particular, we determine the

sum rate part of the rate distortion region for the case where
information sources satisfy the TS condition. For some class of
Gaussian sources with the TS condition we derive an explicit
recursive formula of this sum rate part.

Index Terms—Multiterminal source coding, many-help-one
problem, Gaussian, rate-distortion region, CEO problem.

I. INTRODUCTION

In multi-user source networks separate coding systems

of correlated information sources are significant from both

theoretical and practical point of view. The first fundamental

result on those coding systems was obtained by Slepian and

Wolf [1]. They considered a separate source coding system

of two correlated information sources. Those two sources are

separately encoded and sent to a single destination, where the

decoder reconstruct the original sources.

In the above source coding system, we can consider the

situation, where the decoder wishes to reproduce one of two

sources. We call this source the primary source. In this case

the remaining source that we call the auxiliary source works as

a partial side information at the decoder for the reconstruction

of the primary source. Wyner [2], Ahlswede and Körner [3]

determined the admissible rate region for this system, the set

that consists of a pair of transmission rates for which the

primary source can be decoded with an arbitrary small error

probability.

We can naturally extend the system studied by Wyner,

Ahlswede and Körner to the one where there are several

separately encoded data of auxiliary sources serving as side
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informations at the decoder. The determination of the admis-

sible rate region for this system is called the many-help-one

problem. In this sense Wyner, Ahlswede and Körner solved the

so called one-helps-one problem. The many-help-one problem

has been known as a highly challenging problem. To date,

partial solutions given by Körner and Marton [4], Gelfand

and Pinsker [5], Oohama [8],[10], and Tavildar et al. [11] are

known.

Gelfand and Pinsker [5] studied an interesting case of the

many-help-one problem. They determined the admissible rate

region in the case, where the auxiliary sources are condition-

ally independent if the primary source is given. We hereafter

say the above correlation condition on the information sources

the CI condition.

In Oohama [8], the author extended the many-help-one

problem studied by Gelfand and Pinsker [5] to a continuous

case. He considered the many-help-one problem for L + 1
correlated memoryless Gaussian sources, where L auxiliary

sources work as partial side information at the decoder for

the reconstruction of the primary source. The mean square

error was adopted as a distortion criterion between the de-

coded output and the original primary source output. The rate

distortion region was defined by the set of all transmission

rates for which the average distortion can be upper bounded

by a prescribed level. In [8], the author determined the rate

distortion region when information sources satisfy the CI

condition. This result contains the author’s previous works

for Gaussian one-helps-one problem [6] and Gaussian CEO

problem [7].

The problem still remains open for Gaussian sources with

general correlation. Pandya et al. [9] studied the general case

and derived an outer bound of the rate distortion region using

some variant of bounding technique the author [6] used to

prove the converse coding theorem for Gaussian one-helps-one

problem. However, their bounding method was not sufficient

to provide a tight result.

In Oohama [10], the author extended the result of [8].

He considered a case of correlation on Gaussian sources,

where L + 1 sources satisfy a kind of tree structure on their

correlation. The author called this tree structure of information

sources the TS condition. The TS condition contains the CI

condition as a special case. In [10], the author derived an

explicit outer bound of the rate distortion region for Gaussian

sources satisfying TS condition. Furthermore, he had shown

that for L = 2, this outer bound coincides with the rate dis-

tortion region. The author also presented a sufficient condition

for the outer bound to coincide with the rate distortion region.

Subsequently, Tavildar et al. [11] extended the TS condition

to a binary Gauss Markov tree structure condition. They
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studied a characterization of the rate distortion region for

Gaussian source with the complete binary tree structure and

succeeded in it. To derive their result, they made the full use of

the complete binary tree structure of the source. They further

determined the rate distortion region for Gaussian sources with

general tree structure.

In Oohama [10], the analysis for matching condition of the

rate distortion region and the derived outer bound was not

sufficient, so that the author could not realize that there exists

a part of the rate distortion region where the outer bound

derived by him coincides with the rate distortion region. In

this paper we give a further analysis on matching condition

for the outer bound derived by Oohama [10] to coincide with

the rate distortion region and derive a condition much stronger

than the matching condition in [10]. Through this analysis

we obtain an insight on a way of examining the sum rate

part of the rate distortion region to show that for Gaussian

sources with the TS condition the minimum sum rate part of

the outer bound given by Oohama [10] is tight. This result

implies that in Oohama [10], the author had already obtained

an explicit characterization of the sum rate part of the rate

distortion region before the work by Tavildar et al. [11]. On

this optimal sum rate we derive its explicit recursive formula

for some class of Gaussian sources with the TS condition. Our

formula contains the result of Oohama [7] for Gaussian CEO

problem as a special case.

The rest of this paper is organized as follows.

In Section II, we present a problem formulation and state

the previous works.

In Section III, we give our main result. We first derive

an explicit outer bound of the rate distortion region when

information sources satisfy the TS condition. This outer bound

is essentially the same as the author’s previous outer bound

in [10], but it has a form more suitable than the previous one

for analysis of a matching condition. Using the derived outer

bound, we presented an explicit sufficient condition for the

outer bound to coincide with the inner bound.

In Section IV, we investigate the sum rate part of the

rate distortion region. We show that for the outer bound in

this paper and that in [10], their sum rate parts coincide

with the sum rate part of the inner bound. Hence, in the

case where information sources satisfy the TS condition, we

establish an explicit characterization of the sum rate part of

the rate distortion region. This optimal sum rate has a form of

optimization problem. For some class of the Gaussian source

with the TS condition, we solve this optimization problem to

establish an explicit recursive formula of the optimal sum rate.

In Section V, we give the proofs of the results. Finally, in

Section VI, we conclude the paper.

II. PROBLEM STATEMENT AND PREVIOUS RESULTS

In this section we state the problem formulation and pre-

vious results. We first state some notations used throughout

this paper. Let Φ = {1, 2, · · · , |Φ|} and Ai, i ∈ Φ be arbitrary

sets. Consider a random variable Ai, i ∈ Φ taking values in

Ai. We write n direct product of Ai as An
i

△
= Ai × · · · × Ai
︸ ︷︷ ︸

n

.

X0

X1

...

XL

X0
✲

X1
✲

...

XL
✲

ϕ0

ϕ0(X0)

ϕ1

ϕ1(X1)

...

...

ϕL

ϕL(XL)

❅
❅
❅
❅❅❘✲

✓
✓
✓
✓
✓
✓✼
ψ ✲ X̂0

Fig. 1. Communication system with L side informations at the decoder.

Let a random vector consisting of n independent copies of the

random variable Ai be denoted by Ai = Ai,1Ai,2 · · ·Ai,n.
We write an element of An

i as ai = ai,1ai,2 · · ·ai,n. Let S
be an arbitrary subset of Φ. Let AS and AS denote random

vectors (Ai)i∈S and (Ai)i∈S , respectively. Similarly, let aS
denote a vector (ai)i∈S . When S = {k, k+1, · · · , l}, we also

use the notation Al
k for AS and use similar notations for other

vectors or random variables. When k = 1, we sometimes omit

subscript 1. Throughout this paper all logarithms are taken to

the natural.

A. Formal Statement of the Problem

Let Xi, i = 0, 1, 2, · · · , L be correlated zero mean Gaus-

sian random variables taking values in real lines Xi. Let

Λ = {1, 2, · · · , L}. The CI condition Oohama [8] treated

corresponds to the case where X1, X2, · · · , XL are indepen-

dent if X0 is given. In this paper we deal with the case where

X1, · · · , XL have some correlation when X0 is given. Let

{(X0,t, X1,t, · · · , XL,t)}
∞
t=1be a stationary memoryless mul-

tiple Gaussian source. For each t = 1, 2, · · · , (X0,t, X1,t, · · · ,
XL,t) obeys the same distribution as (X0, X1, · · · ,XL) .

The multiterminal source coding system treated in this paper

is depicted in Fig. 1. For each i = 0, 1, · · · , L, the data

sequence Xi is separately encoded to ϕi(Xi) by encoder

function ϕi. The encoded data ϕi(X i), i = 0, 1, · · · , L are

sent to the information processing center, where the decoder

observes them and outputs the estimation X̂0 of X0 by

using the decoder function ψ. The encoder functions ϕi , i =
0, 1, · · · , L are defined by

ϕi : X
n
i → Mi = {1, 2, · · · ,Mi} (1)

and satisfy rate constraints

1

n
logMi ≤ Ri + δ (2)

where δ is an arbitrary prescribed positive number. The

decoder function ψ is defined by

ψ : M0 ×M1 × · · · ×ML → Xn
0 . (3)

Denote by F
(n)
δ (R0, R1, · · · , RL) the set that consists

of all the (L + 2) tuple of encoder and decoder functions

(ϕ0, ϕ1, · · · ,ϕL, ψ) satisfying (1)-(3). Let d(x, x̂) = (x− x̂)2,

(x, x̂) ∈ X 2
0 be a square distortion measure. For X0 and its
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estimation X̂0 = ψ(ϕ0(X0), ϕ1(X1), · · · , ϕL(XL)), define

the average distortion by

∆(X0, X̂0)
△
=

1

n

n∑

t=1

Ed(X0,t, X̂0,t) .

For a given D > 0, the rate vector (R0, R1, · · · , RL) is

admissible if for any positive δ > 0 and any n with n ≥ n0(δ),

there exists (ϕ0, ϕ1, · · · , ϕL, ψ) ∈ F
(n)
δ (R0, R1, · · · , RL)

such that ∆(X0, X̂0) ≤ D + δ. Let RL(D) denote the set

of all the admissible rate vector. Our aim is to characterize

RL(D) in an explicit form. On a form of RL(D), we have a

particular interest in its sum rate part. To examine this quantity,

define

Rsum,L(D,R0)
△
= min

(R0,R1,··· ,RL)∈RL(D)

{
L∑

i=1

Ri

}

.

To determine Rsum,L(D,R0) in an explicit form is also of our

interest.

By the rate-distortion theory for single Gaussian sources,

when R0 ≥ 1
2 log

+[
σ2
X0

D
], R1 = R2 =· · · = RL = 0 is

admissible. Here log+ a = max{log a, 0}. Hence, we have

RL(D) ∩

{

R0 ≥ 1
2 log

+[
σ2
X0

D
]

}

= {(R0, R1, · · · , RL) : R0 ≥ 1
2 log

+[
σ2
X0

D
]

Ri ≥ 0, i ∈ Λ} .

Throughout this paper we assume that D ≤ σ2
X0

and R0 <

1
2 log[

σ2
X0

D
].

B. Tree Structure of Gaussian Sources

In this subsection we explain the tree structure of Gaussian

source which is an important class of correlation. Consider

the case where the L + 1 random variables X0, X1, · · · , XL

satisfy the following correlations:

Y0 = X0,

Yl = Yl−1 + Zl, 1 ≤ l ≤ L,

Xl = Yl +Nl, 1 ≤ l ≤ L− 1,

XL = YL, NL = ZL,







(4)

where Zi, i ∈ Λ are L independent Gaussian random variables

with mean 0 and variance σ2
Zi

and Ni, i = 1, 2, · · · , L − 1
are L− 1 independent Gaussian random variables with mean

0 and variance σ2
Ni

. We assume that ZL is independent

of X0 and that NL−1 is independent of X0 and ZL. We

can see that the above (X0, X1, · · · , XL) has a kind of

tree structure(TS). We say that the source (X0, X1, · · · , XL)
satisfies the TS condition when it satisfies (4). The TS con-

dition contains the CI condition as a special case by letting

σZi
, i = 1, 2, · · · , L− 1 be zero. Let S be an arbitrary subset

of Λ. The TS condition is equivalent to the condition that

for S ⊆ Λ, the random variables XS , (X0, Z
L−1), XSc form

Markov chains XS → (X0, Z
L−1) → XSc in this order. The

TS and CI conditions in the case of L = 4 are shown in Fig.

2 and 3, respectively.

✑
✑

✑✑✰

◗
◗
◗◗s

❡✛Z3

❡✛N4

❄
X4

❡✛

Y3 Y3

N3

❄
X3

✑
✑

✑✑✰

◗
◗

◗◗s

❡✛Z2

❡✛

Y2 Y2

N2

❄
X2

❄

X0

✑
✑

✑✑✰

◗
◗
◗◗s

❡✛Z1

❡✛

Y1 Y1

N1

❄
X1

Fig. 2. TS condition in the case of L = 4.

✑
✑

✑✑✰

◗
◗
◗◗s

❡✛Z3 = 0

❡✛N4

❄
X4

❡✛

X0 X0

N3

❄
X3

✑
✑

✑✑✰

◗
◗

◗◗s

❡✛Z2 = 0

❡✛

X0 X0

N2

❄
X2

❄

X0

✑
✑

✑✑✰

◗
◗
◗◗s

❡✛Z1 = 0

❡✛

X0 X0

N1

❄
X1

Fig. 3. CI condition in the case of L = 4.

C. Previous Results

In this subsection we state the previous results on the

determination problem of RL(D). Let Ui, i = 0, 1, · · · , L be

random variables taking values in real lines Ui. For S ⊆ Λ,

define

G(D)
△
=
{
(U0, U

L) : (U0, U
L) is a Gaussian random

vector that satisfies

UL → XL → X0 → U0

US → XS∪{0} → XSc → USc

for any S ⊆ Λ and E[X0 − ψ̃(U0, U
L)]2 ≤ D

for some linear mapping ψ̃ : U0 × UL → X0 . } ,

where Sc △
= Λ− S. Let

π =

(
1 · · · i · · · L

π(1) · · · π(i) · · · π(L)

)

be an arbitrary permutation on Λ and Π be a set of all

permutations on Λ. For S ⊆ Λ, we set π(S)
△
= {π(i)}i∈S .

Define L subsets Si, i = 1, 2, · · · , L of Λ by Si
△
= {i, i + 1,
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· · · , L} . Set

R̃π,L(D)
△
= {(R0, R1, · · · , RL) : There exists a random

vector (U0, U
L) ∈ G(D) such that

R0 ≥ I(X0;U0|U
L)

Rπ(i) ≥ I(Xπ(i);Uπ(i)|Uπ(Sc
i
))

for i = 1, 2, · · · , L } ,

R̃
(in)
L (D)

△
= conv

{
⋃

π∈Π

R̃
(in)
π,L(D)

}

,

where conv{A} denotes a convex hull of the set A. Then, we

have the following.

Theorem 1 (Oohama [8]): For Gaussian sources with gen-

eral correlation

R̃
(in)
L (D) ⊆ RL(D) .

For Gaussian sources with the CI condition the inner bound

R̃
(in)
L (D) is tight, that is

R̃
(in)
L (D) = RL(D) .

The above inner bound R̃
(in)
L (D) can be regarded as a

variant of the inner bound which is well known as the inner

bound of Berger [13] and Tung [14]. Theorem 1 contains

the solution that Oohama [6] obtained to the one-helps-

one problem for Gaussian sources as a special case. When

R0 = 0, the second result of Theorem 1 has some implications

for the Gaussian CEO problem studied by Viswanathan and

Berger [15] and Oohama [7] and source coding problem for

multiterminal communication systems with a remote source

investigated by Yamamoto and Itoh [16] and Flynn and Gray

[17].

The notion of TS condition for Gaussian sources was first

introduced by Oohama [10]. Tavildar et al. [11] extended

the TS condition to a binary Gauss Markov tree structure

condition. They studied a full characterization of the rate

distortion region for Gaussian sources with a binary tree

structure. In the next section we shall state the results of

Tavildar et al. [11] and compare them with our results.

III. RESULTS ON THE RATE DISTORTION REGION

In this section, we state our main results on inner and

outer bounds of RL(D) in the case where (X0, X1, · · · , XL)
satisfies the TS condition.

A. Definition of Functions and their Properties

In this subsection we define several functions which are

necessary to describe our results and present their properties.

Let ri, i ∈ Λ be nonnegative numbers. Define the sequence of

nonnegative functions {fl(r
L
l )}

L−1
l=1 ∪{f0(r

L)} by the follow-

ing recursion:

fL−1(r
L
L−1) =

1−e−2rL−1

σ2
NL−1

+ 1−e−2rL

σ2
NL

,

fl(r
L
l ) =

fl+1(r
L
l+1)

1+σ2
Zl+1

fl+1(rLl+1)
+ 1−e−2rl

σ2
Nl

,

L− 2 ≥ l ≥ 1 ,

f0(r
L) = f1(r

L)
1+σ2

Z1
f1(rL)

.







(5)

Next, we define the sequence of nonnegative functions

{gl(D, r0)}l=0,1 ∪ {gl(D, r0, r
l−1)}L−1

l=2

by the following recursion:

g0(D, r0) =
e−2r0

D
− 1

σ2
X0

,

g1(D, r0) =
g0(D,r0)

1−σ2
Z1

g0(D,r0)
,

gl+1(D, r0, r
l)

=

[

gl(D,r0,r
l−1)− 1

σ2
Nl

(1−e−2rl)

]+

1−σ2
Zl+1

[

gl(D,r0,rl−1)− 1

σ2
Nl

(1−e−2rl)

]+ ,

1 ≤ l ≤ L− 2 ,







(6)

where [a]+ = max{a, 0} . Let BL(D) be the set of all

nonnegative vectors rL0 that satisfy

f0(r
L) ≥ g0(D, r0) =

e−2r0

D
− 1

σ2
X0

.

Let ∂BL(D) be the boundary of BL(D), that is, the set of all

nonnegative vectors rL0 that satisfy

f0(r
L) = g0(D, r0) =

e−2r0

D
− 1

σ2
X0

.

We can easily show that the functions we have defined satisfy

the following property.

Property 1:

a) For each i ∈ Λ, f0(r
L) is a monotone increasing function

of ri. For each 1 ≤ l ≤ L and for each i = l, l+1, · · · , L,

fl(r
L
l ) is a monotone increasing function of ri.

b) For each 2 ≤ l ≤ L− 1 and for each i = 0, 1, · · · , l− 1,

gl(D, r0, r
l−1) is a monotone decreasing function of ri.

c) If rL0 ∈ BL(D), then, for 0 ≤ l ≤ L− 1 ,

gl(D, r0, r
l−1) ≤ fl(r

L
l ) .

In the above L inequalities the equalities simultaneously

hold if and only if rL0 ∈ ∂BL(D) .

Define

F (rL)
△
=

L−1∏

l=1

[
1 + σ2

Zl
fl(r

L
l )
]
,

G(D, r0, r
L−2)

△
=

L−1∏

l=1

[
1 + σ2

Zl
gl(D, r0, r

l−1)
]
.

For S ⊆ Λ, define

f0(rS)
△
= f0(r

L)
∣
∣
rSc=0

, F (rS)
△
= F (rL)

∣
∣
rSc=0

.

We can easily show that the functions F (rL) and G(D, r0,
rL−2) satisfy the following property.

Property 2:

a) For each i ∈ S, F (rS) is a monotone increasing function

of ri.
b) For each i = 0, 1, · · · , L − 2, G(D, r0, r

L−2) is a

monotone decreasing function of ri.
c) If rL0 ∈ BL(D), then

G(D, r0, r
L−2) ≤ F (rL) .
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The equality holds if and only if rL0 ∈ ∂BL(D) .

For D > 0, ri ≥ 0, i ∈ Λ and S ⊆ Λ, define

JS(D, r0, r
L−2, rS |rSc)

△
=

1

2
log+

[

G(D,r0,r
L−2)

F (rSc) ·
σ2
X0

e−2r0
{

1+σ2
X0

f0(rSc)
}

D
·
∏

i∈S

e2ri

]

,

KS(rS |rSc)

△
=

1

2
log

[

F (rL)
F (rSc) ·

1+σ2
X0

f0(r
L)

1+σ2
X0

f0(rSc)
·
∏

i∈S

e2ri

]

.

We can show that for S ⊆ Λ, KS(rS | rSc) and JS(D, r0,
rL−2, rS |rSc) satisfy the following two properties.

Property 3:

a) If rL0 ∈ BL(D), then, for any S ⊆ Λ,

JS(D, r0, r
L−2, rS |rSc) ≤ KS(rS |rSc) .

The equality holds when rL0 ∈ ∂BL(D).
b) Suppose that rL ∈ BL(D). If rL

∣
∣
rS=0

still belongs to

BL(D), then,

JS(D, r0, r
L−2, rS |rSc)

∣
∣
rS=0

= KS(rS |rSc)|rS=0

= 0 .

Property 4: Fix rL ∈ BL(D). For S ⊆ Λ, set

ρS = ρS(rS |rSc)
△
= JS(D, r0, r

L−2, rS |rSc) .

By definition it is obvious that ρS , S ⊆ Λ are nonnegative.

We can show that ρ
△
= {ρS}S⊆Λ satisfies the followings:

a) ρ∅ = 0.

b) ρA ≤ ρB for A ⊆ B ⊆ Λ.

c) ρA + ρB ≤ ρA∩B + ρA∪B .

In general (Λ, ρ) is called a co-polymatroid if the nonnegative

function ρ on 2Λ satisfies the above three properties. Similarly,

we set

ρ̃S = ρ̃S(rS |rSc)
△
= KS(rS |rSc) , ρ̃ = {ρ̃S}S⊆Λ .

Then, (Λ, ρ̃) also has the same three properties as those of

(Λ, ρ) and becomes a co-polymatroid.

B. Results

In this subsection we present our results on inner and outer

bounds of RL(D). In the previous work [10], we derived

an outer bound of RL(D). We denote this outer bound by

R̂
(out)
L (D). According to [10], R̂

(out)
L (D) is given by

R̂
(out)
L (D)

=
{

(R0, R
L) :There exists a nonnegative vector

(r0, r
L) such that

R0 ≥ r0 ≥ 1
2 log

+

[
σ2
X0

{

1+σ2
X0

f0(rL)
}

D

]

,

Ri ≥ ri for any i ∈ Λ,

R0 +
∑

i∈S

Ri

≥
1

2
log+

[
G(D,r0,r

L−2)σ2
X0

F (rSc)
{

1+σ2
X0

f0(rSc)
}

D

]

+
L∑

i=1

ri

for any S ⊆ Λ .} .

Set

R
(out)
L (D, rL0 )

△
= {(R0, R1, · · · , RL) :

R0 ≥ r0 ,
∑

i∈S

Ri ≥ JS
(
D, r0, r

L−2, rS |rSc

)
,

for any S ⊆ Λ . } ,

R
(in)
L (rL0 )

△
= {(R0, R1, · · · , RL) :

R0 ≥ r0 ,
∑

i∈S

Ri ≥ KS (rS |rSc) ,

for any S ⊆ Λ . } ,

R
(out)
L (D)

△
=

⋃

rL0 ∈BL(D)

R
(out)
L (D, rL0 ) ,

R
(in)
L (D)

△
=

⋃

rL0 ∈BL(D)

R
(in)
L (rL0 ) .

Our main result is as follows.

Theorem 2: For Gaussian sources with the TS condition

R
(in)
L (D) ⊆ R̃

(in)
L (D) ⊆ RL(D)

⊆ R̂
(out)
L (D) ⊆ R

(out)
L (D) .

Proof of this theorem will be given in Section V. The

inclusion RL(D) ⊆ R̂
(out)
L (D) and an outline of proof of

this inclusion was given in Oohama [10]. Furthermore, by

Theorem 1, we have R̃
(in)
L (D) ⊆ RL(D). Hence, it suffices to

show R̂
(out)
L (D) ⊆ R

(out)
L (D) and R

(in)
L (D) ⊆ R̃

(in)
L (D) to

prove Theorem 2. Proofs of those two inclusions will be given

in Section V. We can directly prove RL(D) ⊆ R
(out)
L (D) in

a manner similar to that of Oohama [10]. For the detail of the

direct proof of RL(D) ⊆ R
(out)
L (D), see Appendix B.

An essential difference between R
(out)
L (D) and R

(in)
L (D)

is the difference between JS(D, r0, r
L−2, rS |rSc) in the

definition of R
(out)
L (D) and KS(rS |rSc) in the definition

of R
(in)
L (D). By Property 3 part a) and the definitions of

R
(out)
L (D, rL0 ) and R

(in)
L ( rL0 ), if rL0 ∈ ∂BL(D), then,

R
(out)
L (D, rL0 ) = R

(in)
L (rL0 ) .
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❡✛

Y1 Y1
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❄
X1
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✑

✑✑✰
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Y1 Y1
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❡✛N3

❄
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Fig. 4. TS conditions in the case of L = 2 and the case of L = 3 and
Z2 = 0.

This gap suggests a possibility that in some cases those two

bounds match. In the following we present a sufficient con-

dition for R
(out)
L (D) ⊆ R

(in)
L (D) . We consider the following

condition on G(D, r0, r
L−2).

Condition: For each l = 1, 2, · · · , L−2, e2rlG(D, r0, r
L−2)

is a monotone increasing function of rl.
We call the above condition the MI condition. The following

is our main result on a matching condition on inner and outer

bounds.

Lemma 1: For Gaussian sources with the TS condition if

G(D, r0, r
L−2) satisfies the MI condition, then,

R
(out)
L (D) ⊆ R

(in)
L (D) .

Proof of this lemma is given in Section V. Note that when

L = 2 or σZl
= 0, for l = 2, 3, · · · , L − 1 under the TS

condition, we have

G(D, r0, r
L−2) = 1 + σ2

Z1
g1(D, r0) ,

which satisfies the MI condition. TS conditions in the case

of L = 2 and the case of L = 3, Z2 = 0 is shown in Fig.

4. Note that those two conditions are different from the CI

condition. Combining Lemma 1 and Theorem 2, we establish

the following.

Theorem 3: For Gaussian sources with the TS condition

R
(in)
2 (D) = R2(D) = R̂

(out)
2 (D) = R

(out)
2 (D) .

Furthermore, if G(D, r0, r
L−2) satisfies the MI condition,

then,

R
(in)
L (D) = RL(D) = R̂

(out)
L (D) = R

(out)
L (D) .

In Oohama [10], the equality R2(D) = R̂
(out)
2 (D) was

stated without complete proof. We can see that this equality

can be obtained by Theorem 2, Lemma 1, and the fact that

the MI condition holds for L = 2.

Next, we present a sufficient condition for G(D, r0, r
L−2)

to satisfy the MI condition. Let {f∗
j }

L−1
j=1 be a sequence of

positive numbers defined by the following recursion:

f∗
L−1 = 1

σ2
NL−1

+ 1
σ2
NL

,

f∗
l =

f∗
l+1

1+σ2
Zl+1

f∗
l+1

+ 1
σ2
Nl

, L− 2 ≥ l ≥ 1 .






(7)

By definition it is obvious that fl(r
L
l ) ≤ f∗

l . Then, we have

the following proposition.

❡✛N3

❄
X3

✑
✑

✑✑✰

◗
◗

◗◗s

❡✛Z2

❡✛

Y2 Y2

N2

❄
X2

❄

X0

✑
✑

✑✑✰

◗
◗
◗◗s

❡✛Z1

❡✛

Y1 Y1

N1

❄
X1

Fig. 5. TS condition in the case of L = 3.

Proposition 1: If

L−2∑

k=l

σ2
Zk+1

σ2
Nl

(

1 + σ2
Zk+1

f∗
k+1

) k∏

j=l+1

(

1 + σ2
Zj
f∗
j

)2

≤ 1 (8)

hold for l = 1, 2, · · · , L−2, then, G(D, r0, r
L−2) satisfies the

MI condition.

Proof of this proposition will be given in Appendix A. It can

be seen from this proposition that for L ≥ 3, the MI condition

holds for relatively small values of σZl
, l = 2, · · · , L − 1. In

particular, when L = 3, the sufficient condition given by (8)

is
σ2
Z2

σ2
N1

{

1 + σ2
Z2

(

1
σ2
N2

+ 1
σ2
N3

)}

≤ 1 .

Solving the above inequality with respect to σ2
Z2

, we have

σ2
Z2

≤
2

1 +

√

1 + 4σ2
N1

(

1
σ2
N2

+ 1
σ2
N3

) · σ2
N1
.

The TS condition in the case of L = 3 is shown in Fig. 5.

C. Binary Tree Structure Condition

As a correlation property of Gaussian source Tavildar et al.

[11] introduced a binary Gauss Markov tree structure condi-

tion. They studied a full characterization of the rate distortion

region for Gaussian sources with this binary tree structure. In

this subsection we describe their result and compare it with

our results.

We first explain the binary tree structure introduced by

them. Let k be a positive integer. We consider the case where

L = 2k. Let N
(j)
i , 1 ≤ i ≤ 2j, 1 ≤ j ≤ k , be zero

mean independent Gaussian random variables with variance

σ2

N
(j)
i

. Those 2k+1 − 2 random variables are independent of

X0. Define the sequence of Gaussian random variables {Y
(j)
i

}1≤i≤2j ,0≤j≤k by the following recursion:

Y
(0)
1 = X0 ,

Y
(j)
i = Y

(j−1)

⌈ i
2 ⌉

+N
(j)
i ,

for 1 ≤ i ≤ 2j, 0 ≤ j ≤ k ,

Xi = Y
(k)
i , for 1 ≤ i ≤ 2k ,







(9)

where ⌈a⌉ stands for the smallest integer not below a. We

say that for L = 2k the Gaussian source (X0,X1, · · · , XL)
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Fig. 6. BTS condition in the case of L = 4.
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1
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(1)
2

❡✛N (2)
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Fig. 7. BTS condition in the case of L = 4, σ
N

(2)
1

→ ∞ and N
(2)
2 = 0

is equivalent to the TS condition in the case of L = 3 and Z1 = 0.

satisfies the binary tree structure (BTS) condition when it

satisfies (9). The binary tree structure in the case of k = 2
and L = 2k = 4 is shown in Fig. 6. In this example, let

σ
N

(2)
1

→ ∞ and N
(2)
2 = 0. Then, X1 becomes independent

of (X2, X3, X4) and (X2, X3, X4) has the same correlation

property as the TS condition in the case of L = 3 and Z1 = 0.

The BTS condition in this case is shown in Fig. 7. In general

the set of Gaussian sources satisfying the TS condition and

Z1 = 0 can be embedded into the set of Gaussian sources

satisfying BTS condition.

The communication system treated by Tavildar et al. is

shown in Fig. 8. It can be seen from this figure that their

problem set up is slightly different from ours. In their commu-

nication system there is no encoder that can directly access to

the source X0. Tavildar et al. studied a characterization of the

rate distortion region RL(D)∩{R0 = 0} for Gaussian sources

with the binary tree structure and succeeded in it. Their result

is the following.

Theorem 4 (Tavildar et al. [11]): When L = 2k for some

integer k and (X0, X1, · · · , XL) satisfies the BTS condition,

we have

RL(D) ∩ {R0 = 0} = R̃
(in)
L (D) ∩ {R0 = 0} .

From the above theorem we have the following corollary.

Corollary 1 (Tavildar et al. [11]): When (X0, X1,· · · , XL

) satisfies the TS condition and Z1 = 0, we have

RL(D) ∩ {R0 = 0} = R̃
(in)
L (D) ∩ {R0 = 0} .

The BTS condition differs from the TS condition in its

symmetrical property, which plays an essential role in the

proof of Theorem 4. We think that the method of Tavildar

X1

X2

...

XL

X1
✲

X2
✲

...

XL
✲

ϕ1

ϕ1(X1)

ϕ2

ϕ2(X2)

...

...

ϕL

ϕL(XL)

❅
❅
❅
❅❅❘✲

✓
✓
✓
✓
✓
✓✼
ψ ✲ X̂0

Fig. 8. Communication system that Tavildar et al. treated.

et al. [11] is applicable to the general case where Z1 is not

constant and R0 > 0 and that RL(D) = R̃
(in)
L (D) still holds

in this general case.

Unfortunately, our approach developed in [10] and this pa-

per can not establish RL(D) = R̃
(in)
L (D) for Gaussian sources

satisfying the TS condition without requiring the condition on

the variances of Zi, 2 ≤ i ≤ L − 1 and Ni, 1 ≤ i ≤ L,
specified with (8) in Proposition 1. However, we think that

our work in [10] had provided an important step toward the

full characterization of the rate distortion region established

by Tavildar et al. [11].

IV. SUM RATE PART OF THE RATE DISTORTION REGION

In this section we state our result on the rate sum part of

RL(D). Set

R
(l)
sum,L(D,R0)

△
= min

rL:f0(r
L)

≥g0(D,R0)

JΛ(D,R0, r
L−2, rL) ,

R
(u)
sum,L(D,R0)

△
= min

rL:f0(r
L)

≥g0(D,R0)

KΛ(r
L) .

Let R̂
(l)
sum,L(D,R0) be the minimum sum rate for R̂

(out)
L (D),

that is,

R̂
(l)
sum,L(D,R0)

△
= min

(R0,R1,··· ,RL)∈R̂
(out)
L

(D)

{
L∑

i=1

Ri

}

.

Then, it immediately follows from Theorem 2 that we have

the following corollary.

Corollary 2: For Gaussian sources with the TS condition

R
(l)
sum,L(D,R0) ≤ R̂

(l)
sum,L(D,R0)

≤ Rsum,L(D,R0) ≤ R
(u)
sum,L(D,R0) .

On the other hand, we have the following lemma.

Lemma 2: For Gaussian sources with the TS condition, we

have

R
(l)
sum,L(D,R0) ≥ R

(u)
sum,L(D,R0) .

Proof of this lemma will be given in Section V. Combining

Corollary 2 and Lemma 2, we have the following.
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Theorem 5: For Gaussian sources with the TS condition

Rsum,L(D,R0) = R
(u)
sum,L(D,R0) = R̂

(l)
sum,L(D,R0)

= R
(l)
sum,L(D,R0) = −R0 +

1

2
log

σ2
X0

D

+ min
rL:f0(r

L)
=g0(D,R0)

[
L∑

l=1

rl +
1

2
logF (rL)

]

.

In [12], the author further derived an algorithm of comput-

ing Rsum,L(D,R0). This algorithm, however, has a problem

that it can not provide Rsum,L(D,R0) for all D ∈ (0, σ2
X0

]. In

fact, the function Rsum,L(D,R0) is determined for relatively

small value of D. In the remaining part of this subsection we

present the algorithm given by [12] and concretely explain the

above problem.

The algorithm of computing Rsum,L(D,R0) given by the

author [12] is as follows. For L ≥ l ≥ 1, set σ2
Nl

= σ2
l ,

σ2
Zl

= ǫlσ
2
l . Furthermore, set τl = σ2

l /σ
2
l−1 for L ≥ l ≥ 2.

Let ω ∈ [0, 1). Define the sequence of functions {θl(ω)}
L
l=1

by the following recursion:

θL(ω) = ω,

θL−1(ω) =

2θL(ω)−1
τL

+ 1

1 + ǫL−1

[
2θL(ω)−1

τL
+ 1
] ,

θl−1(ω) =

1
τl

[

2θl(ω)−
1+

θl+1(ω)

τl+1

1+ǫl

(

1+
θl+1(ω)

τl+1

) + τl

]

1 +
ǫl−1

τl

[

2θl(ω)−
1+

θl+1(ω)

τl+1

1+ǫl

(

1+
θl+1(ω)

τl+1

) + τl

]

for L− 1 ≥ l ≥ 2 .







(10)

Theorem 6 (Oohama [12]): Let {θl(ω)}
L
l=1 be a sequence

of functions defined by (10). Suppose that the Gaussian source

satisfies the TS condition and the condition

τL ≥ 1, for l = L,
τl ≥

1
1+ǫl

, for L− 1 ≥ l ≥ 2.

}

(11)

Then, we have the following parametric form of Rsum,L(D,
R0) with the parameter ω ∈ [0, 1):

D = e−2R0
σ2
1σ

2
X0

σ2
X0
θ1(ω) + σ2

1

,

Rsum,L(D,R0) = −R0 +
1

2
log

σ2
X0

D

+

(

−
1

2

)




L−1∑

l=1

{

log

(

1−
θl(ω)

1− ǫlθl(ω)
+
θl+1(ω)

τl+1

)

+ log (1− ǫlθl(ω))

}

+ log(1− ω)



.

Here we state a problem which exists in the parametric

expression of (D,Rsum,L(D,R0)) in the above theorem. We

consider the case of R0 = 0. From (10), we can see that

when τl > 1 for L ≥ l ≥ 1, θ1(ω) is strictly positive function

of ω ∈ [0, 1]. This implies that the parametric expression in

Theorem 6 can not provide Rsum,L(D, 0) for all D ∈ (0, σ2
X0

].
In this paper, we solve this problem to provide Rsum,L(D, 0)
for all D ∈ (0, σ2

X0
].

In the following argument, we consider the case of R0 = 0.

In this case we set Rsum,L(D) = Rsum,L(D, 0). Furthermore,

set g0(D) = g0(D, 0). The optimal sum rate Rsum,L(D) has

a form of optimization problem. In the remaining part of this

section we deal with this optimization problem. We let ǫL = 0.

Then the recursion (5) is

fL(rL) =
1
σ2
L

(
1− e−2rL

)
,

fl−1(r
L
l−1) =

fl(r
L
l )

1+ǫlσ
2
l
fl(rLl )

+ 1
σ2
l−1

(
1− e−2rl−1

)

for L ≥ l ≥ 2,

f0(r
L) = f1(r

L)
1+ǫ1σ

2
1f1(r

L)
.







(12)

The optimization problem presenting Rsum,L(D) is

Rsum,L(D) =
1

2
log

σ2
X0

D

+ min
rL:f0(r

L)
=g0(D)

[
L∑

l=1

rl +
L−1∑

l=1

1

2
log
(
1 + ǫlσ

2
l fl(r

L
l )
)

]

.

To describe an algorithm of computing Rsum,L(D), for 1 ≤

l ≤ L, define R
(l)
sum(D) by

R(l)
sum(D) =

1

2
log

σ2
X0

D

+ min
rL:rl>0,rLl+1=0

f0(r
L)=g0(D)

[
l∑

i=1

ri +

l−1∑

i=1

1

2
log
(
1 + ǫiσ

2
i fi(r

L
i )
)

]

.

By the above definition and an elementary computation we

have that for each 1 ≤ l ≤ L, R = R
(l)
sum(D) is monotone

decreasing and convex function of D > 0 and that

Rsum,L(D) = min
1≤l≤L

R(l)
sum(D). (13)

From (13), we can see that Rsum,L(D) can be obtained by

computing R
(l)
sum(D) for 1 ≤ l ≤ L. In the following discus-

sion we propose an algorithm to compute {(D,R
(l)
sum(D))}Ll=1.

To describe the algorithm, for each 1 ≤ l ≤ L, we define

the sequence θ
(l)
• (ω) = {θ

(l)
i (ω)}li=1 which consists of l

continuous functions of ω. Concretely, for each 1 ≤ l ≤ L

and ω ∈ (0, (1+ ǫl)
−1), define θ

(l)
• (ω) = {θ

(l)
i (ω)}li=1 by the

following recursion:

θ
(l)
l (ω) = ω,

θ
(l)
l−1(ω) =

θ
(l)
l

(ω)+{(1+ǫl)θ
(l)
l

(ω)}{1−ǫlθ
(l)
l

(ω)}
τl

+ 1

1 + ǫl−1

[

θ
(l)
l

(ω)+{(1+ǫl)θ
(l)
l

(ω)}{1−ǫlθ
(l)
l

(ω)}
τl

+ 1

]

(14)
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θ
(l)
i−1(ω) =

1
τi




2θ

(l)
i (ω)−

1+
θ
(l)
i+1

(ω)

τi+1

1+ǫi

(

1+
θ
(l)
i+1

(ω)

τi+1

) + τi






1 + ǫi−1

τi




2θ

(l)
i (ω)−

1+
θ
(l)
i+1

(ω)

τi+1

1+ǫi

(

1+
θ
(l)
i+1

(ω)

τl+1

) + τi






,

l − 1 ≥ i ≥ 2 (15)

Our main result is the following:

Theorem 7: Let θ
(l)
• (ω) = {θ

(l)
i (ω)}li=1 be a sequence of

functions defined by (14) and (15). Suppose that the Gaussian

source satisfies the TS condition and the following condition:

τl = σ2
l /σ

2
l−1 ≥ 1, L ≥ l ≥ 2 (16)

Under (16), we have the following parametric form of

(D,R
(l)
sum(D)) using θ

(l)
• (ω):

D =
σ2
1σ

2
X0

σ2
X0
θ
(l)
1 (ω) + σ2

1

,

R(l)
sum(D) =

1

2
log

σ2
X0

D

+

(

−
1

2

)[ l−1∑

i=1

{

log

(

1−
θ
(l)
i (ω)

1− ǫiθ
(l)
i (ω)

+
θ
(l)
i+1(ω)

τi+1

)

+ log
(

1− ǫiθ
(l)
i (ω)

)
}

+ log

(

1−
θ
(l)
l (ω)

1− ǫlθ
(l)
l (ω)

)]

.

Proof of Theorem 7 is give in Section V. When ǫl = 0 for

L ≥ l ≥ 1 and τl = 1 for L ≥ l ≥ 2, the recursion (14) and

(14) defining θ
(L)
• (ω) becomes the following:

θ
(L)
L (ω) = ω, θ

(L)
L−1(ω) = 2ω

θ
(L)
l−1(ω) = 2θ

(L)
l (ω)− θ

(L)
l+1(ω)

for L− 1 ≥ l ≥ 2 .







(17)

Solving (17), we obtain θ
(L)
l (ω) = (L−l+1)ω. The parametric

form of Rsum,L(D) becomes

σ2
1g0(D) = θ1(ω) = Lω ,

Rsum,L(D) =

(

−
L

2

)

log(1− ω) +
1

2
log

σ2
X0

D
.







(18)

From (18), we have

Rsum,L(D) =

(

−
L

2

)

log

(

1−
σ2
1

L
g0(D)

)

+
1

2
log

σ2
X0

D
. (19)

In particular, by letting L→ ∞ in (19), we have

lim
L→∞

Rsum,L(D) =
1

2
σ2
1g0(D) +

1

2
log

σ2
X0

D

=
σ2
1

2σ2
X0

[
σ2
X0

D
− 1

]

+
1

2
log

σ2
X0

D
.

The above formula coincides with the rate distortion function

for the quadratic Gaussian CEO problem obtained by Oohama

[7]. Hence, our solution to Rsum,L(D) includes the previous

result on the Gaussian CEO problem as a special case.

V. PROOFS OF THE RESULTS

In this section we prove Theorem 2 and Lemma 1 stated

in Section III and prove Lemma 2 stated in Section IV.

Furthermore, on the computation of Rsum,L(D), we prove

Theorem 7 stated in Section IV.

A. Derivation of the Outer Bound

In this subsection we prove R̂
(out)
L (D) ⊆ R

(out)
L (D) stated

in Theorem 2.

Proof of R̂
(out)
L (D) ⊆ R

(out)
L (D): Set

ĴS(D, r0, r
L−2, rS |rSc , R0)

△
=

[

1

2
log+

[
G(D,r0,r

L−2)σ2
X0

F (rSc)
{

1+σ2
X0

f0(rSc)
}

D

]

+

L∑

i=1

ri −R0

]+

.

We first observe that

ĴS(D, r0, r
L−2, rS |rSc , r0)

=
1

2

[

log+
[

G(D,r0,r
L−2)σ2

X0

F (rSc)
{

1+σ2
X0

f0(rSc)
}

D

]

+

L∑

i=1

2ri − 2r0

]+

≥
1

2

[

log

[
G(D,r0,r

L−2)σ2
X0

F (rSc)
{

1+σ2
X0

f0(rSc)
}

D

]

+

L∑

i=1

2ri − 2r0

]+

= JS(D, r0, r
L−2, rS |rSc) . (20)
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Then, we have the following.

R̂
(out)
L (D)

(a)

⊆
{

(R0, R
L) :There exists a nonnegative vector

(r0, r
L) such that

R0 ≥ r0 ≥
1

2
log+

[
σ2
X0

{

1+σ2
X0

f0(rL)
}

D

]

,

∑

i∈S

Ri ≥ ĴS(D, r0, r
L−2, rS |rSc , R0)

for any S ⊆ Λ .}

(b)
=
{

(R0, R
L) :There exists a nonnegative vector

rL such that

R0 ≥
1

2
log+

[
σ2
X0

{

1+σ2
X0

f0(rL)
}

D

]

,

∑

i∈S

Ri ≥ ĴS(D,R0, r
L−2, rS |rSc , R0)

for any S ⊆ Λ .}

⊆
{

(R0, R
L) :There exists a nonnegative vector

(r0, r
L) such that

R0 ≥ r0 ≥
1

2
log

[
σ2
X0

{

1+σ2
X0

f0(rL)
}

D

]

,

∑

i∈S

Ri ≥ ĴS(D, r0, r
L−2, rS |rSc , r0)

for any S ⊆ Λ .} .

(c)

⊆
{

(R0, R
L) :There exists a nonnegative vector

(r0, r
L) such that

R0 ≥ r0 ≥
1

2
log

[
σ2
X0

{

1+σ2
X0

f0(rL)
}

D

]

,

∑

i∈S

Ri ≥ JS(D, r0, r
L−2, rS |rSc)

for any S ⊆ Λ .} = R
(out)
L (D) .

Step (a) follows from the definition of ĴS(D,R0, r
L−2, rS

|rSc , R0) and the nonnegative property of RL. Step (b) fol-

lows from that ĴS(D, r0, r
L−2, rS |rSc , R0) is a monotone

decreasing function of r0. Step (c) follows from (20). Thus

R̂
(out)
L (D) ⊆ R

(out)
L (D) is proved.

B. Derivation of the Inner Bound

In this subsection we prove R
(in)
L (D) ⊆ R̃

(in)
L (D) stated in

Theorem 2. We first derive a preliminary result on a form of

R
(in)
L (D). Fix R0 ≥ r0 and set

R
(in)
L (rL0 |R0)

△
= {(R1, · · · , RL) :

(R0, R1, · · · , RL) ∈ R
(in)
L (rL0 )} .

Let (Λ, ρ̃), ρ̃ = {ρ̃S(rS |rSc)}S⊆Λ be a co-polymatroid defined

in Property 4. Expression of R
(in)
L (rL0 |R0) using (Λ, ρ̃) is

R
(in)
L (rL0 |R0) = {(R1, · · · , RL) :

∑

i∈S

Ri ≥ ρ̃S (rS |rSc)

for any S ⊆ Λ .} .

The set R
(in)
L (rL0 |R0) forms a kind of polytope, which

is called a co-polymatroidal polytope in the terminology of

matroid theory. It is well known as a property of this kind

of polytope that the polytope R
(in)
L (rL0 |R0) consists of L!

end-points whose components are given by

Rπ(i)

= ρ̃{π(i),··· ,π(L)}(r{π(i),··· ,π(L)}|r{π(1),··· ,π(i−1)})

−ρ̃{π(i+1),··· ,π(L)}(r{π(i+1),··· ,π(L)}|r{π(1),··· ,π(i)})

for i = 1, 2, · · · , L− 1 ,

Rπ(L) = ρ̃{π(L)}(rπ(L)|r{π(1),··· ,π(L−1)}) ,







(21)

where

π =

(
1 · · · i · · · L

π(1) · · · π(i) · · · π(L)

)

∈ Π

is an arbitrary permutation on Λ. For each π ∈ Π and

rL0 ∈ BL(D), let R
(in)
π,L(r

L
0 ) be the set of nonnegative vectors

(R0, R1, · · · , RL) satisfying

R0 ≥ r0

Rπ(i)

≥ ρ̃{π(i),··· ,π(L)}(r{π(i),··· ,π(L)}|r{π(1),··· ,π(i−1)})

−ρ̃{π(i+1),··· ,π(L)}(r{π(i+1),··· ,π(L)}|r{π(1),··· ,π(i)})

for i = 1, 2, · · · , L− 1 ,

Rπ(L) ≥ ρ̃{π(L)}(rπ(L)|r{π(1),··· ,π(L−1)}) .







(22)

Then, we have

R(in)(rL0 ) = conv

{
⋃

π∈Π

R
(in)
π,L(r

L
0 )

}

.

Proof of R
(in)
L (D) ⊆ R̃

(in)
L (D): Fix π ∈ Π and

rL0 ∈ BL(D) arbitrary. By (22), it suffices to show that for

rL0 ∈ BL(D), R
(in)
π,L(r

L
0 ) ⊆ R̃

(in)
π,L(D) to prove R

(in)
L (D) ⊆

R̃
(in)
L (D). Let Vi, i ∈ {0}∪Λ be independent Gaussian random

variables with mean 0 and variance σ2
Vi

. Suppose that V L
0

is independent of XL
0 . Define the Gaussian random variables

Ui, i ∈ {0} ∪ Λ by

Ui
△
= Xi + Vi, i ∈ {0} ∪ Λ.

From the above definition it is obvious that

UL → XL → X0 → U0,
US → XS∪{0} → XSc → USc ,
for any S ⊆ Λ .






(23)

For given ri ≥ 0, i ∈ S and D > 0, set 1
σ2
Vi

= e2ri−1
σ2
Ni

, when

ri > 0. When ri = 0, we choose Ui so that Ui takes the

constant value zero. Define the sequence of random variables

{Ωl}
L
l=0 by

ΩL−1 = 1−e−2rL−1

σ2
NL−1

· UL−1 +
1−e−2rL

σ2
NL

· UL

Ωl =
1

1+σ2
Zl+1

fl+1(rLl+1)
· Ωl+1 +

1−e−2rl

σ2
Nl

· Ul

for L− 2 ≥ l ≥ 1

Ω0 = 1
1+σ2

Z1
f1(rL)

· Ω1 .







(24)
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Note that Ω0 = Ω0(U
L) is a linear function of UL. Then, by

an elementary computation, we have

X0 =
1

1
σ2
X0

+ 1
σ2
V0

+ f0(rL)

[

1
σ2
V0

· U0 +Ω0(U
L)

]

+Ñ0 , (25)

where Ñ0 is a zero mean Gaussian random variable with

variance [

1
σ2
X0

+ 1
σ2
V0

+ f0(r
L)

]−1

.

Ñ0 is independent of (U0, U
L). Since rL0 ∈ BL(D), we have

e−2r0

D
− 1

σ2
X0

≤ f0(r
L) . (26)

We put
1

σ2
V0

= 1−e−2r0

D
. (27)

Then, from (26) and (27), we have
[

1
σ2
X0

+ 1
σ2
V0

+ f0(r
L)

]−1

=

[

1
σ2
X0

+ 1−e−2r0

D
+ f0(r

L)

]−1

≤ D . (28)

Based on (25), (27), and (28), define the linear function ψ̃ of

(U0, U
L) by

ψ̃(U0, U
L)

△
=

[

1
σ2
X0

+ 1−e−2r0

D
+ f0(r

L)

]−1

×
[
1−e−2r0

D
· U0 +Ω0(U

L)
]

.

Then, we obtain

E
[

X0 − ψ̃(U0, U
L)
]2

= Var

[

Ñ0

]

=

[

1
σ2
X0

+ 1−e−2r0

D
+ f0(r

L)

]−1

≤ D . (29)

From (23) and (29), we have (U0, U
L) ∈ G(D). By simple

computations, we can show that

r0 = I(X0;U0|U
L) ,

ri = I(Xi;Ui|X0Y
L−1) ,

for any i ∈ Λ ,
1
2 log

[
FS(rS) · {1 + σ2

X0
f0(rS)}

]

= I(X0Y
L−1;US) ,

for any S ⊆ Λ .







(30)

Using (23) and (30), the L+1 inequalities of (22) are rewritten

as

R0 ≥ I(X0;U0|U
L) ,

Rπ(i) ≥ I(X0Y
L−1;Uπ(Si)|Uπ(Sc

i
))

+I(Xπ(i);Uπ(i)|X0Y
L−1)

−I(X0Y
L−1;Uπ(Si+1)|Uπ(Sc

i+1)
)

= I(X0Y
L−1;Uπ(i); |Uπ(Sc

i
))

+I(Xπ(i);Uπ(i)|X0Y
L−1Uπ(Sc

i
))

= I(X0Y
L−1Xπ(i);Uπ(i)|Uπ(Sc

i
))

= I(Xπ(i);Uπ(i)|Uπ(Sc
i
))

for i = 1, 2, · · · , L .

Thus, we conclude that (R0, Rπ(1), · · · , Rπ(L)) ∈ R̃
(in)
π,L(D).

C. Proofs of Lemmas 1 and 2

In this subsection we prove Lemmas 1 and 2. We first

present a preliminary observation on R
(out)
L (D). Fix R0 ≥ r0

arbitrary and set

R
(out)
L (D, rL0 |R0)

△
= {(R1, · · · , RL) :

(R0, R1, · · · , RL) ∈ R
(out)
L (D, rL0 )} .

Let (Λ, ρ), ρ = {ρS(rS |rSc)}S⊆Λ be a co-polymatroid defined

in Property 4. Expression of R
(out)
L (D0, r

L
0 |R0) using (Λ, ρ)

is

R
(out)
L (D, rL0 |R0) = {(R1, · · · , RL) :

∑

i∈S

Ri ≥ ρS (rS |rSc)

for any S ⊆ Λ .} .

The set R
(out)
L (D, rL0 |R0) forms a co-polymatroidal polytope.

The polytope R
(out)
L (D, rL0 |R0) consists of L! end-points

whose components are given by

Rπ(i)

= ρ{π(i),··· ,π(L)}(r{π(i),··· ,π(L)}|r{π(1),··· ,π(i−1)})

−ρ{π(i+1),··· ,π(L)}(r{π(i+1),··· ,π(L)}|r{π(1),··· ,π(i)})

for i = 1, 2, · · · , L− 1 ,

Rπ(L) = ρ{π(L)}(rπ(L)|r{π(1),··· ,π(L−1)}) ,







(31)

where

π =

(
1 · · · i · · · L

π(1) · · · π(i) · · · π(L)

)

∈ Π .

For each π ∈ Π and l = 1, 2, · · · , L, set

Bπ,l(D)
△
= {rL0 : rL0 ∈ BL(D) and

rπ(i) = 0 for i = l + 1, · · · , L} ,

∂Bπ,l(D)
△
= {rL0 : rL0 ∈ ∂BL(D) and

rπ(i) = 0 for i = l + 1, · · · , L} .

In particular, when π is the identity map, we omit π to write

Bl(D) and ∂Bl(D). By Property 3, when rL0 ∈ Bπ,l(D), the

end-point given by (31) becomes

Rπ(i)

= ρ{π(i),··· ,π(l)}(r{π(i),··· ,π(l)}|r{π(1),··· ,π(i−1)})

−ρ{π(i+1),··· ,π(l)}(r{π(i+1),··· ,π(l)}|r{π(1),··· ,π(i)})

for i = 1, 2, · · · , l− 1 ,

Rπ(l) = ρ{π(l)}(rπ(l)|r{π(1),··· ,π(l−1)}) ,

Rπ(i) = 0, for i = l + 1, · · · , L .







(32)

Next, we present a lemma on a property of G(D, r0, r
L−1).

Lemma 3: For rL0 ∈ Bl(D), G(D, r0, r
L−2) is computed

as

G(D, r0, r
L−2)

∣
∣
rL
l+1=0

=
l∏

k=1

[
1 + σ2

Zk
gk(D, r0, r

k−1)
]
.

Proof: By Property 1 part c), for l + 1 ≤ k ≤ L

0 ≤ gk(D, r0, r
k−1) ≤ f(rLk ) = 0 .
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Hence, the result of Lemma 3 follows.

Proof of Lemma 1: Fix π ∈ Π and rL0 ∈ BL(D) arbitrary.

Let (R0, R
L) be a nonnegative rate vector such that R0 ≥ r0

and L components of RL satisfy (31). To prove Lemma 1,

it suffices to show that this nonnegative vector belongs to

R
(in)
L (D). For l = 1, 2, · · · , L, we prove the claim that under

the MI condition, if rL0 ∈ Bπ,l(D), then, the rate vector

(R0, R
L) satisfying R0 ≥ r0 and (32) belongs to R

(in)
L (D).

We prove this claim by induction with respect to l. When

l = 1, from (32), we have

Rπ(1) = ρ{π(1)}(rπ(1)) ,

Rπ(i) = 0, for i = 2, · · · , L .

}

(33)

The function ρ{π(1)}(rπ(1)) is computed as

ρ{π(1)}(rπ(1))

= J{π(1)} (D, r0, r
L−2, rπ(1)|r{π(1)}c)

∣
∣
r{π(1)}c=0

=
1

2
log+

[
G(D,r0,r

L−2)|
r{π(1)}c=0

σ2
X0

e−2r0e
2rπ(1)

D

]

. (34)

By the above form of ρ{π(1)}(rπ(1)) and

σ2
X0

e−2r0

D
≥

σ2
X0

e−2R0

D
> 1 ,

ρ{π(1)}(rπ(1)) is positive. Since rL0 ∈ Bπ,l(D), we can

decrease rπ(1) keeping rL0 ∈ Bπ,1(D) so that it arrives at

r∗
π(1) = 0 or a positive r∗

π(1) satisfying

(r0, r
∗
π(1), r{π(1)}c)

= (r0, r
∗
π(1), 0, · · · , 0

︸ ︷︷ ︸

L−1

) ∈ ∂Bπ,1(D) . (35)

Let (R0, R
∗
π(1), · · · , R

∗
π(L)) be a rate vector corresponding

to (r0, r
∗
π(1), r{π(1)}c). If r∗

π(1) = 0, then by Property 3 part

b), ρ{π(1)}(rπ(1)) must be zero. This contradicts the fact that

ρ{π(1)}(rπ(1)) is positive. Therefore, r∗
π(1) must be positive.

Then, from (35), we have

(R0, R
∗
π(1), · · · , R

∗
π(L))

= (R0, R
∗
π(1), 0, · · · , 0

︸ ︷︷ ︸

L−1

) ∈ R
(in)
L (D) .

On the other hand, by Lemma 3, we have

G(D, r0, r
L−2)

∣
∣
r{π(1)}c=0

= G(D, r0, r
L−2)

∣
∣
rL
π(1)+1

=0,rπ(1)−1=0

=

π(1)
∏

k=1

[
1 + σ2

Zl
gk(D, r0, r

k−1)
]

∣
∣
∣
∣
∣
∣
rπ(1)−1=0

. (36)

From (34) and (36), we can see that G(D, r0, r
L−2)

∣
∣
r{π(1)}c=0

does not depend on rπ(1). This implies that ρ{π(1)}(rπ(1)) is a

monotone increasing function of rπ(1). Then, we have Rπ(1) ≥
R∗

π(1). Hence, we have

(R0, Rπ(1), · · · , Rπ(L))

= (R0, Rπ(1), 0, · · · , 0
︸ ︷︷ ︸

L−1

) ∈ R
(in)
L (D) .

Thus, the claim holds for l = 1. We assume that the claim

holds for l − 1. Since f0(r
L
0 ) is a monotone increasing

function of rπ(l) on Bπ,l(D), we can decrease rπ(l) keeping

rL0 ∈ Bπ,l(D) so that it arrives at r∗
π(l) = 0 or a positive r∗

π(l)

satisfying

(r0, r
∗
π(l), r{π(l)}c) ∈ ∂Bπ,l(D) . (37)

Let (R0, R
∗
π(1), · · · , R

∗
π(L)) be a rate vector corresponding

to (r0, r
∗
π(l), r{π(l)}c). By Property 4 part b) and the MI

condition, the l functions

ρ{π(i),··· ,π(l)}(r{π(i),··· ,π(l)}|r{π(1),··· ,π(i−1)})

−ρ{π(i+1),··· ,π(l)}(r{π(i+1),··· ,π(l)}|r{π(1),··· ,π(i)})

for i = 1, 2, · · · , l − 1 ,

ρ{π(l)}(rπ(l)|r{π(1),··· ,π(l−1)}) ,

appearing in the right members of (32) are monotone increas-

ing functions of rπ(l). Then, from (32), we have

Rπ(i) ≥ R∗
π(i) for i = 1, 2, · · · , l ,

Rπ(i) = R∗
π(i) = 0 for i = l + 1, · · · , L .

}

(38)

When r∗
π(l) = 0, we have (r0, r

∗
π(l), r{π(l)}c) ∈ Bπ,l−1(D) .

Then, by induction hypothesis, we have

(R0, R
∗
π(1), · · · , R

∗
π(L)) ∈ R

(in)
L (D) .

When r∗
π(l) > 0, from (37), we have

(R0, R
∗
π(1), · · · , R

∗
π(L)) ∈ R

(in)
L (D) .

Hence, by (38), we have

(R0, Rπ(1), · · · , Rπ(L))

= (R0, Rπ(1), · · · , Rπ(l), 0, · · · , 0
︸ ︷︷ ︸

L−l

) ∈ R
(in)
L (D) .

Thus, the claim holds for l. This completes the proof of

Lemma 1.

Proof of Lemma 2: For R0 > 0 and for 1 ≤ l ≤ L, set

Bl(D|R0)
△
= {rl : (R0, r

L) ∈ Bl(D)} ,

∂Bl(D|R0)
△
= {rl : (R0, r

L) ∈ ∂Bl(D)} .

We first observe that

R
(l)
sum,L(D,R0)

= min
1≤l≤L

[

min
rl∈Bl(D|R0)

JΛ(D,R0, r
L−2, rL)

∣
∣
rL
l+1=0

]

,

R
(u)
sum,L(D,R0)

= min
1≤l≤L

[

min
rl∈∂Bl(D|R0)

KΛ(r
l)

]

.

We compute JΛ(D,R0, r
L−2, rL)

∣
∣
rL
l+1=0

. By Lemma 3, for

rl ∈ Bl(D|R0)

G(D,R0, r
L−2)

∣
∣
rL
l+1

=0
=

l∏

k=1

[
1 + σ2

Zl
gk(D,R0, r

k−1)
]
.



13

From the above formula, we can see that for rl ∈ Bl(D|R0),
G(D,R0, r

L−2) |rL
l+1=0

is a function of rl−1. We denote this

function by G(D,R0, r
l−1), that is,

G(D,R0, r
l−1)

△
=

l∏

k=1

[
1 + σ2

Zl
gk(D,R0, r

k−1)
]
.

Then, for rl ∈ Bl(D|R0),

JΛ(D,R0, r
L−2, rL)

∣
∣
rL
l+1=0

=
1

2
log+

[

G(D,R0, r
l−1) ·

σ2
X0

D
e−2R0

l∏

i=1

e2ri

]

. (39)

We denote the right member of (39) by JΛ(D,R0, r
l−1, rl).

Using this function, R
(l)
sum,L(D,R0) can be written as

R
(l)
sum,L(D,R0) = min

1≤l≤L

[

min
rl∈Bl(D|R0)

JΛ(D,R0, r
l−1, rl)

]

.

Note here that JΛ(D,R0, r
l−1, rl) is a monotone increasing

function of rl. To prove R
(l)
sum,L(D,R0) ≥ R

(u)
sum,L(D,R0) , it

suffices to show that for 1 ≤ l ≤ L,

min
rl∈Bl(D|R0)

JΛ(D,R0, r
l−1, rl) ≥ min

rl∈∂Bl(D|R0)
KΛ(r

l) .

We prove this claim by induction with respect to l. When

l = 1, the function JΛ(D,R0, r1) is computed as

JΛ(D,R0, r1) =
1

2
log+

[
{1+σ2

Z1
g1(D,R0)}σ2

X0
e−2R0e2r1

D

]

=
1

2
log+

[
σ2
X0

e−2R0e2r1
{

1−σ2
Z1

g0(D,R0)
}

D

]

.

Since
σ2
X0

e−2R0

D
> 1 , JΛ(D,R0, r1) is positive. Since

JΛ(D,R0, r1) is a monotone increasing function of r1, the

minimum of this function is attained by r∗1 = 0 or a positive

r∗1 satisfying r∗1 ∈ ∂B1(D|R0) . If r∗1 = 0, then, by Property

3 part b), JΛ(D,R0, r1) must be zero. This contradicts that

JΛ(D,R0, r1) is positive. Therefore, r∗1 must be positive.

Then, by r∗1 ∈ ∂B1(D|R0), we have

JΛ(D,R0, r1) ≥ JΛ(D,R0, r
∗
1)

= KΛ(r
∗
1) ≥ min

r1∈∂B1(D|R0)
KΛ(r1) .

Thus, the claim holds for l = 1. We assume that the claim

holds for l − 1. Since JΛ(D,R0, r
l−1, rl) is a monotone

increasing function of rl, the minimum of this function is

attained by r∗l = 0 or a positive r∗l satisfying (rl−1, r∗l ) ∈
∂Bl(D|R0) . When r∗l = 0, we have rl−1 ∈ Bl−1(D|R0) and

JΛ(D,R0, r
l−1, rl) ≥ JΛ(D,R0, r

l−1, rl−1r∗l ) . (40)

Computing JΛ(D,R0, r
l−1, rl−1r∗l ), we obtain

JΛ(D,R0, r
l−1, rl−1r∗l )

= JΛ(D,R0, r
L−2, rL)

∣
∣
rL
l
=0

=
1

2
log+

[

G(D,R0, r
l−2) ·

σ2
X0

D
e−2R0

l−1∏

i=1

e2ri

]

= JΛ(D,R0, r
l−2, rl−1) . (41)

Combining (40) and (41), we have

JΛ(D,R0, r
l−1, rl) ≥ JΛ(D,R0, r

l−2, rl−1) . (42)

On the other hand, by induction hypothesis, we have

JΛ(D,R0, r
l−2, rl−1) ≥ min

rl−1∈∂Bl−1(D|R0)
KΛ(r

l−1) . (43)

Combining (42) and (43), we have

JΛ(D,R0, r
l−1, rl) ≥ min

rl−1∈∂Bl−1(D|R0)
KΛ(r

l−1)

≥ min
rl∈∂Bl(D|R0)

KΛ(r
l).

When r∗l > 0, we have

JΛ(D,R0, rl−1, r
l) ≥ JΛ(D,R0, rl−1, r

l−1r∗l )

= KΛ(rl−1r
∗
l )

≥ min
rl∈∂Bl(D|R0)

KΛ(r
l) ,

where the second equality follows from (rl−1, r∗l ) ∈ ∂Bl(
D|R0) . Thus, the claim holds for l, completing the proof.

D. Computation of {R
(l)
sum(D)}Ll=1

When rLl+1 = 0, by (12), we can prove the following:

fi(r
L
i ) = 0, l+ 1 ≤ i ≤ L,

f(rLl ) =
1
σ2
l

(1− e−2rl),

fi−1(r
L
i−1) =

fi(r
L
i )

1+ǫiσ
2
i
f(rL

i
)
+ 1

σ2
i−1

(
1− e−2ri−1

)
,

for l ≥ i ≥ 2,

f0(r
L) = f1(r

L)
1+ǫ1σ

2
1f1(r

L)
.







(44)

Define the sequence {fi(r
l
i)}

l
i=1 of l functions and the func-

tion f0(r
l) by

fi(r
l
i) , fi(r

l
i, r

L
l+1) = fi(r

L
i )|rL

l+1=0, for l ≥ i ≥ 1

f0(r
l) , f0(r

L
l )|rL

l+1=0.

Then, by (44) and the definitions of fi(r
l
i), l ≥ i ≥ 1 and

f0(r
l), we have

fl(rl) =
1
σ2
l

(
1− e−2rl

)
,

fi−1(r
l
i−1) =

fi(r
l
i)

1+ǫiσ
2
i
fi(rli)

+ 1
σ2
i−1

(
1− e−2ri−1

)

for l ≥ i ≥ 2,

f0(r
l) = f1(r

l)
1+ǫ1σ

2
1f1(r

l)
.







(45)

We define the transformation of the vector rl into the vector

αl by

αi =
σ2
i fi(r

l
i)

1 + ǫiσ2
i fi(r

l
i)
, l ≥ i ≥ 1. (46)

From (46), we have

fi = fi(r
l
i) =

1

σ2
i

·
αi

1− ǫiαi

, for l ≥ i ≥ 1 (47)
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Note that for l ≥ i ≥ 1, fi ≥ 0. From (47), αi, l ≥ i ≥ 1

must satisfy 0 ≤ αi < ǫ−1
i . For l ≥ i ≥ 2, set τi

△
= σ2

i /σ
2
i−1.

Considering (45) and (47), we have

e−2rl = 1−
αl

1− ǫlαl

, (48)

e−2ri−1 = 1−
αi−1

1− ǫiαi−1
+
αi

τi
, l ≥ i ≥ 2. (49)

Since rl ≥ 0 and (48), αl must be

0 < αl < (1 + ǫl)
−1. (50)

Furthermore, since ri−1 ≥ 0 for l − 1 ≥ i ≥ 2 and (49),

αi, l ≥ i ≥ 2 must satisfy the following:

0 ≤ αi ≤
τiαi−1

1−ǫi−1αi−1
,

τi

(
αi−1

1−ǫi−1αi−1
− 1
)

< αi < ǫ−1
i .






(51)

We next express the objective function in the optimization

problem defining R
(l)
sum(D) using αl. Set

ζ(l) = ζ(l)(αl
2)

△
=

(

−
1

2

)




l−1∑

i=1

{

log

(

1−
αi

1− ǫiαi

+
αi+1

τi+1

)

+ log (1− ǫiαi)

}

+ log

(

1−
αl

1− ǫlαl

)


.

Then we have

L∑

l=1

rl +

L−1∑

l=1

1

2
log
(
1 + ǫlσ

2
l fl(r

L
l )
)
= ζ(l)(αl

2).

Let Al be a domain of the objective function in the optimiza-

tion problem defining R
(l)
sum(D). Considering a form of the

objective function and (51), the domain Al is a set of αl such

that for l − 1 ≥ i ≥ 2, αl satisfies (51) and

0 ≤ αl ≤
τlαl−1

1−ǫl−1αl−1
,

τl

(
αl−1

1−ǫl−1αl−1
− 1
)

< αl < (1 + ǫl)
−1






(52)

Summarizing the above arguments, we can obtain an expres-

sion of R
(l)
sum(D) using αl. This expression is given by

R(l)
sum(D) =

1

2
log

σ2
X0

D
+ min

αl
2∈Al(α1) ,

α1=σ2
1g0(D)

ζ(l)(αl
2).

Here we set Al(α1)
△
= {αl

2 : αl = (α1, α
l
2) ∈ Al}.

Then we have the following lemma.

Lemma 4: For αl
2 ∈ Al(α1), (−2)ζ(l)(αl

2) α
l
2 is strictly

concave with respect to αl
2

Proof of this lemma will be given in Appendix C.

The following lemma is a key result to establish recursive

algorithms of computing R
(l)
sum(D) for 1 ≤ l ≤ L.

Lemma 5: We assume that

τl = σ2
l /σ

2
l−1 ≥ 1, L ≥ l ≥ 2 (53)

Under this assumption, the sequence θ
(l)
• = {θ

(l)
i (ω)}li=1 of

l continuous functions defined by (14) and (15) satisfies the

following three properties:

a) We have

0 ≤ θ
(l)
l (ω) ≤

τlθ
(l)
l−1(ω)

1−ǫl−1θ
(l)
l−1(ω)

,

τl

(
θ
(l)
l−1(ω)

1−ǫl−1θ
(l)
l−1(ω)

− 1

)

< θ
(l)
l (ω) < (1 + ǫl)

−1







.

(54)

Furthermore, for l − 1 ≥ i ≥ 2, we have

0 ≤ θ
(l)
i (ω) ≤

τiθ
(l)
i−1(ω)

1−ǫi−1θ
(l)
i−1(ω)

,

τi

(
θ
(l)
i−1(ω)

1−ǫi−1θ
(l)
i−1(ω)

− 1

)

< θ
(l)
i (ω) < ǫ−1

i .







(55)

The conditions (54) and (55) imply (θ
(l)
i )li=2(ω) ∈

Al(θ
(l)
1 (ω)).

b)

∇ζ(l)
∣
∣
∣
αl

2=(θ
(l)
i

(ω))l
i=2

= 0.

c) For each l − 1 ≥ i ≥ 1, θ
(l)
i (ω) is differentiable with

respect to ω ∈ [0, (1+ ǫl)
−1) and satisfies the following:

dθ
(l)
i

dω
≥(l − i+ 1) ·

σ2
i

σ2
l

×

l∏

j=i+1

1
{

1+ǫj−1

(

θ
(l)
j

(ω)

τj
+1

)}2 > 0 .

This implies that for each l ≥ i ≥ 1, the mapping ω ∈

[0, 1)7→ θ
(l)
i (ω) is an injection.

Proof of this lemma is given in Appendix D. From this

lemma, we immediately obtain Theorem 7.

VI. CONCLUSIONS

We have considered the Gaussian many-help-one problem

and given a partial solution to this problem by deriving explicit

outer bound of the rate distortion region for the case where

information sources satisfy the TS condition. Furthermore, we

established a sufficient condition under which this outer bound

is tight. We have determined the sum rate part of the rate

distortion region for the case where information sources satisfy

the TS condition.

For the case that information sources do not satisfy the

TS condition we can not derive an outer bound having a

similar form of R(out)(D) since the proof of the converse

coding theorem depends heavily on this property of informa-

tion sources. Hence the complete solution is still lacking for

Gaussian information sources with general correlation.

APPENDIX

A. Proof of Proposition 1

In this appendix we prove Proposition 1. To prove this

proposition we give some preparations. For 0 ≤ l ≤ L − 2,

we set

ηl = ηl(D, r0, r
l)

△
=

{
g0(D, r0) , for l = 0 ,

gl(D, r0, r
l−1)− 1

σ2
Nl

(
1− e−2rl

)
, for 1 ≤ l ≤ L− 2 .
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For 1 ≤ l ≤ L− 2, and a < 1
σ2
Zl

, define

τl(a)
△
= [a]+

1−σ2
Zl

[a]+
− 1

σ2
Nl

(
1− e−2rl

)
.

Then, {ηl}
L−2
l=0 satisfies the following:

ηl(D, r0, r
l) = τl

(
ηl−1(D, r0, r

l−1)
)

for 1 ≤ l ≤ L− 2 . (56)

Fix a < 1
σ2
Zk+1

and set

pk(a)
△
= sup

{

p : log
1−σ2

Zk+1
[a]+

1−σ2
Zk+1

[b]+
≥ p(b − a)

for any b < 1
σ2
Zk+1

}

.

By a simple computation we have

pk(a) =







σ2
Zk+1

1−σ2
Zk+1

a
, for 0 ≤ a < 1

σ2
Zk+1

,

0 , for a < 0

≤
σ2
Zk+1

1−σ2
Zk+1

a
for a < 1

σ2
Zk+1

. (57)

Fix a < 1
σ2
Zj

and set

qj(a)
△
= sup

{

q : τj(b)− τj(a) ≥ q(b− a)

for any b < 1
σ2
Zj

}

.

By a simple computation we have

qj(a) =

{
1

(1−σ2
Zj

a)2
, for 0 ≤ a < 1

σ2
Zj

,

0 , for a < 0

≤ 1
(1−σ2

Zj
a)2

, for a < 1
σ2
Zj

. (58)

Proof of Proposition 1: Let L be a set of integers l such

that ηl(D, r0, r
l) is positive for some rL0 ∈ BL(D). From (56),

there exists a unique integer 1 ≤ L∗ ≤ L − 2 such that L
= {0, 1, · · · , L∗}. Using {ηl}

L−2
l=1 and L∗, logG(D, r0, r

L−2)
can be rewritten as

logG(D, r0, r
L−2) =

L−1∑

k=1

log
{
1 + σ2

Zk
gl(D, r0, r

k−1)
}

=

L−1∑

k=1

log

[

1
1−σ2

Zk
[ηk−1(D,r0,rk−1)]+

]

=

L−2∑

k=0

log

[

1
1−σ2

Zk+1
[ηk(D,r0,rk)]+

]

=

L∗
∑

k=0

log

[

1
1−σ2

Zk+1
[ηk(D,r0,rk)]+

]

.(59)

Fix nonnegative vector rL. For each sl ≥ rl, 1 ≤ l ≤ L−2, let

G(sl) be a function obtained by replacing rl in G(D, r0, r
L−2)

with sl, that is

G(sl)
△
= G(D, r0, r

l−1, sl, r
L−2
l+1 ) .

It is obvious that when sl = rl,

G(rl) = G(D, r0, r
l−1, rl, r

L−2
l+1 ) = G(D, r0, r

L−2) .

By Property 2 part b), we have G(sl) ≤ G(rl) for 1 ≤ l ≤
L−2. For each sk ≥ rk, l ≤ k ≤ L−2, let ηk(sl) be a function

obtained by replacing rl in ηk(D, r0, r
k) with sl, that is

ηk(sl)
△
= ηk(D, r0, r

l−1, sl, r
k
l+1) .

It is obvious that when sl = rl,

ηk(rl) = ηk(D, r0, r
l−1, rl, r

k
l+1) = ηk(D, r0, r

k) .

By Property 1 part b), we have ηk(sl) ≤ ηk(rl) for l ≤ k ≤
L − 2. For each l = 1, · · · , L∗, we evaluate an upper bound

of logG(sl) − logG(rl). Using (59), we have

log
G(sl)

G(rl)
=

L∗
∑

k=0

log

[
1−σ2

Zk+1
[ηk(rl)]

+

1−σ2
Zk+1

[ηk(sl)]+

]

=

L∗
∑

k=l

log

[
1−σ2

Zk+1
[ηk(rl)]

+

1−σ2
Zk+1

[ηk(sl)]+

]

. (60)

By definition of pk(·), we have

log

[
1−σ2

Zk+1
[ηk(rl)]

+

1−σ2
Zk+1

[ηk(sl)]+

]

≥ pk(ηk(rl)) [ηk(sl)− ηk(rl)]

≥
σ2
Zk+1

1−σ2
Zk+1

ηk(rl)
[ηk(sl)− ηk(rl)] , (61)

where the last inequality follows from ηk(sl)≤ ηk(rl) and

(57). From (60) and (61), we have

log
G(sl)

G(rl)
≥

L∗
∑

k=l

σ2
Zk+1

1−σ2
Zk+1

ηk(rl)
(ηk(sl)− ηk(rl)) . (62)

By definition of qj(·) and (56), for l + 1 ≤ j ≤ k, we have

ηj(sl)− ηj(rl) ≥ qj(ηj−1(rl)) [ηj−1(sl)− ηj−1(rl)]

≥ 1
(

1−σ2
Zj

ηj−1(rl)
)2 [ηj−1(sl)− ηj−1(rl)] , (63)

where the last inequality follows from ηj−1(sl) ≤ηj−1(rl) and

(58). Using (63) iteratively for l + 1 ≤ j ≤ k, we obtain

ηk(sl)− ηk(rl)

≥ (ηl(sl)− ηl(rl))

k∏

j=l+1

1
(

1−σ2
Zj

ηj−1

)2 . (64)

Observe that

ηl(sl)− ηl(rl) =
1

σ2
Nl

[
e−2sl − e−2rl

]

≥ − 2e−2rl

σ2
Nl

(sl − rl) . (65)

From (64) and (65), we have

ηk(sl)− ηk(rl) ≥ − 2e−2rl

σ2
Nl

(sl − rl)

k∏

j=l+1

1
(

1−σ2
Zj

ηj−1

)2

≥ − 2
σ2
Nl

(sl − rl)

k∏

j=l+1

1
(

1−σ2
Zj

ηj−1

)2 . (66)



16

From (62) and (66), we have

1

2
log

G(sl)

G(rl)

≥ −(sl − rl)

L∗
∑

k=l

σ2
Zk+1

σ2
Nl

1
1−σ2

Zk+1
ηk

k∏

j=l+1

1
(

1−σ2
Zj

ηj−1

)2 . (67)

By Property 1 part b) and the definition of ηj , we have

ηj ≤ fj −
1

σ2
Nj

(1− e−2rj ) =
fj+1

1+σ2
Zj+1

fj+1
,

from which we have

1
1−σ2

Zj+1
ηj

≤ 1 + σ2
Zj+1

fj+1 ≤ 1 + σ2
Zj+1

f∗
j+1 . (68)

From (67) and (68), we have

1

2
log

G(sl)

G(rl)
≥ −(sl − rl)

L∗
∑

k=l

σ2
Zk+1

σ2
Nl

(

1 + σ2
Zk+1

f∗
k

)

×
k∏

j=l+1

(

1 + σ2
Zj
f∗
j

)2

. (69)

If

L−2∑

k=l

σ2
Zk+1

σ2
Nl

(

1 + σ2
Zk+1

f∗
k+1

) k∏

j=l+1

(

1 + σ2
Zj
f∗
j

)2

≤ 1 (70)

hold for l = 1, 2, · · · , L− 2, then, by (69), we have

1

2
log

G(sl)

G(rl)
≥ −(sl − rl)

or equivalent to

sl +
1

2
logG(sl) ≥ rl +

1

2
logG(rl)

for l = 1, 2, · · · , L − 2. Hence, (70) is a sufficient condition

for the MI condition.

B. Proof of RL(D) ⊆ R
(out)
L (D)

In this appendix we prove RL(D) ⊆ R
(out)
L (D) stated in

Theorem 2. We first present a lemma necessary for the proof

of this inclusion.

Lemma 6:

I(X0; X̂0) ≥
n

2
log

(
σ2
X0

∆(X0,X̂0)

)

.

Proof: See the proof of Lemma 1 in Oohama [7].

Next, we present an important lemma which is a mathe-

matical core of the converse coding theorem. Let the encoded

outputs of Xi, i = 0, 1, · · · , L by encoder functions ϕi be

denoted by ϕi(Xi) =Wi. Set

r0
△
=

1

n
I(X0;W0|W

L) ,

ri
△
=

1

n
I(X i;Wi|Y

L−1)

=







1

n
I(Xi;Wi|Y i) , for 1 ≤ i ≤ L− 1,

1

n
I(XL;WL|Y L−1) , for i = L,

ξ
△
= σ2

X0
e−

2
n
I(X0;W0W

L) .

Then, we have the following lemma.

Lemma 7:

I(X0;W
L) ≤

n

2
log
[
1 + σ2

X0
f0(r

L)
]
.

For 1 ≤ l ≤ L− 1, we have

n

2
log
[
1 + σ2

Zl
gl(r0, r

l−1, ξ)
]

≤ I(Y l;W
L
l |Y l−1) ≤

n

2
log
[
1 + σ2

Zl
fl(r

L
l )
]
.

From the above lemma we immediately obtain the follow-

ing.

Lemma 8:

I(X0;WS) ≤
n

2
log
[
1 + σ2

X0
f0(rS)

]
,

I(Y L−1;WS |X0) ≤
n

2
logF (rS), S ⊆ Λ,

I(Y L−1;WL|X0) ≥
n

2
logG(ξ, r0, r

L−2) .

We prove RL(D) ⊆ R
(out)
L (D) by Lemmas 6 and 8 and

standard arguments for the proof of the converse coding

theorem.

Proof of RL(D) ⊆ R
(out)
L (D): We first observe that by

virtue of the TS condition,

WS → XS → (X0,Z
L−1) → XSc → WSc (71)

hold for any subset S of Λ. Assume (R0, R1, · · · , RL) ∈
RL(D). Then, for any δ > 0, there exists an integer n0(δ)
such that for n ≥ n0(δ) and for i ∈ Λ, we obtain the following

chain of inequalities:

n(R0 + δ) ≥ logM0 ≥ H(W0) ≥ H(W0|W
L)

= I(X0;W0|W
L) = nr0 . (72)

Furthermore, for any subset S ⊆ Λ, we obtain

nr0 +
∑

i∈S

n(Ri + δ)

≥ I(X0;W0|W
L) +

∑

i∈S

H(Wi)

= H(W0|W
L) +

∑

i∈S

H(Wi)

≥ H(W0|WSWSc) +H(WS |WSc) = H(W0WS |WSc)

= I(X0Z
L−1;W0WS |WSc)

+H(W0WS |WScX0Z
L−1)

(a)
= I(X0Z

L−1;W0WS |WSc) +
∑

i∈S

H(Wi|X0Z
L−1)

= I(X0Y
L−1;W0WS |WSc) +

∑

i∈S

I(X i;Wi|Y
L−1). (73)

Step (a) follows from (71). On the other hand, by Lemma 6,

we have for n ≥ n0(δ),

I(X0;W0W
L) =

n

2
log

(
σ2
X0

ξ

)

≥ I(X0; X̂0) ≥
n

2
log

(
σ2
X0

D+δ

)

,
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which together with (72), (73), and Lemma 8 yields the

following lower bounds of I(X0;W0|W
L) and I(X0Y

L−1

;W0WS |WSc):

I(X0;W0|W
L) = I(X0;W0W

L)− I(X0;W
L)

≥
n

2
log

[
σ2
X0

{

1+σ2
X0

f0(rL)
}

ξ

]

≥
n

2
log

[
σ2
X0

{

1+σ2
X0

f0(rL)
}

(D+δ)

]

, (74)

I(X0Y
L−1;W0WS |WSc)

= I(X0Y
L−1;W0WSWSc)− I(X0Y

L−1;WSc)

= I(X0;W0W
L) + I(Y L−1;WL|X0)

−I(X0;WSc)− I(Y L−1;WSc |X0)

≥
n

2
log

[
σ2
X0

G(ξ,r0,r
L−2)

F (rSc )
{

1+σ2
X0

f0(rSc)
}

ξ

]

≥
n

2
log

[
σ2
X0

G(D+δ,r0,r
L−2)

F (rSc )
{

1+σ2
X0

f0(rSc)
}

(D+δ)

]

. (75)

From (73) and (75), we have

∑

i∈S

(Ri + δ) ≥
1

2
log

[
σ2
X0

G(D+δ,r0,r
L−2)

F (rSc)(D+δ)
{

1+σ2
X0

f0(rSc)
}

]

+
∑

i∈S

ri − r0 . (76)

Note here that
∑

i∈S(Ri + δ) are nonnegative. Hence, from

(72), (74) and (76), we obtain

R0 + δ ≥ r0 ≥
1

2
log

[
σ2
X0

{

1+σ2
X0

f0(rL)
}

(D+δ)

]

(77)

and for S ⊆ Λ
∑

i∈S

(Ri + δ) ≥ JS(D + δ, r0, r
L−2, rS |rSc) .

The inequality (77) implies that rL0 ∈ BL( D + δ). Thus, by

letting δ → 0, we obtain (R0, R1, · · · , RL)∈ R
(out)
L (D).

Finally, we prove Lemma 7. For n dimensional random

vector U with density, let h(U) be a differential entropy of U .

The following two lemmas are some variants of the entropy

power inequality.

Lemma 9: Let U i, i = 1, 2, 3 be n dimensional random

vectors with densities and let T be a random variable taking

values in a finite set. We assume that U3 is independent of

U1, U2, and T . Then, we have

1
2πee

2
n
h(U2+U3|U1T ) ≥ 1

2πee
2
n
h(U2|U1T ) + 1

2πee
2
n
h(U3) .

Lemma 10: Let U i, i = 1, 2, 3 be n random vectors with

densities. Let T1, T2 be random variables taking values in

finite sets. We assume that those five random variables form

a Markov chain T1 → U1 → U3 → U2 → T2 in this order.

Then, we have

1
2πee

2
n
h(U1+U2|U3T1T2)

≥ 1
2πee

2
n
h(U1|U3T1) + 1

2πee
2
n
h(U2|U3T2) .

Proof of Lemma 7: Define the sequence of n dimensional

random vectors { Sl}
L−1
l=1 by

Sl =
1

σ2
Nl

X l +
1

σ2
Zl+1

Y l+1, 1 ≤ l ≤ L− 1. (78)

By an elementary computation, we obtain

X0 =
σ2
N̂0

σ2
Z1

Y 1 + N̂ 0 ,

Y l =
σ2
N̂l

σ2
Zl

Y l−1 + σ2
N̂l
Sl + N̂ l , 1 ≤ l ≤ L− 1 .







(79)

where N̂ l, 0 ≤ l ≤ L − 1 is an n dimensional random

vector whose components are n independent copies of a

Gaussian random variable with mean 0 and variance σ2
N̂l

.

N̂0 is independent of Y 1. For each 1 ≤ l ≤ L − 1, N̂ l is

independent of Y l−1 and Sl. The variance σ2
N̂l

, 0 ≤ l ≤ L−1

have the following form:

1
σ2
N̂0

= 1
σ2
X0

+ 1
σ2
Z1

,

1
σ2
N̂l

= 1
σ2
Zl

+ 1
σ2
Nl

+ 1
σ2
Zl+1

, 1 ≤ l ≤ L− 1 .






(80)

Set

λ0
△
= 1

2πee
2
n
h(X0|W

L) , µ̃0
△
= 1

2πee
2
n
h(Y 1|W

L) ,

µ0
△
= 1

2πee
2
n
h(Y 1|X0W

L) ,

λl
△
= 1

2πee
2
n
h(Y l|Y l−1W

L
l ), 1 ≤ l ≤ L ,

µ̃l
△
= 1

2πee
2
n
h(Sl|Y l−1W

L
l ), µl

△
= 1

2πee
2
n
h(Sl|Y lW

L
l ) ,

1 ≤ l ≤ L− 1.

We can easily verify that

µ̃0 = µ0λ0
1

σ2
N̂0

, µ̃l = µlλl
1

σ2
N̂l

, 1 ≤ l ≤ L− 1 . (81)

Applying Lemma 9 to (79), we obtain

λ0 ≥
σ4
N̂0

σ4
Z1

µ̃0 + σ2
N̂0
,

λl ≥ σ4
N̂l

µ̃l + σ2
N̂l

, 1 ≤ l ≤ L− 1 .






(82)

From (81) and (82), we obtain

λ−1
0 ≤ 1

σ2
X0

+ 1
σ2
Z1

(

1− λ1

σ2
Z1

)

,

λ−1
l ≤ 1

σ2
Zl

+ 1
σ2
Nl

+ 1
σ2
Zl+1

− µl , 1 ≤ l ≤ L− 1.







(83)

On the other hand, we note that for each 1 ≤ l ≤ L − 1, the

five random variables Wl, X l, Y l, Y l+1, and WL
l+1 form a

Markov chain Wl → X l → Y l → Y l+1 → WL
l+1 in this

order. Then, applying Lemma 10 to (78), we obtain

µl ≥
1

σ2
Nl

e−2rl + 1
σ4
Zl+1

λl+1 , 1 ≤ l ≤ L− 1 . (84)

Combining (83) and (84), we obtain for 1 ≤ l ≤ L− 1,

λ−1
l ≤ 1

σ2
Zl

+ 1
σ2
Nl

(1− e−2rl) + 1
σ2
Zl+1

(

1− λl+1

σ2
Zl+1

)

.(85)

Set ν0
△
= λ−1

0 − 1
σ2
X0

, νl
△
= λ−1

l − 1
σ2
Zl

, 1 ≤ l ≤ L− 1 . Then,

we have

I(X0,W
L) =

n

2
log(1 + σ2

X0
ν0),

I(Y l,W
L
l |Y l−1) =

n

2
log(1 + σ2

Zl
νl) , 1 ≤ l ≤ L− 1,

I(Y L,WL|Y L−1) =
n

2
log(1 + σ2

ZL
νL) = nrL
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Note that νl, 0 ≤ l ≤ L − 1 are nonnegative. From (83) and

(85), {νl}
L
l=0 satisfies the following recursion:

νL = 1
σ2
ZL

(
e2rL − 1

)
, (86)

νL−1 ≤ νL
1+σ2

ZL
νL

+ 1−e−2rL−1

σ2
NL−1

= 1−e−2rL

σ2
NL

+ 1−e−2rL−1

σ2
NL−1

(87)

νl ≤
νl+1

1+σ2
Zl+1

νl+1
+ 1−e−2rl

σ2
Nl

, L− 2 ≥ l ≥ 1 , (88)

ν0 ≤ ν1
1+σ2

Z1
ν1
, ν0 = e−2r0

ξ
− 1

σ2
X0

. (89)

From (86)-(89), we obtain the upper bounds of I(X0;W
L)

and I(Y l; W
L
l |Y l−1), 1 ≤ l ≤ L − 1 in Lemma 7. On the

other hand, from (88), (89), and the nonnegative property of

νl, 0 ≤ l ≤ L− 1, we have

ν0 =

[

e−2r0

ξ
− 1

σ2
X0

]+

, ν1 ≥ ν0
1−σ2

Z1
ν0
, (90)

νl+1 ≥

[

νl−
1

σ2
Nl

(1−e−2rl)

]+

1−σ2
Zl+1

[

νl−
1

σ2
Nl

(1−e−2rl)

]+ , 1 ≤ l ≤ L− 1 . (91)

From (90) and (91), we obtain the lower bound of I(Y l;
WL

l |Y l−1), 1 ≤ l ≤ L− 1 in Lemma 7.

C. Proof of Lemma 4

Let αL
2 , βL

2 ∈ AL(α1). Let t ∈ [0, 1] and t̄ = 1 − t. Then,

we have the following chain of inequalities:

t(−2)ζ(l)(αl
2) + t̄(−2)ζ(l)(βl

2)

=

l−1∑

i=1

{

t log

(

1−
αi

i− ǫiαi

+
αi+1

τi+1

)

+ t̄ log

(

1−
βi

1− ǫiβi
+
βi+1

τi+1

)}

+

l−1∑

i=1

{t log (1− ǫiαi) + t̄ log (1− ǫiβi)}

+ t log

(

1−
αl

1− ǫlαl

)

+ t̄ log

(

1−
βl

1− ǫlβl

)

(a)

≤

l−1∑

i=1

log

(

1− t
αi

1− ǫiαi

+ t
αi+1

τi+1
− t̄

βi
1− ǫiβi

+ t̄
βi+1

τi+1

)

+
l−1∑

i=1

log (1− ǫi[tαi + t̄βi])

+ log

(

1−
tαl

1− ǫlαl

−
t̄βl

1− ǫlβl

)

(b)

≤

l−1∑

i=1

log

(

1−
tαi + t̄βi

1− ǫi[tαi + t̄βi]
+
tαi+1 + t̄βi+1

τi+1

)

+

l−1∑

i=1

log {1− ǫi[tαi + t̄βi]}

+ log

(

1−
tαl + t̄βl

1− ǫl[tαl + t̄βl]

)

= (−2)ζ(l)
(
tαl

2 + t̄βl
2

)
.

Step (a) follows from the strict concavity of the logarithm

function. Step (b) follows from the strict concavity of −a
1−ǫa

for a ∈ (0, ǫ−−1).

D. Proof of Lemma 5

Proof of Lemma 5 part a): For the proof we use the

following inequality:

1 + a

1 + ǫ(1 + a)
−

a

1 + ǫa
≤

1

1 + ǫ
. (92)

The recursion (15) is equivalent to

τiθ
(l)
i−1(ω)

1− ǫi−1θ
(l)
i−1(ω)

= 2θ
(l)
i (ω)−

1 +
θ
(l)
i+1(ω)

τi+1

1 + ǫi

[

1 +
θ
(l)
i+1(ω)

τi+1

] + τi

(93)

for l−1 ≥ i ≥ 2. Applying (92) to the second term in the right

members of (93) and considering the assumption τl ≥ 1
1+ǫl

for L− 1 ≥ l ≥ 2, we have

τiθ
(l)
i−1(ω)

1− ǫi−1θ
(l)
i−1(ω)

≥ 2θ
(l)
i (ω)−

θ
(l)
i+1(ω)

τi+1

1 + ǫi
θ
(l)
i+1(ω)

τi+1

or equivalent to

τiθ
(l)
i−1(ω)

1 + ǫi−1θ
(l)
i−1(ω)

− θ
(l)
i (ω) ≥ θ

(l)
i (ω)−

θ
(l)
i+1(ω)

τi+1

1 + ǫi
θ
(l)
i+1(ω)

τi+1

(94)

for l− 1 ≥ i ≥ 2. We first prove (54) for i = l. The equality

θ
(l)
l−1(ω)

=

θ
(l)
l

(ω)+{(1+ǫl)θ
(l)
l

(ω)}{1−ǫlθ
(l)
l

(ω)}
τl

+ 1

1 + ǫl−1

[

θ
(l)
l

(ω)+{(1+ǫl)θ
(l)
l

(ω)}{1−ǫlθ
(l)
l

(ω)}
τl

+ 1

] (95)

is equivalent to the following two equalities:

τl

(

θ
(l)
l−1(ω)

1− ǫl−1θl−1(l)(ω)
− 1

)

− θ
(l)
l (ω)

= {(1 + ǫl)θ
(l)
l (ω)}{1− ǫlθ

(l)
l (ω)} (96)

= θ
(l)
l (ω)− 1 + ǫlθ

(l)
l (ω){2− (1 + ǫl)θ

(l)
l (ω)} (97)

From (96), we have

τl

(

θ
(l)
l−1(ω)

1− ǫl−1θ
(l)
l−1(ω)

− 1

)

− θ
(l)
l (ω)

= {(1 + ǫl)θ
(l)
l (ω)}{1− ǫlθ

(l)
l (ω)}

(a)
< 0. (98)

Step (a) follows from the original assumption θ
(l)
l (ω) ∈

(0, (1 + ǫl)
−1). From (97), we have

τlθ
(l)
l−1(ω)

1− ǫl−1θ
(l)
l−1(ω)

− θ
(l)
l (ω)

= τl − 1 + θ
(l)
l (ω) + ǫlθ

(l)
l (ω){2− (1 + ǫl)θ

(l)
l (ω)}

≥ τl − 1
(b)

≥ 0. (99)
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Step (b) follows from the assumption τl ≥ 1. From (98) and

(99), we have

0 ≤ θ
(l)
l (ω) ≤

τlθ
(l)
l−1(ω)

1−ǫl−1θ
(l)
l−1(ω)

,

τl

(
θ
(l)
l−1(ω)

1−ǫl−1θ
(l)
l−1

(ω)
− 1

)

< θ
(l)
l (ω) < (1 + ǫl)

−1







(100)

Thus, (55) holds for i = l. We next assume that (55) holds for

some i+ 1 with l ≥ i+ 1, that is,

0 ≤ θ
(l)
i+1(ω) ≤

τi+1θ
(l)
i

(ω)

1−ǫiθ
(l)
i

(ω)
,

τi+1

(

θ
(l)
i

(ω)

1−ǫiθ
(l)
i

(ω)
− 1

)

< θ
(l)
i+1(ω) < ǫ−1

i+1 .







(101)

Then, from (101), we obtain

ǫ−1
i > θ

(l)
i (ω) ≥

θ
(l)
i+1

(ω)

τi+1

1+ǫi
θ
(l)
i+1

(ω)

τi+1

> 0 ,

θ
(l)
i (ω) <

1+
θ
(l)
i+1

(ω)

τi+1

1+ǫi

(

1+
θ
(l)
i+1

(ω)

τi+1

) .







(102)

Using (93), we have

τiθ
(l)
i−1(ω)

1− ǫi−1θ
(l)
i−1(ω)

− θ
(l)
i (ω)

= θ
(l)
i (ω)−

1 +
θ
(l)
i+1(ω)

τi+1

1 + ǫi

(

1 +
θ
(l)
i+1(ω)

τi+1

) + τi
(a)
< τi .

Step (a) follows from the second inequality of (102). Using

(94), we have

τiθ
(l)
i−1(ω)

1− ǫi−1θ
(l)
i−1(ω)

− θ
(l)
i (ω) ≥ θ

(l)
i (ω)−

θ
(l)
i+1(ω)

τi+1

1 + ǫi
θ
(l)
i+1(ω)

τi+1

(a)

≥ 0 .

Step (a) follows from the first inequality of (102). Thus, (55)

holds for i, completing the proof.

Proof of Lemma 5 part b): We first observe that

(−2)ζ(l)(αl
2)

=

l−1∑

i=1

{

log

(

1−
αi

1− ǫiαi

+
αi+1

τi+1

)

+ log (1− ǫiαi)

}

+ log

(

1−
αl

1− ǫlαl

)

=

l∑

i=2

log

{

1− ǫi−1αi−1 − αi−1 + (1− ǫi−1αi−1)
αi

τi

}

+ log

(

1−
αl

1− ǫlαl

)

=

l−1∑

i=1

log

[

1 +
αi+1

τi+1
−

{

1 + ǫi

(

1 +
αi+1

τi+1

)}

αi

]

+ log

(

1−
αl

1− ǫlαl

)

. (103)

Computing (−2) ∂
∂αi

ζ(l)(αl
2), we obtain

(−2) ∂
∂αl

ζ(l)(αl
2) =

1

αl−τl

(

αl−1
1−ǫl−1αl−1

−1
)

− 1
{1−(1+ǫl)αl}(1−ǫlαl)

,

(−2) ∂
∂αi

ζ(l)(αl
2) =

1

αi−τi

(

αi−1
1−ǫi−1αi−1

−1
)

− 1
1+

αi+1
τi+1

1+ǫi

[

1+
αi+1
τi+1

]−αi

for l − 1 ≥ i ≥ 2 .







(104)

From (104), when ∇ζ(l)(αl
2) = 0, αl

2 must satisfy

αl − τl

(
αl−1

1−ǫl−1αl−1
− 1
)

= {1− (1 + ǫl)αl}(1− ǫlαl) ,

1+
αi+1
τi+1

1+ǫi

[

1+
αi+1
τi+1

] − 2αi + τi

(
αi−1

1−ǫi−1αi−1
− 1
)

= 0 ,

for l− 1 ≥ i ≥ 2 .







(105)

From (105), we obtain

αl−1 =

αl+{1−(1+ǫl)αl}(1−ǫlαl)
τl

+ 1

1 + ǫl−1

[
αl+{1−(1+ǫl)αl}(1−ǫlαl)

τl
+ 1
]

αi−1 =

1
τi

[

2αi −
1+

αi+1
τi+1

1+ǫi

(

1+
αi+1
τi+1

) + τi

]

1 + ǫi−1

τi

[

2αi −
1+

αi+1
τi+1

1+ǫi

(

1+
αi+1
τi+1

) + τi

]

for l − 1 ≥ i ≥ 2 .







(106)

The relation (106) implies that ∇ζ(l)
∣
∣
αL

2 =(θ
(l)
i

(ω))l
i=2

= 0

Proof of Lemma 5 part c): For the proof we use the

following recursion for l ≥ i ≥ 2:

τiθ
(l)
i−1(ω)

1− ǫi−1θ
(l)
i−1(ω)

= 2θ
(l)
i (ω)−

1 +
θ
(l)
i+1(ω)

τi+1

1 + ǫi

[

1 +
θ
(l)
i+1(ω)

τi+1

] . (107)

Taking the derivative of both sides of (107) with respect to ω,

we obtain

1
{

1− ǫl−1θ
(l)
i−1(ω)

}2

dθ
(l)
i−1

dω
· τi

= 2
dθ

(l)
i

dω
−

1
{

1 + ǫl

[
θ
(l)
i+1(ω)

τi+1
+ 1

]}2

dθ
(l)
i+1

dω
· τ−1

i+1 . (108)

Since θl2(ω) ∈ Al

(

θ
(l)
1 (ω)

)

, we have

τi

(

θ
(l)
i−1(ω)

1− ǫi−1θ
(l)
i−1(ω)

− 1

)

< θ
(l)
i (ω) .

The above inequality is equivalent to

1 + ǫi−1

(

θ
(l)
i (ω)

τi
+ 1

)

>
1

1− ǫi−1θ
(l)
i−1(ω)

. (109)
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From (108) and (109) we have

{

1 + ǫi−1

(

θ
(l)
i (ω)

τi
+ 1

)}2
dθ

(l)
i−1

dω
· τl

≥ 2
dθ

(l)
i

dω
−

1
{

1 + ǫi

(
θ
(l)
i+1(ω)

τl+1
+ 1

)}2

dθ
(l)
i+1

dω
· τ−1

i+1 . (110)

The above inequality is equivalent to

{

1 + ǫi−1

(

θ
(l)
i (ω)

τi
+ 1

)}2(

1

σ2
i−1

dθ
(l)
i−1

dω

)

≥ 2

(

1

σ2
i

dθ
(l)
i

dω

)

−
1

{

1 + ǫi

(
θ
(l)
i+1(ω)

τi+1
+ 1

)}2

×

(

1

σ2
i+1

dθ
(l)
i+1

dω

)

. (111)

For l ≥ i ≥ 1, set

Φ
(l)
i (ω)

△
=







(

1

σ2
i

dθ
(l)
i

dω

)
i∏

j=2

1
{

1+ǫj−1

(

θ
(l)
j

(ω)

τj
+1

)}2 , l ≥ i ≥ 2,

1

σ2
1

dθ
(l)
1

dω
, i = 1.

Then, by (111), we have

Φ
(l)
i−1(ω) ≥ 2Φ

(l)
i (ω)− Φ

(l)
i+1(ω) for l − 1 ≥ i ≥ 2 . (112)

From (112) we have

Φ
(l)
i−1(ω)− Φ

(l)
i (ω) ≥ Φ

(l)
i (ω)− Φ

(l)
i+1(ω)

≥ Φ
(l)
l−1(ω)− Φ

(l)
l (ω)

=

[

τl ·
dθ

(l)
l−1

dω
− 1
{

1+ǫl−1

(

ω
τl

+1
)}2

]

1

σ2
l

×
l−1∏

j=2

1
{

1+ǫj−1

(

θj(ω)

τj
+1
)}2

(a)
=

[

2(1+ǫl)(1−ǫlω))
{

1+ǫl−1

[

ω+{(1+ǫl)ω−1}(1−ǫlω)

τl
+1
]}2

− 1
{

1+ǫl−1(
ω
τl

+1)
}2

]

1

σ2
l

·

l−1∏

j=2

1
{

1+ǫj−1

(

θj (ω)

τj
+1
)}2

(b)

≥ 1
{

1+ǫl−1(
ω
τl

+1)
}2

1

σ2
l

·

l−1∏

j=2

1
{

1+ǫj−1

(

θj(ω)

τj
+1
)}2

= Φ
(l)
l (ω). (113)

Step (a) follows from θ
(l)
l (ω) = ω and

θ
(l)
l−1(ω) =

ǫl−1

[

ω+{(1+ǫl)ω−1}(1−ǫlω)

τl
+1
]

1+ǫl−1

[

ω+{(1+ǫl)ω−1}(1−ǫlω)

τl
+1
] .

Step (b) follows from that for ω ∈ [0, (1 + ǫ)−1), we have

2(1 + ǫl)(1 − ǫlω)) > 2,

ω + {(1 + ǫl)ω − 1}(1− ǫlω) < ω.

By (113), we have

Φ
(l)
i (ω) ≥ Φ

(l)
l (ω) + (l − i)Φ

(l)
l (ω) = (l − i+ 1)Φ

(l)
l (ω),

from which we obtain

dθ
(l)
i

dω
≥ (l − i+ 1)

σ2
i

σ2
l

·

l∏

j=i+1

1
{

1+ǫj−1

(

θj(ω)

τj
+1
)}2 ,

completing the proof.

Proof of Lemma 5 part c): For the proof we use the

following recursion for l ≥ i ≥ 2:

τiθ
(l)
i−1(ω)

1− ǫi−1θ
(l)
i−1(ω)

= 2θ
(l)
i (ω)−

1 +
θ
(l)
i+1(ω)

τi+1

1 + ǫi

[

1 +
θ
(l)
i+1(ω)

τi+1

] . (114)

Taking the derivative of both sides of (114) with respect to ω,

we obtain

1
{

1− ǫl−1θ
(l)
i−1(ω)

}2

dθ
(l)
i−1

dω
· τi

= 2
dθ

(l)
i

dω
−

1
{

1 + ǫl

[
θ
(l)
i+1(ω)

τi+1
+ 1

]}2

dθ
(l)
i+1

dω
· τ−1

i+1 . (115)

Since θl2(ω) ∈ Al

(

θ
(l)
1 (ω)

)

, we have

τi

(

θ
(l)
i−1(ω)

1− ǫi−1θ
(l)
i−1(ω)

− 1

)

< θ
(l)
i (ω) .

The above inequality is equivalent to

1 + ǫi−1

(

θ
(l)
i (ω)

τi
+ 1

)

>
1

1− ǫi−1θ
(l)
i−1(ω)

. (116)

From (115) and (116) we have
{

1 + ǫi−1

(

θ
(l)
i (ω)

τi
+ 1

)}2
dθ

(l)
i−1

dω
· τl

≥ 2
dθ

(l)
i

dω
−

1
{

1 + ǫi

(
θ
(l)
i+1(ω)

τl+1
+ 1

)}2

dθ
(l)
i+1

dω
· τ−1

i+1 . (117)

The above inequality is equivalent to
{

1 + ǫi−1

(

θ
(l)
i (ω)

τi
+ 1

)}2(

1

σ2
i−1

dθ
(l)
i−1

dω

)

≥ 2

(

1

σ2
i

dθ
(l)
i

dω

)

−
1

{

1 + ǫi

(
θ
(l)
i+1(ω)

τi+1
+ 1

)}2

×

(

1

σ2
i+1

dθ
(l)
i+1

dω

)

. (118)
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For l ≥ i ≥ 1, set

Φ
(l)
i (ω)

△
=







(

1

σ2
i

dθ
(l)
i

dω

)
i∏

j=2

1
{

1+ǫj−1

(

θ
(l)
j

(ω)

τj
+1

)}2 , l ≥ i ≥ 2,

1

σ2
1

dθ
(l)
1

dω
, i = 1.

Then, by (118), we have

Φ
(l)
i−1(ω) ≥ 2Φ

(l)
i (ω)− Φ

(l)
i+1(ω) for l − 1 ≥ i ≥ 2 . (119)

From (119) we have

Φ
(l)
i−1(ω)− Φ

(l)
i (ω) ≥ Φ

(l)
i (ω)− Φ

(l)
i+1(ω)

≥ Φ
(l)
l−1(ω)− Φ

(l)
l (ω)

=

[

τl ·
dθ

(l)
l−1

dω
− 1
{

1+ǫl−1

(

ω
τl

+1
)}2

]

1

σ2
l

×

l−1∏

j=2

1
{

1+ǫj−1

(

θj(ω)

τj
+1
)}2

(a)
=

[

2(1+ǫl)(1−ǫlω))
{

1+ǫl−1

[

ω+{(1+ǫl)ω−1}(1−ǫlω)

τl
+1
]}2

− 1
{

1+ǫl−1(
ω
τl

+1)
}2

]

1

σ2
l

·

l−1∏

j=2

1
{

1+ǫj−1

(

θj (ω)

τj
+1
)}2

(b)

≥ 1
{

1+ǫl−1(
ω
τl

+1)
}2

1

σ2
l

·

l−1∏

j=2

1
{

1+ǫj−1

(

θj(ω)

τj
+1
)}2

= Φ
(l)
l (ω). (120)

Step (a) follows from θ
(l)
l (ω) = ω and

θ
(l)
l−1(ω) =

ǫl−1

[

ω+{(1+ǫl)ω−1}(1−ǫlω)

τl
+1
]

1+ǫl−1

[

ω+{(1+ǫl)ω−1}(1−ǫlω)

τl
+1
] .

Step (b) follows from that for ω ∈ [0, (1 + ǫ)−1), we have

2(1 + ǫl)(1 − ǫlω)) > 2,

ω + {(1 + ǫl)ω − 1}(1− ǫlω) < ω.

By (120), we have

Φ
(l)
i (ω) ≥ Φ

(l)
l (ω) + (l − i)Φ

(l)
l (ω) = (l − i+ 1)Φ

(l)
l (ω),

from which we obtain

dθ
(l)
i

dω
≥ (l − i+ 1)

σ2
i

σ2
l

·
l∏

j=i+1

1
{

1+ǫj−1

(

θj(ω)

τj
+1
)}2 ,

completing the proof.
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